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A semi-parametric joint latent class model with
longitudinal and survival data
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In many longitudinal studies, we are interested in both
repeated measures of a biomarker and time to an event.
When there exist heterogeneous patterns of the longitu-
dinal and survival profiles, we propose a latent class joint
model to identify subgroups of subjects and study the as-
sociation between longitudinal and survival outcomes. The
model is estimated by maximizing the full likelihood func-
tion. We use B-splines to approximate the baseline hazard
function which involves a diverging number of parameters.
Asymptotic properties of the estimator for the joint latent
class model are investigated. We conduct simulation studies
to assess the performance of the developed method. A real
data example, Mayo Clinic Primary Biliary Cirrhosis Data,
is analyzed using the joint modeling approach.

Keywords and phrases: B-splines, Longitudinal mea-
surements, Mixed effects model, Proportional hazards
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1. INTRODUCTION

In the Mayo Clinic trial for primary biliary cirrho-
sis (PBC) of the liver (Lindor et al., 1994), 312 subjects
were randomized into the treatment group with the drug
D-penicillamine and the placebo group. Their levels of
biomarkers were measured during the follow-up, and the
first adverse event (transplanted or dead) was also recorded.
Our goal is to study the association between a biomarker,
serum bilirubin in mg/dl which was found to be a marker
of advanced PBC (Shapiro et al., 1979), and the survival
outcomes.

Several statistical approaches have been used to study
the association between the longitudinal and survival out-
comes. One simple solution is to use repeated measures as
time-dependent covariates in the Cox proportional hazards
model. However, the longitudinal measures are often imbal-
anced and subject to measurement errors, thus the direct
use of repeated measures in the Cox model could lead to a
bias toward the null hypothesis (Prentice, 1982). To reduce
the bias, Dafni and Tsiatis (1998) used a two-stage approxi-
mation approach to obtain parameter estimation. However,
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due to possible informative censoring caused by the corre-
lated survival outcome, e.g., informative dropout or terminal
event, the longitudinal measurements on the observed sub-
jects are different from the ones on the unobserved subjects,
resulting in selection bias.

To reduce the bias from the two-stage model, Wulfsohn
and Tsiatis (1997) proposed to jointly model data from the
longitudinal and the survival processes at the same time. Re-
peated measures and the survival outcomes are connected
by shared random effects. The joint modeling efforts involve
the development of likelihood functions for mixed types of
measures. Zeng and Cai (2005) developed justification of the
asymptotic properties for the maximum likelihood estima-
tors. It was proved that the maximum likelihood estimator
is strongly consistent and follows a multivariate normal dis-
tribution asymptotically under certain conditions.

Furthermore, when there exists substantial heterogeneity
of the longitudinal and survival outcomes in the population,
Proust-Lima et al. (2009) proposed a joint model based on
latent class approach assuming conditional independence of
longitudinal and survival outcome within each latent class.
Liu et al. (2015) extended the approach by relaxing the con-
ditional independence and assuming that longitudinal and
survival outcomes share random effects within each latent
class, but their parametric model is at risk of mis-specifying
the survival distributions.

To utilize the full likelihood function to estimate the
parameters, we need to specify the baseline hazard func-
tions in the Cox model for survival outcomes. One approach
is to impose a parametric distributional assumption, such
as Weibull and Gamma, for parsimonious parameteriza-
tion as in Liu et al. (2015). However, this assumption is
difficult to verify in applications, and the parameter esti-
mators are biased if the distribution is mis-specified. We
therefore consider nonparametric techniques to approximate
baseline hazard functions, which avoids distributional as-
sumption and model mis-specification. In this work, we es-
timate the parameters in the joint latent class model by
approximating the baseline hazards using B-splines, and in-
vestigate the asymptotic properties of the estimators in the
semi-parametric setting. The development of the asymptotic
properties involves a diverging number of parameters.

The rest of the paper is organized as follows. In Section 2,
we introduced the model structure and estimation method.
In Section 3, asymptotic properties of the developed estima-
tors are derived. In Sections 4 and 5, simulation studies and
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an application to the Mayo PBC data are provided. Dis-
cussion and summary are presented in Section 6. Technical
proofs of the theorems are deferred to Appendix.

2. MODEL AND ESTIMATION

Our proposed joint latent class model (Liu et al., 2015)
has the following structure

πik = P (Rik = 1) =
exp(XT

i γk)

1 +
∑K−1

k=1 exp(XT
i γk)

(1)

yij |(Rik = 1) = ZT
ijηk + ai,k + εij,k(2)

hi(t|Rik = 1) = h0,k(t) exp(W
T
i (t)ωk + δkai,k)(3)

where πik in the multinomial logit model (1) denotes the
probability that subject i belongs to latent class k = 1, ...,K,
and Xi is the covariate vector for subject i to determine the
class membership. For identification, we treat the last latent
class K as the reference, i.e., γK = 0. Within the latent class
k, the longitudinal outcomes yij are modeled using a linear
mixed model with random effect ai,k and covariates Zij ,
which could include the visit time tij , with the correspond-
ing parameters ηk in (2). Meanwhile, the survival outcome
is modeled using the Cox proportional hazards model (3)
with the same random effect ai,k and the covariates Wi(t).
The coefficients δk in (3) connect the two outcomes, and re-
flect the strength of the connection. Note that all parameters
are class-specific for the longitudinal and survival outcomes.
Different from Proust-Lima et al. (2009) where only the la-
tent class membership is shared between the longitudinal
and survival processes, both the latent class membership
and random effect are shared between the two processes in
our proposed model. Thus, our model is more general than
that of Proust-Lima et al. (2009) since the random effect
accounts for both the correlation among longitudinal mea-
surements and the association between the two processes in
the proposed model, which is appropriate when the condi-
tional independence between the processes within each class
as assumed in Proust-Lima et al. (2009) is violated.

Assuming εij,k ∼ N(0, τ2k ) and ai,k ∼ N(0, σ2
k), with

known baseline hazard functions h0,k(t), the likelihood func-
tion of above joint latent class model is

L(β | X,Z,W(t))(4)

=

n∏
i=1

K∑
k=1

Li,k(βk | Xi,Wi(t),Zi)

=

n∏
i=1

K∑
k=1

P (Rik = 1)

∫ ni∏
j=1

f(yij | Rik = 1, ai,k)

×
[
exp(WT

i (ti)ωk + δkai,k)h0,k(ti)
]Δi

× exp

{
−
∫ ti

0

[
exp(WT

i (t)ωk + δkai,k)h0,k(t)
]
dt

}
× f(ai,k)dai,k,

where the parameter

β = (γ1, ..., γK , η1, ..., ηK , ω1, ..., ωK , δ1, ..., δK ,

σ2
1 , ..., σ

2
K , τ21 , ..., τ

2
K)

and βk is the subset of β associated with the kth class, f(yij |
Rik = 1, ai,k) = 1√

2πτ2
k

exp(− (yij−ZT
ijηk−ai,k)

2

2τ2
k

), f(ai,k) =

1√
2πσ2

k

exp(−a2
i,k

2σ2
k
), and Δi is the censoring indicator.

Liu et al. (2015) approximated h0,k(t) by Weibull dis-
tribution to simplify the estimation. To avoid potential
model mis-specification caused by distributional assumption
on h0,k(t), we consider nonparametric modeling of h0,k(t).
Specifically, we use B-splines to approximate the baseline
hazard functions h0,k(t) in (4), where each h0,k(t) is ex-
pressed by

h0,k(t) =

kn+m∑
s=1

αs,kBs(t) + ek(t)(5)

where Bs(t) are B-spline basis functions with kn inner knots
on [0, T ] and order m, αs,k are the B-spline coefficients for
approximation, and ek(t) is the approximation error that
converges uniformly to 0 for any t ∈ [0, T ] under some
smoothness condition on h0,k(t). With the approximation
to h0,k(t), the log-likelihood function in (4) is approximated
as

n∑
i=1

log

{
K∑

k=1

P (Rik = 1)

∫ ni∏
j=1

f(yij | Rik = 1, ai,k)(6)

×
[
exp(Wiωk + δkai,k)

kn+m∑
s=1

αs,kBs(t)(ti)

]Δi

exp

(
−
∫ ti

0

[
exp(Wiωk + δkai,k)

kn+m∑
s=1

αs,kBs(t)

]
dt

)

×f(ai,k)dai,k

}
.

For a fixed class number K, parameters in (6) are esti-
mated through maximizing the above approximated log full
likelihood function. For the integrals of nonlinear functions
in (6), we adopt the Gaussian quadrature approach (SAS
Proc NLMIXED) to approximate them in computation. The
Bayesian Information Criterion (BIC) is used to choose the
optimal number of latent classes, which minimizes the BIC
values (Lin et al., 2002; Nagin, 1999; Muthen and Shedden,
1999; Nagin and Tremblay, 2001) to balance model com-
plexity and accuracy.

With the selected optimal class number K and the
corresponding estimated parameters in the joint latent
class model, we use model based classification rule
(Magidson and Vermunt, 2004) to classify each subject into

412 Y. Liu et al.



one of the latent classes with specific characteristics. With
the following computed class membership probabilities

π̂ik|β̂,Oi
=

π̂ikLi,k(β̂k | Oi)∑K
k=1 π̂ikLi,k(β̂k | Oi)

,(7)

where Oi = (Xi,Wi(t),Zi), and π̂ik is the prior probability
with parameter estimates plugged in (1), we classify subject
i to class k′ if π̂ik′Li,k′(Θ̂k′) is the largest one among k =
1, ...,K.

3. ASYMPTOTIC PROPERTIES

In this section, we present the asymptotic properties of
the developed estimators by maximizing the approximated
log of the full likelihood function in (6). We denote the
log of full likelihood function by

∑n
i=1 Lni(Yni , β), and the

corresponding approximated log-likelihood function with B-
splines by

∑n
i=1 L̃ni(Yni , θn), where θn denotes all parame-

ters to be estimated in (6) with the dimension pn. We divide
θn into θn = (β, αn) with αn = (αn,1, . . . , αn,pn2

) including
the B-spline approximation coefficients for the baseline haz-
ard functions, and β including all the other parameters. We
use p1 to denote the dimension of β, and pn2 to denote the
dimension of αn. Here, we use vector Yni to represent all
the observed outcomes from the ith subject. Estimators of
αn and β are obtained by maximizing the approximated
log-likelihood function in (6).

We present the asymptotic properties of the developed
estimators under the following regularity conditions.

A1 The baseline hazard functions h0,k(t) are continuous
functions on [0, T ], with bounded r-th derivatives on
[0, T ] for some r ≥ 4.

A2 The observations Yni are distributed independently
with density function f(Yni , β, h0,k), which is approx-

imated by f̃n(Yni , θn), and the first-order derivatives
satisfy

Eθn

{
∂ log f̃n(Yni , θn)

∂βi

}
= Op(

1√
n
),

sup
j

Eθn

{
∂ log f̃n(Yni , θn)

∂αnj

}
= Op(

1√
nkn

)

for i = 1, . . . , p1. We assume that there is a large enough
open set wn ∈ Rpn such that for all θn ∈ ωn, the fol-
lowing condition is satisfied

Eθn

{
∂ log f̃n(Yni , θn)

∂θnj

∂ log f̃n(Yni , θn)

∂θnk

}
,

= −Eθn

{
∂2 log f̃n(Yni , θn)

∂θnj∂θnk

}
,

where j, k = 1, 2, . . . , pn.

A3 We denote the Fisher information matrix as

In(θn) = In(β, αn)

(8)

= Eθn

⎡
⎣
{
∂ log f̃n(Yni , θn)

∂θn

}{
∂ log f̃n(Yni , θn)

∂θn

}T
⎤
⎦ ,

and partition it as

In(θn) =

(
I1(θn) I12(θn)
I21(θn) I2(θn)

)
,(9)

where I1(θn) is the partial information matrix for the
parameters in β, and I2(θn) is for the parameters in
αn. We assume that there is a large enough open set
dn ∈ Rpn which contains the true values of β and αn,
such that as n → ∞, with probability tending to 1, we
have

0 < C1 < λmin{I1(θn)} ≤ λmax{I1(θn)} < C2 < ∞ ,

0 <
C3

kn
< λmin{I2(θn)} ≤ λmax{I2(θn)} <

C4

kn
< ∞ ,

for any θn ∈ dn, and for j, k = 1, 2, . . . , pn,

Eθn

{
∂ log f̃n(Yni , θn)

∂θnj

∂ log f̃n(Yni , θn)

∂θnk

}2

< C5 < ∞,

sup
j,k

Eθn

{
∂2 log f̃n(Yni , θn)

∂βj∂βk

}2

< C5 < ∞,

sup
j,k

Eθn

{
∂2 log f̃n(Yni , θn)

∂αnj∂αnk

}2

= Op(k
−1
n ),

and

sup
j,k

Eθn

{
∂2 log f̃n(Yni , θn)

∂βj∂αnk

}2

= op(k
−3
n ).

A4 Assume that there is a large enough open set zn ∈ Rpn

which contains the true values of β and αn, such that

sup
j,j′,j′′

Eθn

{
∂3logf̃n(Yni , θn)

∂θnj∂θnj′θnj′′

}2

= Op(k
−1
n ),

for any θn ∈ zn, and j, j′, j′′ = 1, . . . , pn.

Condition A1 assumes the smoothness of the target base-
line hazard functions to ensure the B-spline approximation
errors converging to 0 uniformly on [0, T ]. Since we use the
approximated log full likelihood function, we assume that
the expectation of the first-order derivatives of the approx-
imated log full likelihood functions is small at the parame-
ter θn in Condition A2. The second-order derivatives follow
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exchangeability in a large enough open set. This condition
is the same as in Fan and Peng (2004) when the baseline
hazard functions can be exactly represented by B-splines.
Otherwise, this exchangeability condition is assumed for the
approximated parametric density function, which is easier
to verify. In Condition A3, we consider to partition the in-
formation matrix into four parts, based on the diverging
dimensionality of the parameter αn in the approximated
likelihood function and the fixed dimensionality of the pa-
rameter β in the true likelihood function. We also assume
the rates of eigenvalues of the partial information matrix
I1(θn) and I2(θn). Note that the assumed rate of eigenval-
ues for I2(θn) is different from the one in Fan and Peng
(2004) due to the employment of B-splines, and the other
rates in Condition A3 are specified accordingly. Condition
A4 regulates the third-order derivatives to be small enough.
Similar conditions on the derivatives as in A3 and A4 have
been assumed in Fan and Peng (2004). All assumptions in
Condition A3 and Condition A4 can be verified in a special
case, in which only event times are observed from one class
without covariates.

Under the above conditions, we achieve the following
asymptotic properties of the developed estimators for our
semi-parametric joint latent class model with survival and
longitudinal outcomes.

Theorem 1 Assuming A2-A3 and k2n/n → 0 as n → ∞,

there exists a local maximizer β̂ and α̂n of L̃n(β, αn) such
that

‖α̂n − αn‖2 = Op(kn/
√
n) and ‖β̂ − β‖2 = Op(1/

√
n) .

For estimator of the coefficients in the parametric part of
the joint latent class model, we have the following asymp-
totic normality.

Theorem 2 Assuming A2-A3 and k2n/n → 0 as n → ∞, the√
n-consistent estimator β̂ in Theorem 1 has the following

asymptotic distribution

√
nI

1/2
1 (β, αn)(β̂ − β) →d N(0, Ip1×p1) .

For the nonparametric part in the joint latent class
model, we have the following asymptotic normality for the
estimator of the B-spline approximation coefficients.

Theorem 3 Assuming A2-A4 and k7n/n → 0 as n → ∞,
the

√
n/kn-consistent estimator α̂n in Theorem 1 has the

following asymptotic distribution

√
nAnI

1/2
2 (β, αn)(α̂n − αn) →d N(0, G) ,

where An is a q × pn2 matrix such that AnA
T
n → G, and G

is a q × q nonegative symmetric matrix.
By Theorem 3, we have the asymptotic normal distribu-

tion for α̂n. Accordingly, we obtain the following property

for the baseline hazard function estimator in the survival
part.

Theorem 4 Assuming A1-A4, k7n/n → 0, and n/k1+2r
n → 0

as n → ∞, we have, for any t ∈ [0, T ],

(n/kn)
1/2(ĥ0,k(t)− h0,k(t)) →d N(0, σ2

k(t)) ,

for each k, where ĥ0,k(t) = BT
n (t)α̂n,k, σ2

k(t) =
limn→∞

1
kn

BT
n (t)I

−1
2,k(θn)Bn(t), and I2,k(θn) is the partial

information matrix for αn,k.
To approximate the unknown baseline hazard functions

by B-splines, the number of inner knots kn needs to go to
infinity as n → ∞. Therefore, the asymptotic theories in-
volve a diverging number of parameters. Theorem 1 states
the convergence rates of the estimators for β in the original
model and for αn induced by B-splines in the approximation
model. By maximizing the approximated full log-likelihood
function, we achieve the

√
n-consistent estimator for β, and

further show that the estimator has asymptotically normal
distribution in Theorem 2. Since the dimensionality of αn

goes to infinity as n increases, we use the matrix An to
project the parameter vector onto a space with fixed dimen-
sionality in Theorem 3 as in Fan and Peng (2004). Using
the asymptotic distribution of α̂n obtained in Theorem 3,
we obtain the point-wise asymptotic normality of the B-
spline estimator for the baseline hazard functions in Theo-
rem 4.

4. SIMULATION STUDIES

In this section, simulation studies are conducted to assess
the performance of the developed method, and the perfor-
mance is compared with the existing parametric method in
Liu et al. (2015). For each subject, a covariate xi is gen-
erated from the uniform distribution U(0, 1). Longitudinal
responses are generated at time points 0, 1, ..., 14. A non-
informative censoring scheme is applied to the generated
times to event using the generated censoring times from the
uniform distribution 12 + U(1, 3), which yields a censoring
rate around 20%. Longitudinal measurements before cen-
soring time are used for estimation. For generating times
to event, the baseline hazard functions are specified as the
Log-logistic distributions. Each dataset with 2 latent classes
is generated as follows.

Latent Class Part: logit(pi) = 0− 0.5xi.

Class 1:
Longitudinal Part: yij,1 = −1− xi − tij + ai,1 + εij,1.
Survival Part: hi,1(ti) = h0,1(ti) exp(xi − ai,1), where the

baseline hazard follows a Log-logistic distribution with α =

4 and λ = 1
2000 , i.e., h0,1(ti) =

4x4−1/2000
1+x4/2000 .

Class 2:
Longitudinal Part: yij,2 = 1 + xi + tij + ai,2 + εij,2.
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Table 1. Summary of simulation results. SE is the empirical standard error of the parameter estimates; SEM is the mean of
the standard error estimates; CP is the coverage probability of the 95% confidence interval

Method Weibull B-spline

Description Parameter True Value Bias SE SEM CP Bias SE SEM CP

Latent Class Part
Intercept 0 −0.0107 0.2055 0.2019 93.5% −0.0100 0.2056 0.2019 93.5%

Xi −0.5 0.0094 0.3623 0.3536 94.3% 0.0086 0.3624 0.3536 94.3%

Class 1

Longitudinal Part
Intercept −1.0 0.0169 0.1879 0.1169 76.3% −0.0035 0.1635 0.1438 89.8%

Xi −1.0 0.0103 0.3248 0.2072 76.3% 0.0149 0.2797 0.2577 92.0%
Month −1.0 −0.0019 0.0075 0.0076 95.0% 0.0001 0.0075 0.0076 94.8%

Var(ai,1) 1.0 −0.0014 0.1376 0.0964 82.0% −0.0147 0.1243 0.1112 89.8%
Var(εij,1) 0.5 < 0.0001 0.0224 0.0220 95.3% −0.0008 0.0224 0.0219 95.3%

Survival Part
Xi 1.0 0.1094 0.4661 0.3649 87.5% −0.0079 0.3817 0.3821 93.0%
δ1 −1.0 −0.1023 0.1304 0.1203 85.8% 0.0234 0.1147 0.1163 94.8%

Class 2

Longitudinal Part
Intercept 1.0 −0.0005 0.1593 0.1461 91.3% 0.0034 0.1553 0.1485 93.5%

Xi 1.0 0.0111 0.2658 0.2419 92.0% 0.0068 0.2542 0.2474 94.3%
Month 1.0 0.0011 0.0060 0.0065 96.0% < −3e-5 0.0060 0.0065 96.5%

Var(ai,2) 1.0 −0.0176 0.1207 0.1076 90.8% −0.0152 0.1168 0.1090 92.8%
Var(εij,2) 1.0 0.0019 0.0328 0.0333 96.0% 0.0009 0.0326 0.0332 96.0%

Survival Part
Xi −1.0 −0.0644 0.4146 0.3887 93.5% −0.0211 0.3908 0.3830 94.8%
δ2 1.0 0.1160 0.1317 0.1274 91.0% 0.0493 0.1250 0.1253 95.5%

Survival Part: hi,2(ti) = h0,2(ti) exp(−xi + ai,2), where
the baseline hazard follows a Log-logistic distribution with

α = 3 and λ = 1
250 , i.e., h0,2(ti) =

3x3−1/250
1+x3/250 .

We specify ai,1 ∼iid N(0, 1), ai,2 ∼iid N(0, 1), εij,1 ∼iid

N(0, 0.5), εij,2 ∼iid N(0, 1), and they are independent of
each other.

For the integrals in (6), we use SAS PROC NLMIXED
with 50 quadrature points to approximate them. We use
B-splines with 4 inner quantile knots and order 3 to ap-
proximate the baseline hazard functions. For comparison,
we also estimate the parameters using parametric method
in Liu et al. (2015) with Weibull distribution for the hazard
functions.

We generate 400 data sets with sample size 400 in this
simulation study, and estimate the parameters using both
the developed semi-parametric method and the parametric
method in Liu et al. (2015). The simulation results assuming
K = 2 are shown in Table 1. Compared with the paramet-
ric method assuming mis-specified Weibull distribution for
the baseline hazard functions, our method with B-spline ap-
proximation to those functions has both smaller biases and
smaller standard errors for parameter estimation, especially
for the survival part. All the coverage probabilities of the
constructed 95% confidence intervals from our method are
closer to the nominal value than those from the parametric
method for the survival part. For the survival part, the para-
metric method assuming Weibull distribution yields biased
parameter estimates and results in poor coverage probabil-
ities, showing that the developed semi-parametric method

outperforms the parametric method when baseline hazard
functions are mis-specified.

We also calculate mis-classification rate for each of the
400 generated data sets. The mis-classification rate for each
data set is calculated as the percentage of the subjects being
classified into the wrong class based on (7). The average mis-
classification rate is 0.03%, showing that the classification
based on the developed method is very reliable.

The size of latent classes is chosen based on the BIC val-
ues. Empirically, we calculate BIC for each proposed size K,
and find optimal value to minimize BIC. For 100 generated
data sets, we select the optimal size among K = 1, 2, 3. The
BIC value forK = 2 are the smallest for each of the 100 data
sets. The developed method correctly identifies the number
of latent classes using the BIC criterion.

To evaluate the numerical performance of the proposed
method with higher censoring rate close to the real data in
Section 5, we ran a simulation study with a higher censoring
rate about 45%. There are 100 data sets generated using the
same method, except for generating censoring times from
the uniform distribution U(3, 15). As in Table 1, the devel-
oped method yields smaller biases for parameter estimation
and improved coverage probabilities of 95% confidence in-
tervals.

5. APPLICATION

In this section, we apply the developed method to the
Mayo Clinic Primary Biliary Cirrhosis Data, collected be-
tween 1974 and 1984, in primary biliary cirrhosis (PBC) of
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Table 2. Results for 2 latent classes

Description Parameter Estimates SE P-value

Latent Class Part
Intercept 0.5310 0.1438 0.0003

Age −0.1984 0.1454 0.1736
Gender 0.6301 0.4419 0.1549

Class 1

Longitudinal Part
Intercept 0.3787 0.0696 < .0001

Time 0.1841 0.0067 < .0001
Trt -0.2564 0.0738 0.0006
Age 0.1424 0.0547 0.0097

Gender 0.0619 0.0852 0.4678
Var(ai,1) 0.9336 0.0647 < .0001
Var(εij,1) 0.2033 0.0097 < .0001

Survival Part
Trt -0.3739 0.3111 0.2304
Age 0.5908 0.1155 < .0001

Gender −0.2362 0.2635 0.3708
δ1 1.3660 0.1867 < .0001

Class 2

Longitudinal Part
Intercept −0.7068 0.0355 < .0001

Time 0.0108 0.0044 0.0134
Trt 0.0110 0.0388 0.7778
Age −0.0258 0.0249 0.3013

Gender 0.1650 0.0489 0.0008
Var(ai,2) 0.1688 0.0143 < .0001
Var(εij,2) 0.0511 0.0042 < .0001

Survival Part
Trt -3.4331 2.1611 0.1132
Age 3.8183 1.4530 0.0090

Gender 3.9116 1.3694 0.0046
δ2 2.0962 2.4136 0.3858

the liver, to study the association between level of serum
bilirubin and hazard of death. There are 312 subjects in our
study. We use log(serBlilir) as the longitudinal responses
due to data skewness, and consider time as a predictor along
with other covariates including treatment (1 for treatment;
0 for placebo), age, and gender (1 for male; 0 for female)
in the longitudinal part. We use time to first adverse event
(transplanted or dead) as the survival outcome, and consider
treatment, age and gender as covariates in the survival part.
The censoring rate is 54%, and 51% of the subjects are as-
signed to the treatment group. Around 12% of the subjects
are male. Participants’ ages range from 26 to 78.

5.1 Model fitting

We fit our joint latent class model of longitudinal mea-
sures, log(serBilir), and survival outcomes, death or trans-
plant, with the size of latent classes varying from 1 to 3.
Gaussian quadrature with 50 quadrature points is used for
parameter estimation. As in the simulation study, we ap-
proximate the baseline hazard functions using B-splines with
order 3 and 4 inner quantile knots. The BIC value calcu-
lated from the 2 latent classes model is 3601.9, which is
smaller than that from 1 class model (4383.4). We cannot
obtain valid results from the 3 classes model, indicating the

current sample size cannot afford the complexity of the 3
classes model. Thus, we choose K = 2 as the optimal size of
latent classes for this data example. Due to the same limited
sample size issue, we didn’t include the interaction between
time and treatment in our model. The model setup is as
follows.

Latent class part: logit(pi) = α0 + α1age+ α2gender.

Class k = 1, 2:
yij |(Rik = 1) = β0,k + β1,ktime+ β2,ktrt+ β3,kage+

β4,kgender + ai,k + εij,k;
hi(t|Rik = 1) = h0,k(t) exp(γ1,ktrt + γ2,kage +

γ3,kgender + δkai,k).

Table 2 summarizes parameter estimates with K = 2.
Based on the results, patients are divided into two latent
classes: a high risk group (Class 1) and a low risk group
(Class 2). High risk group consists of younger, more male pa-
tients. Their serum bilirubin levels are generally higher and
increases relatively faster over time. Therefore this group
generally has higher hazard in terms of survival outcome.
This is also the group that responds well to the treatment
for lowering serum bilirubin, possibly due to the already
high and increasing levels. The other group includes a larger
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Table 3. Results for one latent classes

Parameter Estimates SE P-value

Longitudinal Part

Intercept −0.1195 0.0443 0.0073
Time 0.0872 0.0038 < .0001
Trt −0.1019 0.0511 0.0469
Age 0.0504 0.0252 0.0463

Gender 0.4513 0.0785 < .0001
Var(a) 0.8972 0.0406 < .0001

Var(εij) 0.1952 0.0068 < .0001

Survival Part

Trt -0.2736 0.1781 0.1254
Age 0.5491 0.0958 < .0001

Gender 0.5653 0.2521 0.0256
δ 1.5653 0.1189 < .0001

number of elderly female patients. Their serum bilirubin lev-
els are relatively low and stable over time. Treatment effect
is not significant for reducing the serum bilirubin levels in
this group. It is also not significant in increasing the sur-
vival probabilities in either group, which is consistent with
medical findings (Gong et al., 2004). The effect of age and
gender within each group also exhibit different patterns. In
class 1, the age at enrollment is associated not only with the
serum bilirubin level but the overall survival probabilities as
well. Whereas in Class 2, age at enrollment only affect sur-
vival probabilities but not the biomarker level. Gender is a
significant factor only in Class 2 where male patients have
higher biomarker levels and lower survival probabilities.

We also summarize the results from fitting the one class
joint model in Table 3. Same as our findings from fitting the
model with two latent classes, the treatment effect is not
significant for the survival model in either class. However,
in this model, log(serBilir) increases over time and could be
lowered significantly by the drug. As shown above, this is
not true in the low risk latent class. Similarly for age and
gender, without taking into consideration of the heterogene-
ity, we will not be able to identify their different patterns in
different latent classes.

5.2 Classification

According to the posterior probabilities calculated by (7),
63% of patients are classified to the first class. To better
understand how patients are divided into two classes, we
plot the longitudinal trajectories and the survival probabil-
ities for each class marginally. Figure 1 plots the smoothed
mean curves of log(serBilir) for patients in the classified two
classes respectively, and of all patients for the one class joint
model. The red (black) curve represents the first (second)
class. The green curve represents the log(serBilir) level as
one class, which is in between of the two latent classes.
We can see that the serum bilirubin level is higher in the
first class, corresponding to a lower survival rate in Fig-
ure 2 in which the Kaplan-Meier estimates of the survival

Figure 1. Mean log(serBilir) trajectories by posterior
classification.

Figure 2. Predicted survival functions by posterior
classification.

Figure 3. Predicted survival functions by treatment groups.

functions are plotted for the classes. Figure 3 plots the esti-
mated survival functions for treatment and placebo groups
in each class, showing that treatment is not significant for
survival rate in the two latent classes, which is consistent
with our parameter estimates. Since we are able to approx-
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Figure 4. Fitted baseline survival functions by latent classes.

imate baseline hazard function using B-splines, we also plot
the smoothed baseline survival functions without any covari-
ates in Figure 4, which shows that they have similar pattern
as the empirical Kaplan-Meier curve in Figure 2.

6. DISCUSSION

We develop a semi-parametric latent class model to an-
alyze the longitudinal and survival outcomes jointly. The
developed method utilizes data efficiently, and discovers the
underlying or hidden patterns that one class model fails to
identify. Our model does not make assumption on the form
of the baseline hazard functions, avoiding potential model
mis-specification of parametric models. Furthermore, the co-
variate effects are allowed to vary across classes. Posterior
classification can be used to study different longitudinal and
survival patterns, providing a good prognostic tool. The sim-
ulation results suggest that the estimation method performs
well with finite sample size, and outperforms the parametric
method when the baseline hazard function is mis-specified.
PBC data is analyzed as a real data example to illustrate
the strength of our method in modeling and identifying het-
erogeneity in joint longitudinal and survival data.

One challenge in the implementation of the proposed
method is the computation feasibility, in particular with
more random effects terms. We adopt Gaussian quadrature
for a balance of accuracy of approximating the integral with
respect to random effects and the computational burden.
Other computationally simpler approach, e.g., Laplace ap-
proximation (Breslow and Clayton 1993), may provide a
possible approach for more complicated models though at
the cost of lower accuracy.

APPENDIX A

A.1 Proof of theorems

Proof of Theorem 1: Let an = kn/
√
n, bn = 1/

√
n. It

suffices to show that, for any ε > 0, there exist constants C1

and C2, such that, for large n, we have

P

{
sup

‖u‖=C1,‖v‖=C2

L̃n(β + bnu, αn + anv) < L̃n(β, αn)

}(10)

≥ 1− ε .

Denoting the derivatives of the approximated likelihood
function as

∇T L̃n(β, αn) =
(
∇T

1 L̃n(β, αn),∇T
2 L̃n(β, αn)

)T
,(11)

∇2L̃n(β, αn) =

(
∇2

1L̃n(β, αn) ∇2
12L̃n(β, αn)

∇2
21L̃n(β, αn) ∇2

2L̃n(β, αn)

)
,(12)

where ∇1L̃n(β, αn) and ∇2
1L̃n(β, αn) are the partial deriva-

tives for β, ∇2
12L̃n(β, αn) and ∇2

21L̃n(β, αn) are for β and
αn, and ∇2L̃n(β, αn) and ∇2

2L̃n(β, αn) are for αn, we
have

L̃n(β + bnu, αn + anv)− L̃n(β, αn)

= bn∇T
1 L̃n(β, αn)u+ an∇T

2 L̃n(β, αn)v

+
1

2
b2nu

T∇2
1L̃n(β

∗, α∗
n)u+

1

2
anbnv

T∇2
21L̃n(β

∗, α∗
n)u

+
1

2
anbnu

T∇2
12L̃n(β

∗, α∗
n)v +

1

2
a2nv

T∇2
2L̃n(β

∗, α∗
n)v

= Iu1 + Iv1 + Iu2 + Ivu + Iuv + Iv2 ,

where the point (β∗, α∗
n) lies between (β + bnu, αn + anv)

and (β, αn).
Given A2 and bn = 1/

√
n, we have

|Iu1| ≤ bn‖∇1L̃n(β, αn)‖2‖u‖2 = bnOp(
√
n)‖u‖2

= nb2nOp(1)‖u‖2 .

Similarly, we have

|Iv1| = |an∇T
2 L̃n(β, αn)v| ≤ an‖∇2L̃n(β, αn)‖2‖v‖2

= anOp(
√
n)‖v‖2 .

For Iu2, we have that, with probability tending to 1,

Iu2 =
1

2
nb2nu

T { 1
n
∇2

1L̃n(β
∗, α∗

n) + I1(β
∗, α∗

n)}u

− 1

2
nb2nu

T I1(β
∗, α∗

n)u

is dominated by −1
2nb

2
nu

T I1(β
∗, α∗

n)u since

‖ 1
n∇2

1L̃n(β
∗, α∗

n) + I1(β
∗, α∗

n)‖2 = op(1). Given A3

and a large C1, Iu1 is dominated by Iu2.
For Iv2, we have

Iv2 =
1

2
na2nv

T { 1
n
∇2

2L̃n(β
∗, α∗

n) + I2(β
∗, α∗

n)}v

− 1

2
na2nv

T I2(β
∗, α∗

n)v
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Given A3, we have ‖I2(β∗, α∗
n)‖2 = Op(k

−1/2
n ). For

1
n∇2

2L̃n(β
∗, α∗

n) + I2(β
∗, α∗

n), we have that, for any ε > 0,
by Chebyshev’s inequality and Condition A3,

P

(∥∥∥∥ 1n∇2
2L̃n(β

∗, α∗
n) + I2(β

∗, α∗
n)

∥∥∥∥
2

≥ ε

k
1/2
n

)

≤ kn
n2ε2

E

pn2∑
j,k=1

{
∂2L̃n(β

∗, α∗
n)

∂αnj∂αnk
− E

∂2L̃n(β
∗, α∗

n)

∂αnj∂αnk

}2

≤ knn

n2ε2

pn2∑
j,k=1

var

(
∂2f̃n(Yni , θn)

∂αnj∂αnk

)

= Op(
k2n
nε2

) → 0.

Therefore, ‖ 1
n∇2

2L̃n(β
∗, α∗

n) + I2(β
∗, α∗

n)‖2 = op(k
−1/2
n ),

Iv2 is dominated by −1
2na

2
nv

T I2(β
∗, α∗

n)v, and and
Iv1 is dominated by Iv2 for a large C2. Similarly,
we have ‖ 1

n∇2
12L̃n(β

∗, α∗
n) + I12(β

∗, α∗
n)‖2 = op(k

−1
n )

and ‖ 1
n∇2

21L̃n(β
∗, α∗

n) + I21(β
∗, α∗

n)‖2 = op(k
−1
n ),

and anbnu
T [ 1n∇2

12L̃n(β
∗, α∗

n) + I12(β
∗, α∗

n)]v is and

anbnv
T [ 1n∇2

21L̃n(β
∗, α∗

n) + I21(β
∗, α∗

n)]u are dominated
by b2nu

T I1(β
∗, α∗

n)u + a2nv
T I2(β

∗, α∗
n)v for large C1

and C2.

Therefore, Ln(β+bnv, αn+anu)−L̃n(β, αn) is dominated
by

− 1

2
n{b2nuT I1(β

∗, α∗
n)u+ a2nv

T I2(β
∗, α∗

n)v

+ anbnv
T I21(β

∗, α∗
n)u+ anbnu

T I12(β
∗, α∗

n)v}

= −1

2
n

(
bnu
anv

)T

In(β
∗, α∗

n)

(
bnu
anv

)
< 0

which implies that, as n → ∞, we have, with probability
tending to 1,

L̃n(β + bnu, αn + anv)− L̃n(αn, β) < 0 .

Theorem 1 is proved.

Proof of Theorem 2: According to Lemma 1, we have

√
nI

−1/2
1 (β, αn)I1(β, αn)(β̂ − β)

=
1√
n
I
−1/2
1 (β, αn)∇1L̃n(β, αn) + op

(
I
−1/2
1 (β, αn)

)
.

Assuming φni = 1√
n
I
−1/2
1 (β, αn)∇1L̃ni(β, αn), for ε > 0,

we have

n∑
i=1

E
(
‖φni‖221{‖φni‖2 > ε}

)
≤ n

{
E‖φn1‖42

}1/2 {P (‖φn1‖2 > ε)}1/2 .

Given A3, we have

P (‖φni‖2 ≥ ε) ≤ E‖I−1/2
1 (β, αn)∇1L̃ni(β, αn)‖22

nε2

= Op(1/n) ,

and

E‖φni‖42 =
1

n2
E
∥∥∥I−1/2

1 (β, αn)∇1L̃ni(β, αn)
∥∥∥4
2

= Op(1/n
2) .

Therefore, we have
∑n

i=1 E
(
‖φni‖221{‖φni‖2 ≥ ε}

)
→ 0.

Letting s2n = var(
∑n

i=1 φni) = nvar(φn1), we have

s2n = var
(
I
−1/2
1 (β, αn)∇1L̃n1(β, αn)

)
= I

−1/2
1 (β, αn) var

(
∇1L̃n1(β, αn)

)
I
−1/2
1 (β, αn)

→ I .

According to the Lindeberg-Feller central limit theorem,
1√
n
I
−1/2
1 (β, αn)∇1L̃n(β̂, αn) has an asymptotic normal dis-

tribution N(0, I), implying
√
nI

1/2
1 (β, αn)(β̂ − β) →d

N(0, I). Theorem 2 is proved.

Proof of Theorem 3: According to Lemma 2, we have

√
nAnI

−1/2
2 (β, αn)I2(β, αn)(α̂n − αn)

=
1√
n
AnI

−1/2
2 (β, αn)∇2L̃n(β, αn)

+ op

(
AnI

−1/2
2 (β, αn)

1√
kn

)
.

Letting ηni =
1√
n
AnI

−1/2
2 (β, αn)∇2L̃ni(β, αn), we have

n∑
i=1

E
(
‖ηni‖221{‖ηni‖2 > ε}

)
≤ n

{
E‖ηn1‖42

}1/2 {P (‖ηn1‖2 > ε)}1/2 .

Given A3, we have

P (‖ηn1‖2 ≥ ε) ≤
E
∥∥∥AnI

−1/2
2 (β, αn)∇2L̃ni(β, αn)

∥∥∥2
2

nε2

= Op(1/n)

and

E‖ηn1‖42 =
1

n2
E‖AnI

−1/2
2 (β, αn)∇2L̃ni(β, αn)‖42

=
1

n2
E
[
∇T

2 L̃ni(β, αn)I
−1/2
2 (β, αn)A

T
nAnI

−1/2
2 (β, αn)

×∇2L̃ni(β, αn)
]2

= Op(k
2
n/n

2).
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Therefore, we have
∑n

i=1 E
(
‖ηni‖221{‖ηni‖2 ≥ ε}

)
→ 0.

Letting s̃2n = var(
∑n

i=1 ηni) = nvar(ηn1), we have

s̃2n = AnI
−1/2
2 (β, αn)var

(
∇2L̃n1(β, αn)

)
I
−1/2
2 (β, αn)A

T
n

→ G .

According to the Lindeberg-Feller central limit theorem,
1√
n
AnI

−1/2
2 (β, αn)∇2L̃n(β, αn) has an asymptotic nor-

mal distribution N(0, G), implying
√
nAnI

1/2
2 (β, αn)(α̂n −

αn) →d N(0, G) . Theorem 3 is proved.

Proof of Theorem 4: Given a fixed k, for h0,k(t), there
exist αn,k, such that

sup
t∈[0,T ]

|BT
n (t)αn,k − h0,k(t)| ≤ Op(k

−r
n ) ,

for r ≥ 3 in Condition A1. Given n/k1+2r
n → 0, we have√

n/kn(B
T
n (t)α̂n,k − h0,k(t))

=
√

n/kn[B
T
n (t)α̂n,k −BT

n (t)αn,k +BT
n (t)αn,k − h0,k(t)]

=
√

n/kn[B
T
n (t)α̂n,k −BT

n (t)αn,k] + op(1) .

From Theorem 3, we have
√
nAnI

1/2
2 (β, αn)(α̂n−αn) →d

N(0, G). Consequently, we have
√
nAn,kI

1/2
2,k (β, αn)(α̂n,k −

αn,k) →d N(0, Gk), where An,k, I2,k, and Gk are
the corresponding sub-matrices related to the sub-
vector αn,k. Theorem 4 is proved by letting An,k =

1√
kn

BT
n (t)I

−1/2
2,k (β, αn) and σ2

k(t) = limn→∞ An,kA
T
n,k =

limn→∞
1
kn

BT
n (t)I

−1
2,k(β, αn)Bn(t).

A.2 Lemmas

Lemma 1: Under the conditions in Theorem 2, we have
that

I1(β, αn)(β̂ − β) =
1

n
∇1L̃n(β, αn) + op(1/

√
n) .

Proof of Lemma 1: Based on the Taylor expansion of
∇1L̃n(β, α̂n) at β̂, we have

− 1

n
∇1L̃n(β, α̂n) =

1

n
∇2

1L̃n(β
∗, α̂n)(β̂ − β) ,

where β∗ lies between β̂ and β. For any ε > 0, by Cheby-
shev’s inequality and Condition A4, we have

P
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∥∥∥∥
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≥ ε

)

≤ 1

n2ε2
E

p1∑
i,j=1

{
∂2L̃n(β

∗, α̂n)

∂βi∂βj
− E

∂2L̃n(β
∗, α̂n)

∂βi∂βj

+ E
∂2L̃n(β

∗, α̂n)

∂βi∂βj
− E

∂2L̃n(β, αn)

∂βi∂βj

}2

≤ 2
1

n2ε2
E

p1∑
i,j=1

⎧⎨
⎩
[
∂2L̃n(β

∗, α̂n)

∂βi∂βj
− E

∂2L̃n(β
∗, α̂n)

∂βi∂βj

]2

+

[
E
∂2L̃n(β

∗, α̂n)

∂βi∂βj
− E

∂2L̃n(β, αn)

∂βi∂βj

]2⎫⎬
⎭

≤ 2
1

n2ε2

⎧⎨
⎩n

p1∑
i,j=1

var

(
∂2L̃n1(β

∗, α̂n)

∂βi∂βj

)

+

p1∑
i,j=1

n2E

[
∂2L̃n1(β

∗, α̂n)

∂βi∂βj
− ∂2L̃n1(β, αn)

∂βi∂βj

]2⎫⎬
⎭

= Op(
1

nε2
) +

2

n2ε2

p1∑
i,j=1

n2E

[
∇T

1

∂2L̃n1(β
∗∗, α∗∗

n )

∂βi∂βj
(β∗∗ − β)

+∇T
2

∂2L̃n1(β
∗∗, α∗∗

n )

∂βi∂βj
(α∗∗

n − αn)

]2

≤ Op(
1

nε2
) +

2

n2ε2

p1∑
i,j=1

n2E

∥∥∥∥∥∇∂2L̃n1(β
∗∗, α∗∗

n )

∂βi∂βj

∥∥∥∥∥
2

2

× ‖θ∗∗n − θn‖22

= Op(
k2n
nε2

) → 0 ,

where (β∗∗, α∗∗
n ) lies between (β∗, α̂n) and (β, αn), indicat-

ing
∥∥∥ 1
n∇2

1L̃n(β
∗, α̂n) + I1(β, αn)

∥∥∥
2
= op(1). Given β̂ − β =

Op(1/
√
n) from Theorem 1, we have − 1
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Since
∥∥∥ 1
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2
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√
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to Condition A3, we have− 1
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n). Lemma 1 is proved.

Lemma 2: Under the conditions in Theorem 3, we have

I2(β, αn)(α̂n − αn) =
1

n
∇2L̃n(β, αn) + op(

1√
nkn

) .

Proof of Lemma 2: Based on the Taylor expansion of
∇2L̃n(β̂, αn) at α̂n, we have
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where α∗
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shev’s inequality, we have
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2

∂2L̃n1(β
∗∗, α∗∗

n )

∂αni∂αnj

(α∗∗
n − αn)

]2

≤ Op(
k4n
nε2

) +
2k3n
n2ε2

pn2∑
i,j=1

n2E

∥∥∥∥∥∇∂2L̃n1(β
∗∗, α∗∗

n )

∂αni∂αnj

∥∥∥∥∥
2

2

× ‖θ∗∗n − θn‖22

= Op(
k4n
nε2

) +
2k3n
n2ε2

k2nn
2Op(k

−1
n kn

k2n
n
)

= Op(
k7n
nε2

) → 0 ,

where (β∗∗, α∗∗
n ) lies between (β̂, α∗

n) and (β, αn), in-

dicating ‖ 1
n∇2

2L̃n(β̂, α
∗
n) + In2(β, αn)‖2 = op(

1√
k3
n

).

Given ‖α̂n − αn‖2 = Op(kn/
√
n) from Theorem 1,

we have − 1
n∇2L̃n(β̂, αn) = 1

n∇2
2L̃n(β̂, α

∗
n)(α̂n −

αn) = −In2(β, αn)(α̂n − αn) + op(1/
√
nkn). Since∥∥∥ 1

n∇2L̃n(β̂, αn)− 1
n∇2L̃n(β, αn)

∥∥∥
2

= op(1/
√
nkn)

due to Condition A3, we have − 1
n∇2L̃n(β, αn) =

−In2(β, αn)(α̂n − αn) + op(1/
√
nkn). Lemma 2 is proved.
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