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Shotgun assays are widely used in biotechnologies to char-
acterize large molecules, which are hard to be measured as
a whole directly. For instance, in Liquid Chromatography
– Mass Spectrometry (LC-MS) shotgun experiments, pro-
teins in biological samples are digested into peptides, and
then peptides are separated and measured. However, in pro-
teomics study, investigators are usually interested in the
performance of the whole proteins instead of those peptide
fragments. In light of meta-analysis, we propose an adap-
tive thresholding method to select informative peptides,
and combine peptide-level models to protein-level analysis.
The meta-analysis procedure and modeling rationale can be
adapted to data analysis of other types of shotgun assays.
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1. INTRODUCTION

Classical meta-analysis refers to integrating multiple
analysis results from individual studies to see if the overall
effect is significant [9]. Meta-analysis plays an increasingly
popular role in modern genomic research, such as combin-
ing multiple transcriptomic studies to identify differentially
expressed genes [31], integrating multiple genomic studies
for pathway enrichment analysis [30], and among others. To
perform meta-analysis, it is crucial to appropriately collect
a reasonable set of studies, and extract useful information
from individual studies.

In this paper, we instead of performing meta-analysis in a
classic application scenario, but adapt and extend the ratio-
nale of meta-analysis to model proteomic data from high-
throughput shotgun assays. Shotgun proteomics has been
used for identifying proteins in biological samples using a
combination of high performance Liquid Chromatography
(LS) combined with Mass Spectrometry (MS). It is named
by analogy with the rapidly-expanding, quasi-random fir-
ing pattern of a shotgun. LC-MS has become one of main
technologies for the emerging field of proteomics with appli-
cations in discovering novel disease-specific protein biomark-
ers, gaining better understanding of disease processes, and
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monitoring therapeutic responses [2, 1, 6, 7, 8, 19, 20, 26,
27, 28]. Typically, in LC-MS, protein samples are first di-
gested into peptides by sequence-specific proteases such as
trypsin. The resulting peptides are then separated by cap-
illary LC and analyzed by tandem MS via an electrospray
ionization interface. The detected LC-MS features contain
the information on the mass, LC elution time, and inten-
sity indicative of abundance for individual peptides. Many
thousands of peptides can be identified in a single LC-MS
or LC-MS with additional Mass spectrometry (LC-MS/MS)
analysis using mass and time tag strategies [39] or bioinfor-
matics approaches [3, 11, 12, 14, 16]. Peptide abundances
are obtained based on either peak heights or peak areas
of the detected LC-MS features [28]. A challenging aspect
of the analysis is that measurement in peptide abundances
can be affected not only by actual biological changes, but
also by bias and noise. LC-MS reproducibility and quantifi-
cation is affected by sample processing variations and LC-
MS platform variations [33]. Moreover, different peptides de-
rived from a given protein can have different responses and
variations due to the differences in digestion and ionization
efficiencies as well as protein modifications. The mapping
between peptides and proteins is performed by searching ex-
isting protein sequence database. Mapping error is common
in the mapping process.

Due to limited dynamic range of LC-MS detection and
variation in platform sensitivity, low-abundance peptides
may be detected in some samples but not in others even
if they have the same concentrations within these samples.
This leads to another significant challenge for LC-MS data
modeling, namely, missing data. The degrees of missing data
can be affected by protein abundances (as shown in Fig-
ure 1), which should be treated as non-random missing.
The lower the abundance of a protein, the higher the miss-
ing rate of the peptides. Because of that, existing meth-
ods for handling randomly missing data such as k-nearest
neighbors (KNN) [35], SVD based imputation method [25]
or excluding the missing values directly, may lead to er-
roneous results [22]. A further challenge of proteomics is
the variability of peptides for the same protein. Existing
methods for protein level abundance estimation such as
DAnTE [25] are based on averaging the intensities of all
the peptides from a protein after some kinds of transforma-
tion. The most frequently observed peptide is often chosen
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as the reference peptide. Then, peptides originating from
the same protein are scaled on the basis of the pre-chosen
reference peptide (RRollup method) or with a modified z-
sore approach (ZRollup method). After scaling, peptide in-
tensities are averaged to obtain the relative protein abun-
dance. These existing methods do not explicitly account for
the issue of variability and missing data problems discussed
above. In this paper, we present an additive mixed model
to address the multiple sources of variance, and handle the
heterogeneity of peptides using peptide-specific models. We
begin with an additive model to obtain peptide-level signif-
icance and then adaptively select peptides to make protein-
level inference through meta-analysis. We call our method
PEAT – Protein Expression through Adaptive Threshold-
ing. The software website is https://sites.google.com/site/
statyuping/software/peat.

2. METHOD

To illustrate our modeling ideas, we plot peptides origi-
nated from one of spiking-in proteins in Figure 1 from a real
dataset [21]. In the data, a dilution mixture of the tryptic
digests of six nonhuman purified proteins was spiked into
a complex sample background of human peptides isolated
by solid-phase N-glycopeptide captured from serum. Fig-
ure 1 shows the intensities of those peptides from protein
Adolase A. There are six levels of protein abundances in-
jected per sample, which are 25, 50, 100, 200, 400, and 800
(fmol) (from left to right in Figure 1). For each protein con-
centration level, the data contains three samples, which are
binned within the corresponding condition in Figure 1. As
showed in Figure 1, different peptides from the same protein
can provide vastly different signals. Peptides from different
runs may have different missing rates and intensities, even
when they belong to the same biological condition. Thus, a
peptide-specific model is needed to address this heterogene-
ity. We consider two types of signals that a peptide may
carry in the differential analysis, which include peptide in-
tensities and observation rates. Consequently, we build two
types of models, one is the intensity model, and the other is
the observation-rate model.

Explicitly, we first check whether the peptide was ob-
served in every condition. If each condition has at least one
observation, we check whether there are missing data, and
if so, we impute the missing data. In this case, we use the
intensities of peptides to test whether they are differentially
expressed across biological conditions (intensity model). If
there is one condition without observations, we will use the
observation rate of peptides to test whether they are differ-
entially expressed across biological conditions (observation-
rate model). The reason we consider both intensity model
and observation-rate model is that peptides can be either
absent in a sample or present at levels below the detection
limit of the MS instrument. Finally, in order to obtain the
protein-level statistics, we propose an adaptive thresholding
statistic and use a permutation test to select appropriate
thresholds. Below, we explain the details of each step.

2.1 Peptide-specific models

2.1.1 Missing data handling

Let ygi be the peptide intensity for peptide g (g ∈
{1, · · · , G}) of sample i (i ∈ {1, · · · , I}) which is nested
in group k (k ∈ {1, · · · ,K}). We assume intensities of pep-
tide g from biological group k follow the normal distribution
N(ugk, σ

2
g). If one peptide has observations in every biolog-

ical condition and has missing data as well, we can impute
the missing data. As shown in Figure 1, while peptides from
low-abundance proteins are more likely to be missing; high-
abundance protein can also have missing peptides. We model
missing data from low abundance proteins as non-random
missing. Statistically, the signal peaks from each peptides
are censored at the left at a threshold dependent on de-
tective sensitivity. The probability that censoring occurs is
modeled as the left-hand tail probability of the N(ugk, σ

2
g)

distribution, evaluated at the censoring threshold c, denoted
by φ((c−ugk)/σg), where c is the unknown detection thresh-
old for a missing peptide in a LC-MS experiment. We use
one-way ANOVA (cell means model):

(1) yg = Xug + eg

Figure 1. Intensities of peptides from Adolase A in spike-in
data. The x-axis indicates samples. There are 18 samples

from 6 conditions in total. Each condition has three samples.
The samples are ordered by their conditions. Different

condition has different spike-in protein concentrations, which
are 25, 50, 100, 200, 400, and 800 (fmol), ordered from left
to right in the figure. The y-axis indicates the log2 scaled
peptide intensities. Different lines with different colors and

types indicate different peptides.
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to estimate ug, the vector consisting of ugk, where k ∈
{1, · · · ,K}, K is the number of biological conditions, yg

is the vector consisting of the intensities of peptide g, and
X is the design matrix for K groups.

Besides the intensity-dependent missingness, some pep-
tides from high abundance proteins are missing completely
at random due to technical factors such as ion-suppression
effects [34], where some particular peptides dominate the
LC-MS experiments and suppress the detection of other
peptides. Incorrectly treating randomly missing peptides as
intensity-dependent missing peptides or vice versa will result
in biased estimates. Thus, we want to estimate the proba-
bilities of “missing completely at random” and “missing not
at random” from the entire collection of data.

We assume the probability of any peptide being randomly
missed is π. Denote the intensity of peptide g from sample i
by ygi. Let Wgi be an indicator of whether ygi is unobserved
(0 if not missed, 1 if missed), which follows the Bernoulli
distribution. Considering the two mechanisms of missing,
the probability of a peptide is unobserved can be calculated
as follows:

(2) P (Wgi = 1|ugk(i)) = π+(1−π)φ((c−ugk(i))/σg) = qgi,

where k(i) is the group index of sample i belongs to. Let
θ denote the vector of unknown parameters, which consists
of π, c and σg. The log-likelihood function for the above

Bernoulli distribution is of the form: l(θ) =
∑I

i=1

∑G
g=1[(1−

Wgi) log(1− qgi) +Wgi log qgi].
For c, we use the minimum observed intensity of the whole

dataset as its estimate ĉ. For π, we first fit a nonlinear regres-
sion model with the form ofmg = f(ȳg)+εg, whichmg is the
missing rate for peptide g, ȳg is the average of all observed
intensities of peptide g. In practice, we fit the nonlinear re-
gression model using cubic splines. Then, we estimate the
random missing probability π as π̂ = f(maxg ȳg), as illus-
trated in Figure 2. We then employ an iterative procedure
to estimate the rest parameters and perform imputations.
Specifically, we first assign initial values to the parameters.
Let ygO indicate the vector of observed intensities of pep-
tide g. Let XO be the design matrix corresponding to ygO.

First, we obtain û
(0)
gk by solving the regression model ygO =

XOug + eg. Then, ŷ
(0)
g ← Xû

(0)
g . We then estimate the

parameter σg as σ̂
(0)
g ←

√
V ar(yg − ŷ

(0)
g )(I − 1)/(I −K),

where I is the number of samples, and K is the number of
biological conditions. With the initial values, we then iterate
the following steps for l = 1, 2,..., until convergence.

1. For missing values, imputations are carried out by gen-
erating values at random by the following procedure.
Suppose intensity ygi from sample i and peptide g is
missing. The probability of treating this missing value
to be censored is as below:

(3)

P (y
(l−1)
gi < ĉ|Wgi =1) = Φ(ζ

(l−1)
gi )/[π̂+(1−π̂)Φ(ζ

(l−1)
gi )],

which ζ
(l−1)
gi = (ĉ− xiû

(l−1)
g )/σ̂

(l−1)
g , xi is the i-th row

vector of matrix X corresponding to sample i. We draw
a random variable based on the Bernoulli distribution
B(P (y

(l−1)
gi < ĉ|Wgi = 1)). If the random sample is 1,

we treat the missing value as censored missing. Then,

the missing value y
(l)
gi is imputed with a random draw

from the normal distribution N(xiû
(l−1)
g , σ̂

(l−1)
g ) right-

truncated at ĉ. Otherwise, we treat the missing value
as completely random missing. Then, the missing value

y
(l)
gi is imputed with a random draw from the same Nor-
mal distribution, but without truncation at the esti-
mated censoring point.

2. Obtain û
(l)
g by solving the regression model

y
(l)
g = Xug + eg, ŷ

(l)
g ← Xû

(l)
g , σ̂

(l)
g ←√

V ar(y
(l)
g − ŷ

(l)
g )(I − 1)/(I −K).

2.1.2 Mixed regression model using peptide intensities

The variance of peptide intensities are affected by sev-
eral factors including peptide intrinsic characteristics, ex-
perimental technique properties, and biological conditions.
We propose a peptide-specific additive mixed model for the
LC-MS data. Let μ denote the overall mean for all peptides
under all conditions, vi denote the main effect of each ex-
perimental run. Let αg indicate the overall average effect
for peptide g, and tgk(i) is the effect of biological conditions,
such as disease groups, which is the effect we are mostly
interested in. k(i) is the group index, of which sample i be-
longs to. The additive mixed effect model is of the form

Figure 2. Random missing probability estimation. The x-axis
indicates the average intensity of each peptide. The y-axis

indicates the missing rate of each peptide. The solid curve is
fitted by the cubic spline regression. The value on the y-axis
for the dotted line indicates the estimated completely random

missing probability π̂.
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ygi = μ+vi+αg+ tgk(i)+εgi. In particular, μ, αg and tgk(i)
are fixed effects, while vi is a normally distributed random
effect with zero mean, and εgi is the error term assumed
having a normal distribution with zero mean. The models
have the following constraints:

∑G
g=1 αg =

∑K
k=1 tgk(i) = 0.

The null hypothesis is that the peptide is not differentially
expressed, i.e., tg1 = · · · = tgK = 0.

2.1.3 Logistic regression model using peptide observation
probabilities

For peptides completely missing in one biological con-
dition, i.e. data is not observed for all of the subjects that
belong to some biological condition(s), the above model does
not apply. This is because that the regression coefficient can-
not be obtained without observations for one biological con-
dition. We will not throw this subset of data away, because
some protein within this subset could be biologically differ-
entially expressed, e.g. a protein expressed in one condition
but not expressed in other condition(s). Thus, we include
this type of data in our analysis and propose a logistic regres-
sion model to test the significance of differential expression.
In the logistic regression model, the binary outcome variable
(denoted as ogi) indicates the observation status of peptide
g in sample i (1 observed, 0 unobserved). Let pgi be the
probability of peptide g observed in sample i. The logistic
regression model is of the form: logit(E[ogi|xg1, · · · , xgK ]) =

logit(pgi) = ln[pgi/(1−pgi)] = βg0+
∑K

k=1 βgkxik, where βgk

reflects the biological condition effect in group k, xik is an
indicator of whether sample i belongs to group k.

2.1.4 Peptide-level significance analysis

We define the null hypothesis (H0: the peptide of interest
is not differentially expressed) in the sense that there is no
difference in intensity (H01) and no difference in observation
rate (H02). The corresponding alternative hypothesis HA is
defined as the peptide is differentially expressed, i.e. there is
difference in intensity (HA1) or there is difference in obser-
vation rate (HA2). Let l01 and l02 denote the log-likelihood
function of the null model under H01 and H02, respectively.
Let lA1 and lA2 denote the log-likelihood function of the un-
constrained model under HA1 and HA2, respectively. We use
the negative log-likelihood ratio test statistic −2(l01 − lA1)
and −2(l02 − lA2) to detect the differentially expressed pep-
tides, which both asymptotically follow the χ2

(K−1) distribu-
tion under H01 and H02, respectively.

2.2 Meta-analysis of peptide-level models to
obtain protein-level significance

Our goal is to detect differentially expressed proteins
across multiple biological conditions. The number of pep-
tides mapped to one protein can range from several to sev-
eral hundreds. In the situation of multiple peptides per pro-
tein, a sophisticated model is needed. Given p-values of
peptides mapped to one protein, we want to obtain the
protein-level p-value. Moreover, not every observed peptide

mapped to one protein represents the true signal of the pro-
tein equally, due to the complexity of proteolytic process-
ing and post-translational modifications as well as potential
mapping errors. We thus want to select good peptides that
are informative.

Considering protein j, we assume there are mj peptides
mapped to this protein. Suppose peptide g is mapped to
protein j. Let pg denote the p-value of peptide g differen-
tially expressed across different biological conditions, which
is obtained from the above peptide-specific models. Let Hg

0

denote that peptide g is not differentially expressed across
different biological conditions. Hg

0 is true either because the
protein is not differentially expressed across different biolog-
ical conditions, or because peptide g is not informative on
protein level due to technical factors or mapping errors. Let
Hr

A denote the hypothesis that there are exactly r peptides
mapped to a protein carrying the true signal. The alterna-
tive hypothesis is written as HA = H1

A∪· · ·∪H
mj

A . We rank
the peptides according to their p-values in an increasing or-
der. Intuitively, if the true signal lies in Hr

A, we can improve
the power by only including peptides with the top r small-
est p-values in peptide-to-protein summarization. However,
for one protein, we do not know in advance the number
of peptides with the true signals. Moreover, different pro-
teins may have different number of informative peptides. Be-
cause of these difficulties, we propose the following adaptive
thresholds with the aim to improve the power of the testing.
Let p(1), · · · , p(mj) denote the ordered p-values. We define a

combined statistic as Cj(r) = −
∑mj

g=1 log(p(g)I(g ≤ r)). r is
chosen to minimize pr = P (Cr), which is the p-value of the
observed C statistic. The adaptive thresholding statistic V is
defined as the minimal p-value among pr, r ∈ {1, · · · ,mj}.
V = minr∈{1,··· ,mj} P (Cr). Finally, the significance of the
observed value of V is obtained by permutation analysis.

Below we illustrate the detailed procedure for the adap-
tive thresholding statistic when applied to the detection of
differentially expressed proteins.

1. Peptide-specific p-value calculation

(a) If the missing values for the peptide of interest
is imputable, we impute the missing values and
calculate the p-value using the likelihood ratio test
based on standard regression models with peptide
intensities as outcomes.

(b) If the missing values for the peptide of interest is
not imputable, we calculate the p-value using like-
lihood ratio test based on the logistic regression
models.

2. Calculate the adaptive-thresholding statistic V:

(a) Given r, the observed combined statistic C for
protein j is Cj(r) = −

∑mj

g=1 log(p(g))I(g ≤ r).

Define the permuted combined statistic C
(b)
j(r) =

−
∑mj

g=1 log(p
(b)
(g))I(g ≤ r(b)) from permutation b

with group indices permuted.

468 Y. Zhang et al.



(b) Estimate the p-value of the observed Cj as

P (Cj(r)) =

∑B
b=1

∑J
j′=1 I{C

(b)
j′(r) ≥ Cj(r)}

B · J ,

where J is the number of proteins, B is the number
of permutations. Similarly, for the permutation b,
we have

P (C
(b)
j(r)) =

∑B
b′=1

∑J
j′=1 I{C

(b′)
j′(r) ≥ C

(b)
j }

B · J .

(c) Calculate the optimal r for protein j as

r∗ = arg min
r∈{1,...,mj}

P (Cj(r)).

To find the optimal r∗, the computational com-
plexity is O(mj). The computational complexity is
lower than the adaptive weight statistic proposed
in existing literature [18], which is O(2mj ). Simi-
larly,

r(b)∗ = arg min
r∈{1,...,mj}

P (C
(b)
j(r)).

Define the adaptive thresholding statistic Vj as

Vj = P (Cj(r)∗). Similarly, V
(b)
j = P (C

(b)

j(r)(b)∗
).

3. Assess the p-value and q-value of the adaptive-
thresholding statistic V

(a) The p-value of Vj is calculated as

PV (Vj) =

∑B
b=1

∑J
j′=1 I{V

(b)
j′ ≤ Vj}

B · J .

(b) Estimate π0, the proportion of not differentially
expressed proteins, as

π̂0 =

∑J
j=1 I{PV (Vj) ∈ A}

J · l(A) .

We choose A = [0.5, 1] and l(A) = 0.5 as suggested
by the literature [32].

(c) Estimate the q-value for each protein as

q(Vj) =
π̂0

∑B
b=1

∑J
j′=1 I{V

(b)
j′ ≤ Vj}

B
∑J

j′=1 I{Vj′ ≤ Vj}
.

2.3 Estimation of protein-level expression

Protein-level expression is summarized from the selected
peptide intensities. For protein j with mj mapped peptides,
we calculate its expression for sample i as

Eji =
1∑mj

g=1 I(g ≤ r∗)

mj∑
g=1

δgiygiI(g ≤ r∗),

where δgi is the scaling factor. The selected peptides mapped
to the same protein are scaled on the basis of the refer-
ence peptide to bring all peptide profiles across biological
conditions to the same level. To remove outlying values, a
Grubb’s outlier test is performed. The Grubb’s test is used
to detect if the sample dataset contains one outlier, statis-
tically different than the other values [10]. The test is based
on calculating a score (the difference between outlier and
the mean divided by standard deviation) of this outlier and
comparing it to an appropriate critical value. The critical
value for this test is calculated according to the approxima-
tion given by Pearson and Sekar [24]. Let τgi = (ygi− ȳg)/s,

where ȳg =
∑I

i=1 ygi/I, s =
√∑I

i=1(ygi − ȳg)2/I. If ygi is

an observation arbitrarily selected from a random sample of
I drawn from an infinite normal population, then the ele-
mentary probability distribution of τ is

p(τg) =
Γ( I−1

2 )√
(I − 1)πΓ( I−2

2 )
(1−

τ2g
I − 1

)
I−4
2 .

The probability that the absolute value of τi is greater
than a specified value τ0 is

P{|τgi| > τg0} = 2

∫ √
I−1

τg0

p(τg)dτg.

The critical value τg0 is calculated by reversing the above
formula with a specified p-value cutoff (we use 0.05 as the
p-value cutoff).

3. POWER AND ADMISSIBILITY

In this section, we study the power and admissibil-
ity of the proposed adaptive thresholding statistic under
some assumptions. We assume independence among pep-
tides mapped to one protein of interest. For simplicity, we
consider two-sample test of means of two Gaussian distribu-
tions with known variance and without missing data.

Let

(4) Zg =
X̄2g − X̄1g

σg

√
1/n1 + 1/n2

,

g = 1, · · · ,mj be the statistic for peptide g in protein
j, where X̄1g = 1

n1

∑n1

i=1 Xi, X̄2g = 1
n2

∑n2

i=1 Xi, Xgi ∼
N(0, σ2

g) when 1 ≤ i ≤ n1, and Xgi ∼ N(θg, σ
2
g) when

n1+1 ≤ i ≤ n2. The p-value for peptide g is Pg = Pr(|Zg| ≥
|zg||θg = 0), where Z is the standard normal distribution.
Denote the null hypothesis by H0 = {θ1 = · · · = θmj = 0}
and alternative hypothesis by HA = {at least one θg �= 0}.
Let βAT (θ;α) be the power of a test controlled at level α for
the adaptive thresholding statistic given θ ∈ HA, we have

βAT (θ;α) = Pr(V ≤ Vα|θ)

= 1−
∫
ΩAT

Π
mj

g=1p(Pg|θ)dP1 · · · dPmj ,
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where Vα is the solution of v to the equation P (V ≤ v|H0) =
α, ΩAT = {P (Cj(r∗) > Vα)} = ∩mj

r=1{P (Cj(r)) > Vα} =

∩mj

r=1{Cj(r) < χ−2
2r (1− Vα)}, and χ−2

2r is the inverse CDF of
a χ2

2r with the degrees of freedom 2r.
When H0 is true, the individual Pg is uniformly dis-

tributed on [0, 1]. The density of the p-value under HA is
as below

p(P |θ) = p(x|θ)
p(x|0) (0 ≤ P ≤ 1),

where x = g(P ) indicates the solution of P =
∫ 1

x
f(x|0)dx

[23]. In above simplified setting, the density of Pg is

p(Pg|θg) =
1

2
exp

{cg
2
[2Φ−1(1− Pg/2)− cg]

}

+
1

2
exp

{cg
2
[−2Φ−1(1− Pg/2) + cg]

}
,

(5)

where cg =
θg

σg

√
1/n1+1/n2

, g = 1, · · · ,mj .

Without peptide-selection, the power of Fisher’s com-
bined probability test is

βFisher(θ;α) = Pr(−
mj∑
g=1

Pg ≤ χ2
2mj

(1− α)|θ ∈ HA)

= 1−
∫
ΩFisher

Π
mj

g=1p(Pg|θ)dp1 · · · dpmj ,

where ΩFisher = {Cj(mj) ≤ χ2
2mj

(1 − α)}, and p(Pg|θg) is
determined by Equation (5).

Obviously ΩAT ≤ ΩFisher, thus βAT ≥ βFisher. This
means, peptide selection can improve the power with the
existence of uninformative peptides mapped to the protein
of interest, due to technical factors or potential mapping
errors.

Theorem 3.1 ([4]). Under HA and the test statistic is in
the exponential family, the necessary and sufficient condition
for a combined test procedure to be admissible is that the
corresponding acceptance region is convex.

Corollary 1. The acceptance region of adaptive threshold-
ing statistic (AT) is convex and, thus, AT is admissible un-
der HA and assumption (4).

Proof. Denote the two-sided p-value by pg = 2(1−Φ(|zg|)),
where Φ(x) =

∫ x

−∞ φ(x), and φ(x) is the density of the
standard normal distribution. Below, we prove that f(zg) =
− log(pg) = − log(1− Φ(|zg|))− log 2 is convex.

With simple calculation, we have f
′′
(z) =

φ(z)
[1−Φ(|z|)]2 {φ(z) − |z|[1 − Φ(|z|)]} when z �= 0. Because

1− Φ(z) ≤ φ(z)/z, for z > 0, thus, f
′′
(z) > 0, when z �= 0.

In addition, f(z) is continuous at z = 0, so f(z) is convex
in z. Because the sum of convex functions is convex, we can
further obtain f(z1, · · · , zr) = −

∑r
g=1 log(pg) for ∀g ≥ 1 is

convex.
For the adaptive thresholding statistic (AT), the accep-

tance region is {z1, · · · , zmj : min1≤r≤mj p(cj(r)) > c},

where p(cj(r)) is the right-sided p-value of Cj(r).

{z1, · · · , zmj : min
1≤r≤mj

p(cj(r)) > c}

=

mj⋂
r=1

{z1, · · · , zr : p(−
r∑

g=1

log(p(g))) > c}

=

mj⋂
r=1

{z1, · · · , zr : p(max
g∈Gr

(−
∑
g

log(pg))) > c}

=

mj⋂
r=1

{z1, · · · , zr : min
g∈Gr

p(−
∑
g

log(pg)) > c}

=

mj⋂
r=1

⋂
g∈Gr

{z1, · · · , zr : p(−
∑
g

log(pg)) > c}

=

mj⋂
r=1

⋂
g∈Gr

{z1, · · · , zr : −
∑
g∈Gr

log(pg) < χ−2
2r (1− c)},

where Gr is the set including any r peptides. Thus, the ac-
ceptance region of adaptive thresholding statistic is convex,
since the intersection of convex sets is convex.

4. SIMULATION STUDIES

To study the specificity and sensitivity of our approach,
we performed the following six simulation experiments. We
mimicked the spike-in data to generate the peptides and
proteins in our simulations. We generated 94 proteins, and
each corresponding simulated protein had the same number
of peptides as in the spike-in data [21]. The first 20 proteins
were simulated to be differentially expressed. The rest pro-
teins were simulated to be not differentially expressed. The
random missingness π parameter was set to be 0.1 for sim-
ulations 1, 2, 5 and 6; but 0.2 for simulations 3 and 4. The
censoring threshold was selected such that a total of 20%
all measurements were missing for simulations 1, 2, 3, 4 and
6; but 30% all measurements were missing for simulation 5.
For each protein, we randomly indicate no more than 40%
of its mapped peptides are uninformative for simulations 1,
2, 3, 4 and 5, but no more than 30% of its mapped pep-
tides are uninformative for simulation 6. For simulations 1,
3, 5 and 6, we simulated 100 samples. The first 50 samples
were from group 1; the second 50 samples were from group
2. For simulations 2 and 4, we simulate 20 samples and two
biological conditions. Each biological condition contains 10
samples. The expression levels of proteins were generated
via the following procedure.

Let G0 indicate the set of peptides that are differentially
expressed. Let vi indicate the effect of LC-MS experiment for
sample i, αg indicate the effect of peptide g, tgk(i) indicate
the group effect of peptide g and group k(i), and εgi indicate
the error effect. We generated the data according to the
distributions as below.

ygi = 15 + vi + αg + αg ∗ tgk(i) + εgi,
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Figure 3. The Receiver Operating Characteristic (ROC) plots
for six simulation studies. The x-axes indicate false positive
rate, and the y-axes indicate true positive rate. The curves
with different colors and line types show the average true
positive rates across 10 times replicates for each method

respectively. The corresponding shadows show the standard
errors. Black solid lines indicate PEAT results; Red dashed
lines indicate SFPQ results; Orange longdash lines indicate
RRollup results; Blue dotdash lines indicate ZRollup results;

Green twodash lines indicate MSstats results.

where vi ∼ N(0, 1), αg ∼ N(0, 1), εgi ∼ N(0, 1) and tgk(i) is
generated based on the following procedure:

tgk(i) =

⎧⎨
⎩

N(1, 0.1) if g ∈ G0 and k(i) = 1
N(−1, 0.1) if g ∈ G0 and k(i) = 2
N(0, 0.1) else.

We run 10 times for each simulation. The performance
for these six simulations is illustrated in Figure 3. For com-
parisons, we also applied the RRollup and ZRollup methods
presented in the DAnTE software [25], the MSstats [5] and
the method denoted by SFPQ [15]. One can see that for
each simulation, our method has the best performance. For

Table 1. Dilution outline of the six purified proteins in the
spike-in data set. Myoglobin: sp|P68082|MYG HORSE;

Carbonic anhydrase: sp|P00921|CAH2 BOVIN; Cytochrome c:
sp|P00004|CYC HORSE; Lysozyme: sp|P00698|LYSC CHICK;
Alcohol dehydrogenase: sp|P00330|ADH1 YEAST; Adolase A:

sp|P00883|ALDOA RABIT

Protein name Protein injected (fmol) per sample

Myoglobin 800 25 50 100 200 400

Carbonic anhydrase 400 800 25 50 100 200

Cytochrome c 200 400 800 25 50 100

Lysozyme 100 200 400 800 25 50

Alcohol dehydrogenase 50 100 200 400 800 25

Adolase A 25 50 100 200 400 800

smaller sample size, which is common in real application
situation, our method has larger improvement comparing to
existing methods.

5. APPLICATIONS TO REAL DATA

5.1 Application to spike-in data

We used a spike-in dataset [21] to illustrate the real ap-
plication and compare PEAT with other methods. In this
spike-in dataset, a dilution mixture of the tryptic digests of
six nonhuman purified proteins was spiked into a complex
sample background of human peptides isolated by solid-
phase N-glycopeptide captured from serum. The dilution
were designed and performed according to statistical princi-
ples spanning a dynamic range of two orders of magnitude
from 25 to 800 fmol injected (as shown in Table 1). The
concentration combinations of six spike-in nonhuman pro-
teins lead to six biological conditions. We applied PEAT
to this dataset, and estimated the protein-level abundances
based on the selected informative peptides. For comparison,
we also applied SFPQ, RRollup, ZRollup and MSstats to
this spike-in dataset. We found that all the methods can
detect the six non-human proteins are significantly differ-
ent among the six conditions. To assess the performance of
protein abundance estimation, we compared the estimated
protein abundances with the real spike-in concentrations
of the nonhuman proteins. We used linear regression mod-
els to calibrate the estimated protein abundances through
each method with the true concentrations of proteins. The
R2 values of the regressions were used to characterize how
good the fits were. Table 2 shows the R2 values for the re-
gressions between log 2-transformed concentrations and the
log 2-transformed estimated abundances of proteins for all
the methods. Overall, PEAT outperforms other methods.

5.2 Application to burn data

To demonstrate its application in clinical research, we ap-
plied PEAT to a human plasma proteome study following se-
vere burn injury. Blood plasma samples from 10 healthy con-
trol subjects and 16 burn patients were used [29]. Samples
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Table 2. Method comparisons using spike-in data. Proteins 1,
2, 3, 4, 5 and 6 are sp|P68082|MYG HORSE,

sp|P00921|CAH2 BOVIN, sp|P00004|CYC HORSE,
sp|P00698|LYSC CHICK, sp|P00330|ADH1 YEAST and

sp|P00883|ALDOA RABIT, respectively. The table shows the
R2 values for the regressions between log 2-transformed
concentrations and the log 2-transformed estimated

abundances of proteins for each method

Proteins 1 2 3 4 5 6

PEAT 0.994 0.992 0.987 0.992 0.991 0.984
RRollup 0.982 0.988 0.975 0.951 0.977 0.943
ZRollup 0.930 0.936 0.967 0.985 0.987 0.979
MSstats 0.970 0.966 0.912 0.973 0.983 0.981

from burn patients were collected at two time points. Thus,
the study contains 3 biological conditions – control, burn
early time point and burn later time point. Peptide samples
from individual healthy subjects or burn patients were ana-
lyzed using LC-MS. LC-MS features were identified by the
AMT tag strategy and the details of data analysis were pre-
viously described [29]. We used the label-free MS intensities
for each patient sample in our study without considering
the 18O-labeled reference spiked into each sample. We pres-
elected proteins with two or more unique peptides. In total,
316 proteins with 3282 peptides were studied. We applied
PEAT to detect differentially expressed proteins across the
three biological conditions. With the q-value < 0.1 and p-
value < 0.031 criterion, 42 significant proteins were identi-
fied by PEAT. We studied the functions of these significant
proteins. They are most related to the following functions:
acute phase response signaling, LXR/RXR activation, com-
plement system, coagulation system, intrinsic prothrombin
activation pathway, atherosclerosis signaling, and clathrin-
mediated endocytosis signaling. These findings are in good
agreement with previous studies [13, 29, 36, 37, 38]. Among
these proteins, FLT4 had been verified as a drug target for
inflammation [17]. Figure 4 shows the heatmap of these sig-
nificant proteins detected by PEAT. According to the trend
of protein abundance changes between burn patients and
healthy subjects, these proteins are divided into two groups
– early responding proteins and late responding proteins.
Early responding proteins have larger perturbations at the
first time point than the second time point. And vice versa
for late responding proteins.

6. DISCUSSION

In light of meta-analysis, we developed a new method
through an adaptive thresholding statistic, PEAT, for data
analysis arising from shotgun assays. We illustrated it in
proteomics studies and demonstrated the utility for LC-MS
data analysis. We considered the mechanisms of different
types of missing data and the variations associated with
LC-MS experiments at the peptide level and their effects

Figure 4. Heatmap of the estimated protein expression for the
burn injury study. Each row indicates one protein, each

column indicates one sample. The samples are from three
categories – healthy controls, burn patients from the first

time point, burn patients from the second time point. We add
a white line among different biological conditions. The white
cells in the heatmap indicate that no protein expression values
were estimated due to peptide observations were missing for

the entire group.

on the protein-level variations. PEAT was designed to com-
bine peptide-level models, select informative peptides, and
then perform protein-level analysis. PEAT can be used in
label-free MS data analysis, and also serves a good com-
plementary analysis tool for labeled MS experiments. The
proposed meta-analysis procedure can be adapted to data
from other shotgun technologies, where the large molecules
of interest are divided into small components so that they
can be measured.
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