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Estimation of a distribution function using
Lagrange polynomials with Tchebychev-Gauss
points
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The estimation of the distribution function of a real ran-
dom variable is an intrinsic topic in non parametric estima-
tion. To this end, a distribution estimator based on Lagrange
polynomials and Tchebychev-Gauss points, is introduced.
Some asymptotic properties of the proposed estimator are
investigated, such as its asymptotic bias, variance, mean
squared error and Chung-Smirnov propriety. The asymp-
totic normality and the uniform convergence of the estima-
tor are also established. Lastly, the performance of the pro-
posed estimator is explored through a certain simulation
examples.
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1. INTRODUCTION

Non parametric distribution estimation is undoubtedly a
useful tool of data analysis, which is reflected by the multi-
ple literary works addressing the topic. Let X1, . . . , Xn be a
sequence of independent and identically distributed (i.i.d.)
random variables having a common unknown distribution
function F with associated density f supported on a com-
pact interval. Within the framework of the nonparametric
estimation, since we know that F is continuous, we con-
sider the estimation of F by using smooth functions rather
than the empirical distribution function, which is not con-
tinuous. Several methods have been set forward for smooth
estimation of density and distribution functions. The most
popular one, called kernel method, is introduced by Rosen-
blatt [22]. The advances were carried out by Parzen [21] to
estimate density function. The kernel distribution estimator
was identified by Nadaraya [19] as

(1) F̃n(x) =
1

n

n∑
i=1

K
(
x−Xi

hn

)
,
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where K(z) =

∫ z

−∞
K(u)du, K is a kernel function and (hn)

is a bandwidth. The properties of F̃n have been known for
a long time, for example its uniform convergence towards
F with continuous f (Nadaraya [19], Winter [35], Yamato
[37]), then unconditionally on f (Singh et al. [26]) and its
asymptotic normality (Watson and Leadletter [34]). Winter
[36] also demonstrated that F̃n checks the Chung-Smirnov
property with probability 1.

However, Kernel methods have estimation problems at
the edges, when we have a random variable X with distri-
bution function supported on a compact interval. In order to
overcome this problem, various methods such as the Bern-
stein polynomial density and distribution estimators were
introduced first by Vitale [32] and then extended by Ten-
busch [31], Babu et al. [2] and Kakizawa [14]. In particular,
following Babu et al. [2], the Bernstein estimator of order
ν > 0 of the distribution F is defined as

(2) Fn,ν(x) =

ν∑
k=0

F̂n (k/ν) bk(ν, x),

with F̂n is the empirical distribution function and bk(ν, x) =
Ck

νx
k(1−x)ν−k is the Bernstein polynomial. This estimator

is asymptotically unbiased. Babu et al. [2] found also that
Fn,ν to be uniformly strongly consistent. Babu and Chaubey
[3] adapted the Bernstein estimator to the problem of esti-
mating a multivariate distribution function (including the
case of dependent observations under α mixing). Leblanc
[15] reported that it has the Chung-Smirnov property, as
n → ∞.

In this paper, we present what appears to be a new
method based on Lagrange polynomials and Tchebytchev-
Gauss points. When we have a random variable X with
distribution F supported on a compact interval [a, b]
such as a < b, we can transform X into Y , a ran-
dom variable with support [−1, 1] through the trans-

formation Y =
X − (a+ b)/2

(b− a)/2
. Transformations such as

Y = 2X/(1 +X)− 1 and Y = 2π−1 arctan(X) can be used
to cover the cases of random variables X with support R+

and R respectively. Once the random variable X is trans-
formed into Y , we can apply Lagrange polynomials with

http://www.intlpress.com/SII/


Tchebytchev-Gauss points to approximate the distribution
function of Y on the interval [−1, 1]. In the theoretical part
of this paper, we consider the case where f is supported on
[−1, 1], and we propose an estimator of order m > 0 of the
distribution F using Lagrange polynomial expressed as,

(3) F̃n,m(x) =

m∑
i=1

F̂n(xi)Li(x),

where, for all i = 1 . . .m, xi = cos ((2i− 1)π/2m) are

Tchebytchev-Gauss points, Li(x) =

m∏
j=1
j �=i

x− xj

xi − xj
is the La-

grange polynomial, and F̂n denotes the empirical distribu-
tion function obtained from a random sample of size n.
The points (xi)1≤i≤m are the zeros of the Tchebytchev
polynomial Tm(x) = cos(m arccos(x)). They are also the
optimal choice of grids that give the best convergence
m∑
i=1

v(xi)Li(.) → v(.) uniformly, when m → ∞, for any con-

tinuous function v of class Ck (for k ≥ 1) on the interval
[−1, 1]. This result was studied by Jackson in the early 20th
century (see [10], [11]). His results can also be found in [5],
chapter 4, section 6, page 147, which is the main idea of the
proposed estimator. As an excellent reference for properties
of Lagrange polynomial with Tchebytchev-Gauss points in
the deterministic case, we refer the reader to Austin [1].
To the best of our knowledge, the estimator presented here
has not been studied so far, which stands for the basic mo-
tivation of the paper. The main objective of this paper is
to study the properties of the distribution estimator (3).
We consider first the mean squared error for a fixed x, for
−1 < x < 1, and split it into bias squared and variance
terms. Then, we establish the uniform convergence of this
estimator, the Chung-Smirnov property and the (pointwise)
asymptotic normality of the proposed estimator. Basically,
the remainder of the paper is organized as follows. In the
next section, we display the assumptions and notations. In
Section 3, we exhibit our main results. Section 4 highlights
a simulation study that compares the performance of the
proposed estimator F̃n,m with the Bernstein estimator (2)
and with the kernel (standard Gaussian kernel) estimator
(1). Section A provides the proofs of our theoretical results.

2. ASSUMPTIONS AND NOTATIONS

We consider the following definition.

Definition 2.1.
Let g be a function defined on [−1, 1]. g is said to be Lipschitz
of order α ∈ (0, 1] if there exists a positive constant c such
that

| g(x)− g(y) |≤ c | x− y |α,
for all x, y ∈ [−1, 1]. For convenience, we write g ∈
Lip(α, c).

To study the asymptotic behaviours of the estimator (3)
inside the interval [−1, 1], the following assumption is con-
sidered:

(A1) F is of class C2 on [−1, 1].
(A2) f and f ′ are bounded.

Throughout this paper, we let i = 1 . . .m, x ∈ [−1, 1] for
m ≥ 1, and we consider the following notations:

θi = (2i− 1)π/2m, σ2(x) = F (x)(1− F (x),
xi = cos (θi): Tchebytchev-Gauss points,

Am(x) =

m∑
i=1

F (xi)Li(x),

b(x) = f(x)/2+f ′(x)(x−1)/4−f ′′(x)(1+x2−2x)/12,

Li(x) =

m∏
j=1
j �=i

x− xj

xi − xj
: Lagrange polynomial,

Tm(x) = cos(m arccos(x)): Tchebytchev polynomial.

3. MAIN RESULTS

Our first result is the following proposition which sets
forward the bias and the variance of F̃n,m.

Proposition 3.1 (Bias and variance of F̃n,m).
Under assumption (A1), we have for x ∈ [−1, 1],

Bias(F̃n,m(x)) = πm−2Tm(x)b(x) + o(m−2),(4)

V ar(F̃n,m(x)) = n−1σ2(x) +O(n−1m−1/2).(5)

Notice that for x ∈]0, 1[, the bias of the Bernstein estima-
tor Fn,ν and the bias of the kernel estimator F̃n are given
respectively by

Bias(Fn,ν(x)) = ν−1b(x) + o(ν−1),

Bias(F̃n(x)) =
1

2
h2f ′(x)μ2(K) + o(h2),

where μ2(K) =
∫ 1

0
z2K(z)dz. The previous result implies

that, in the case when ν = m, the bias of the estimator
F̃n,m is O(m−2) is smaller than the one obtained using the
Bernstein polynomial, which has a bias of order O(m−1). On
the one hand, if we consider h = m−1 and f ′ is bounded,
we notice that the bias of F̃n,m is O(m−2) = O(h2), which
is asymptotically similar to the bias obtained using the ker-
nel estimator F̃n, that is generally O(h2) except near the
boundaries. On the other hand, if f is bounded, it is well
known that the variance of the Bernstein estimator and the
variance of the kernel estimator are given respectively by

V ar(Fn,ν(x)) = n−1σ2(x) +O(ν−1/2n−1),

V ar(F̃n(x)) = n−1σ2(x) +O(hn−1).

In this respect, another consequence of the previous result is
that in the case when ν = m, the variance of F̃n,m is asymp-
totically similar to the variance of the estimator obtained
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using Bernstein polynomial. On the other side, in order to
compare the proposed estimator and the kernel estimator,
we consider some classical choices, which are m = n and
h = n−1/3, this choice is motivated by the optimal band-
width based on the minimization of the MSE. We notice
that in the case where f is bounded and x ∈ ]0, 1[ , the vari-

ance of F̃n,m is n−1σ2(x)+O(n−3/2), which is asymptotically
smaller than the variance obtained using kernel estimator,
namely n−1σ2(x) + O(n−4/3). In addition, it is well known
that

MSE(F̂n(x)) = V ar(F̂n(x)) = n−1σ2(x).

In conclusion, regarding the performance of the proposed
estimator, we point out that

• The three considered estimators and the empirical dis-
tribution F̂n are asymptotically equivalent in terms of
MSE up to the first order.

• The proposed estimator asymptotically dominates the
Bernstein estimator Fn,ν in terms of bias and in terms
of MSE in the case when f is bounded.

• Under the assumption (A2), the proposed estimator is
asymptotically similar to the kernel estimator F̃n in
terms of bias without any additional assumptions, and
dominates the kernel estimator in terms of MSE under
some classical conditions.

We complete our study with the following proposition
which reveals that F̃n,m is strongly consistent.

Proposition 3.2 (Uniform convergence of F̃n,m).
Under assumption (A1), if n,m → ∞, then∥∥∥F̃n,m − F

∥∥∥ → 0 a.s.,

where ‖K‖ = sup
x∈[−1,1]

|K(x)| for any bounded function K on

[−1, 1].

In this paper, we prove that the estimator F̃n,m satisfied
the Chung-Smirnov property, which quantifies its extreme
fluctuations about F , as m → ∞, under certain regularity
conditions on F . Let Gn be any estimator of the distribu-
tion function F . Therefore, Gn is said to satisfy the Chung-
Smirnov property when

lim sup
n→∞

(
2n

log logn

)1/2

sup
x∈[−1,1]

|Gn(x)− F (x)| ≤ 1,(6)

a.s.
We know that the empirical distribution function F̂n sat-

isfies the above property. To be more accurate, we have

(7) lim sup
n→∞

(
2n

log logn

)1/2

sup
x∈[−1,1]

∣∣∣F̂n(x)− F (x)
∣∣∣ = 1.

This was proved by Chung [6] and [30]. The following propo-

sition demonstrates that F̃n,m satisfies this property under
certain conditions.

Proposition 3.3 (Chung Smirnov property for F̃n,m).
Let F ∈ Lip(α, c) for some c > 0. If m,n → ∞ and√
nm−α/2 → 0, then F̃n,m satisfies equation (6).

Finally, the following proposition indicates the asymp-
totic normality of the estimator (3).

Proposition 3.4 (Asymptotic normality of F̃n,m).
Assume (A1) holds and m,n → ∞. For x ∈ (−1, 1), we have

n1/2
(
F̃n,m(x)−Am(x)

)
L→ N (0, σ2(x)).

Note that, under an appropriate choice of bandwidth,
a result similar to proposition 3.4 was recorded by [34] for
general kernel estimators, and by [17] for the Bernstein es-
timator of distribution functions.

4. NUMERICAL STUDIES

4.1 Comparison with estimators (1) and (2)

In this section, we investigate the performance of the pro-
posed estimator in estimating different distributions by com-
paring it to the performances of Bernstein estimator and
of the standard Gaussian kernel estimator. We can apply
Bernstein estimator and the proposed estimator when the
sample is concentrated on the intervals [0, 1] and [−1, 1],
respectively. In order to enact the comparison between the
estimators (1), (2) and (3), applicable in general, we list
below suggested transformations in different cases:

(1) Suppose that X is concentrated on a finite support
[a, b], then we work with the sample values Y1, . . . , Yn

where Yi = (Xi − a)/(b− a).
(2) For the distributions functions concentrated on R,

we can use the transformed sample Yi = 1/2 +
π−1 arctan(Xi) which transforms the range to the in-
terval [0, 1].

(3) For the support R+, we can use the transformed sam-
ple Yi = Xi/(1 +Xi) which transforms the range to the
interval [0, 1].

In our simulation study, six sample sizes are considered, n =
10, n = 50, n = 100, n = 150, n = 200, n = 250 and the
following distribution functions:

1− The beta distribution B(3, 2),
2− The beta distribution B(2, 2),
3− The gamma distribution G(1, 6),
4− The mixture beta distribution 0.5B(2.5, 6)+0.5B(9, 1).
For each distribution function and sample size n, we com-
pute the Integrated Squared Error (ISE) of the estimator
over N = 500 trials,

(8) ISE[F̂ ] =

∫ 1

0

(
F̂ (x)− F (x)

)2

dx,

where F̂ is an estimator of the distribution F . To select the
smoothing parameters m, ν and h, we consider the Monte
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Figure 1. Qualitative comparison between the estimator Fn,ν(x) defined in (2), F̃n defined in (1) and the proposed

distribution estimator F̃n,m defined in (3), for N = 500 samples of size n = 50 (left panel) and of size n = 100 (right panel)
for the beta distribution B(3, 2).

Figure 2. Qualitative comparison between the estimator Fn,ν(x) defined in (2), F̃n defined in (1) and the proposed

distribution estimator F̃n,m defined in (3), for N = 500 samples of size n = 50 (left panel) and of size n = 100 (right panel)
for the exponential distribution 0.5B(2.5, 6) + 0.5B(9, 1).

Carlo procedure for each point x ∈ [0, 1]. We determine the
parameters m (for 1 ≤ m ≤ 300), ν (for 1 ≤ ν ≤ 300) and
h (for h = i/1000 with 1 ≤ i ≤ 300), which minimizes ISE,
which is approximated by

1

N

N∑
i=1

ISEi(F̂ ),

where ISEi(F̂ ) is the value of ISE computed from the ith
sample of size n and obtained from (8).

From figures 1–2 and tables 1–2, we conclude that

• In the considered distributions (1)–(4), by choosing the
appropriate m, ν and h, the ISE of the distribution
estimator (3) is smaller than that of Kernel estimator
(1) and Bernstein estimator (2) even when the sample
size is very large.

• The ISE decreases as the sample size increases.

4.2 Real dataset

We consider two examples that highlight the features of
the proposed estimator F̃n,m:

1. At first time, the data show 50 alignments of a coding
DNA sequence of the growth factor receptor of a Nor-
wegian rat EGFR (Rattus norvegicus egfr gene, partial
cds), which is available in the site https://www.ncbi.
nlm.nih.gov/. For convenience, we analyzed the origi-
nal data rescaled to the unit interval. Finally, we used
the Monte Carlo method to obtain m = 50 for our pro-
posed estimator, m = 35 for the Bernstein estimator
and h = 0.636438 for the kernel estimator.

2. At the second time, we used Salvister data which
appear in R package kerdiest (Quintela-del-Ŕıo and
Estévez-Pérez [20]). These data contain 85 observa-
tions of the annual peak instantaneous flow levels of
the Salt River near Roosevelt, AZ, USA, for the period
1924–2009, obtained from the National Water Informa-
tion System. For convenience, we analyzed the original
data rescaled to the unit interval. Finally, we used the
Monte Carlo method to obtain m = 85 for our pro-
posed estimator, m = 80 for the Bernstein estimator
and h = 0.06 for the kernel estimator.

3. The third data show the failure time (breakdowns of
electronic devices) in operating hours. These data con-
tain 18 observations and are introduced by [33]. For con-
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Table 1. ISE for N = 500 trials of Bernstein estimator, standard Gaussian Kernel estimator and the proposed estimator
F̃n,m, for n = 10, n = 50 and n = 100. The bold values indicates the smallest values of ISE

n Proposed estimator Bernstein estimator Kernel estimator

10 0.032331 0.013258 0.019944
B(3, 2) 50 0.003819 0.004411 0.005014

100 0.002198 0.002431 0.002999

10 0.009598 0.006958 0.012854
B(2, 2) 50 0.001302 0.001717 0.002420

100 0.564e−3 0.802e−3 0.001132

10 0.037654 0.038798 0.040357
G(1, 6) 50 0.005205 0.006879 0.006393

100 0.001780 0.002236 0.002052

10 0.005359 0.003579 0.007807
0.5B(2.5, 6) + 0.5B(9, 1) 50 0.001326 0.001515 0.001767

100 0.699e−3 0.727e−3 0.820e−3

Table 2. ISE for N = 500 trials of Bernstein estimator Fn,ν(x), standard Gaussian kernel estimator F̃n and the proposed

estimator F̃n,m, for n = 150, n = 200 and n = 250. The bold values indicates the smallest values of ISE

n Proposed estimator Bernstein estimator Kernel estimator

150 0.001799 0.002023 0.002342
B(3, 2) 200 0.001596 0.001782 0.001763

250 0.001258 0.001447 0.001462

150 0.377e−3 0.489e−3 0.718e−3

B(2, 2) 200 0.264e−3 0.327e−3 0.522e−3

250 0.229e−3 0.289e−3 0.392e−3

150 0.540e−3 0.896e−3 0.676e−3

G(1, 6) 200 0.107e−3 0.200e−3 0.115e−3

250 2.921e−5 4.996e−5 5.429e−5

150 0.503e−3 0.501e−3 0.568e−3

0.5B(2.5, 6) + 0.5B(9, 1) 200 0.379e−3 0.380e−3 0.486e−3

250 0.309e−3 0.309e−3 0.354e−3

venience, we analyzed the original data rescaled to the
unit interval. Finally, we used the Monte Carlo method
to obtain m = 18 for our proposed estimator, m = 15
for the Bernstein estimator and h = 0.20559 for the
kernel estimator.

4. Moreover, we used attenu data which appear in R pack-
age datasets ([13]). These data contain 182 observa-
tions of the numeric moment magnitude at various sta-
tions for 23 earthquakes in California. For convenience,
we analyzed the original data rescaled to the unit inter-
val. Finally, we used the Monte Carlo method to obtain
m = 182 for our proposed estimator, m = 180 for the
Bernstein estimator and h = 0.0305 for the kernel esti-
mator.

In the real examples, the three estimators are compared with
the empirical distribution F̂n. Then, for any considered es-
timator F̂ of the distribution function F , we propose to
compute the ISE defined as:

ISE(F̂ ) =

∫ 1

0

(
F̂ (x)− F̂n(x)

)2

dx.

Departing from Tables 3–4 and figures 3–6, we infer that
the ISE of the proposed estimator is smaller than the ISE
of the Bernstein estimator and the ISE of the kernel estima-
tor, thus demonstrating the effectiveness of our considered
estimator.

5. CONCLUSION

The central focus of this paper is upon suggesting an es-
timator of the distribution function using Lagrange poly-
nomials and Tchebytchev-Gauss points. We showed that
a few important properties contributing to the popularity
of kernel estimator and Bernstein estimator of distribution
function are also satisfied by the proposed estimator. The
asymptotic laws of the proposed estimator are established
under general conditions. We also argued that the proposed
estimator asymptotically dominates the Bernstein estima-
tor in terms of bias. Through a simulation study and a
simple data set examples, we have demonstrated how the
proposed estimator can lead to satisfactory estimates of the
distribution function. To sum up, our simulations also sug-
gest that the proposed estimator is quite promising and
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Table 3. ISE of Bernstein estimator, standard Gaussian kernel estimator and the proposed estimator F̃n,m, for S A DNA
(Score Alignments DNA) data and Saltriver data. The bold values indicates the smallest values of ISE

Data set Proposed estimator Bernstein estimator Kernel estimator

S A DNA 0.334860e−3 0.647956e−3 0.466513e−3

Saltriver 4.586125e−5 0.112049e−3 0.756750e−3

Table 4. ISE of Bernstein estimator, standard Gaussian kernel estimator and the proposed estimator F̃n,m, for magnitude
data and failure time data. The bold values indicates the smallest values of ISE

Data set Proposed estimator Bernstein estimator Kernel estimator

Failure time 0.000549 0.000760 0.001088

Magnitude 0.000223 0.000929 0.000695

Figure 3. Qualitative comparison between the estimator Fn,ν defined in (2), F̃n defined in (1) and the proposed distribution

estimator F̃n,m defined in (3), for S A DNA data.

Figure 4. Qualitative comparison between the estimator Fn,ν defined in (2), F̃n defined in (1) and the proposed distribution

estimator F̃n,m defined in (3), for Saltriver data.
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Figure 5. Qualitative comparison between the estimator Fn,ν defined in (2), F̃n defined in (1) and the proposed distribution

estimator F̃n,m defined in (3), for failure time data.

Figure 6. Qualitative comparison between the estimator Fn,ν defined in (2), F̃n defined in (1) and the proposed distribution

estimator F̃n,m defined in (3), for magnitude data.

interesting as it behaves well when compared with both
the Bernstein estimator and the Gaussian kernel estima-
tor.

To this extent, we could simply assert that our work is a
step may be taken further as it lays the ground and offers
new perspectives for future works to extend this investi-
gation by considering a recursive version and compare the
obtained estimators to the one adopted by [27] and [12]. We
plan also to consider the estimation of a density function in
a recursive framework and then the estimation of a regres-
sion function in a recursive framework by using Lagrange
polynomials (see [28], [29]).

APPENDIX A. PROOFS

Throughout the proofs, we use the following notations:

R(1)
m =

m∑
k=1

sin θk
sin(mθk)

,

R(2)
m =

m∑
k=1

xk sin θk
sin(mθk)

,

R(3)
m =

m∑
k=1

cos(2θk) sin θk
sin(mθk)

,
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Jm(x) =

m∑
k=1

| xk − x | L2
k(x),

Sm(x) =

m∑
k=1

L2
k(x),

λm(x) =
m∑

k=1

|Lk(x)| Lebesgue function,

Λm = max
x∈[−1,1]

λm(x) Lebesgue constant, for j ∈{0, 1, 2},

Pj,m(x) =
m∑

k=1
k<l

(xk − x)jLk(x)Ll(x).

In order to prove Theorems 3.1–3.4, we establish the follow-
ing technical lemmas A.1 and A.2 stated below.

Lemma A.1. For m ≥ 1, we have

R(1)
m = sin(π/2m), R(2)

m = sin(π/m)/2,

R(3)
m = (sin(3π/2m)− sin(π/2m))/2.

Lemma A.2. For x ∈ [−1, 1], we have

i)

m∑
k=1

(xk − x)Lk(x) = −Tm(x)

m
R(1)

m

= − π

2m2
Tm(x) + o(m−2),

ii)

m∑
k=1

(xk − x)2Lk(x) =
Tm(x)

m

(
xR(1)

m −R(2)
m

)
=

π

2m2
Tm(x)(x− 1) + o(m−2),

iii)

m∑
k=1

(xk − x)3Lk(x)

= −Tm(x)

m

(
R

(1)
m +R

(3)
m

2
+ x2R(1)

m − 2xR(2)
m

)
= − π

2m2
Tm(x)(1 + x2 − 2x) + o(m−2).

Proof of Lemma 1. We first note that R
(1)
m , R

(2)
m and R

(3)
m

can be rewritten as:

R(1)
m =

− cos(π/2m)

2

m∑
k=1

[sin (k (π/m+ π))

+ sin (k (π/m− π))]

+ sin(π/2m)/2

m∑
k=1

[cos (k (π/m− π))

+ cos (k (π/m+m))] .

R(2)
m

=
−1

4
cos(π/m)

m∑
k=1

sin(k(2π/m+ π))

−1

4
cos(π/m)

m∑
k=1

sin(k(2π/m− π))

+
1

4
sin(π/m)

m∑
k=1

cos(k(2π/m− π))

+
1

4
sin(π/m)

m∑
k=1

cos(k(2π/m+ π)).

R(3)
m

= −1

4

m∑
k=1

sin(3θk + kπ) + sin(3θk − kπ)

−1

4

m∑
k=1

sin(−θk + kπ) + sin(−θk − kπ).

Using for t ∈ R,

m∑
k=1

cos(kt) =
cos(mt/2) sin((m+ 1)t/2)

sin(t/2)

and

m∑
k=1

sin(kt) =
sin(mt/2) sin((m+ 1)t/2)

sin(t/2)
, some classical

computations provide

R(1)
m = sin(π/2m) =

π

2m
+ o(m−1),

R(2)
m =

1

2
sin(π/m) =

π

2m
+ o(m−1),

R(3)
m =

1

2
(sin(3π/2m)− sin(π/2m)) =

π

2m
+ o(m−1).

Proof of Lemma 2. First, we have (see [8] page 10)

Lk(x) =
Tm(x)

T ′
m(xk)(x− xk)

(9)

and − sin θkT
′
m(cos θk) = −m sin(mθk). It follows that

m∑
k=1

(xk − x)Lk(x) = −Tm(x)

m
R(1)

m ,

m∑
k=1

(xk − x)2Lk(x) =
xTm(x)

m
R(1)

m − Tm(x)

m
R(2)

m ,

m∑
k=1

(xk − x)3Lk(x)] =
−Tm(x)

2m

(
R(1)

m +R(3)
m

)
−Tm(x)x2

m
R(1)

m + 2
Tm(x)

m
R(2)

m .
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A.1 Proof of Proposition 3.1

Clearly, we have

E(F̃n,m(x)) = Am(x).

The expansion of Taylor-Young ensures that for 1 ≤ k ≤ m,

E(F̃n,m(x)) = F (x) + f(x)

m∑
k=1

(xk − x)Lk(x)

+
f ′(x)

2

m∑
k=1

(xk − x)2Lk(x)

+
f ′′(x)

6

m∑
k=1

(xk − x)3Lk(x)

+o

(
m∑

k=1

(x− xk)
3 Lk(x)

)
.

The application of Lemma A.1 together with Lemma A.2
yield the equation (4). Let’s now focus on calculating
the variance of our estimator. First, we set (ηi)1≤i≤n =(∑m

k=1

(
1{Xi≤xk} − F (xk)

)
Lk(x)

)
1≤i≤n

, it comes that

F̃n,m(x)−Am(x)

=

m∑
k=1

(
F̂n(xk)− F (xk)

)
Lk(x)

=
1

n

m∑
k=1

(
n∑

i=1

1{Xi≤xk} − F (xk)

)
Lk(x)

=
1

n

n∑
i=1

ηi.

Moreover, since E

(
F̃n,m(x)−Am(x)

)
= 0, it follows that

V ar
(
F̃n,m(x)−Am(x)

)
= E

[(
F̃n,m(x)−Am(x)

)2
]

= V ar
(
F̃n,m(x)

)
=

1

n2

n∑
i=1

V ar(ηi)

=
1

n
E(η21).

Now, we define for any x ∈ [−1, 1] and for i ≥ 1,
ϕi(x) = 1{Xi≤x} − F (x). We infer that

E(η2i ) = E

⎡⎣( m∑
k=1

ϕi(xk)Lk(x)

)2
⎤⎦

= E

⎡⎣ m∑
k,l=1

ϕi(xk)Lk(x)ϕi(xl)Ll(x)

⎤⎦

=

m∑
k,l=1

E [ϕi(xk)ϕi(xl)]Lk(x)Ll(x).(10)

Moreover, we have

E [ϕi(xk)ϕi(xl)]

= E
[(
1{Xi≤xk} − F (xk)

) (
1{Xi≤xl} − F (xl)

)]
= E

(
1{Xi≤xk}1{Xi≤xl}

)
− F (xk)F (xl)

= E
(
1{Xi≤min(xk,xl)}

)
− F (xk)F (xl)

= F (min(xk, xl))− F (xk)F (xl)

= min(F (xk), F (xl))− F (xk)F (xl).

Substituting this result for (10) leads to

E(η2i )

=

m∑
k,l=1

[min(F (xk), F (xl))− F (xk)F (xl)]Lk(x)Ll(x)

=

m∑
k=1

F (xk)L2
k(x) + 2

m∑
k=1
k<l

F (xk)Lk(x)Ll(x)

−Am(x)2.(11)

We need now to find an asymptotic expression for (11). For
this reason, we first expand F (xk) about x to state that for
all 0 ≤ k ≤ m, F (xk) = F (x) +O(|xk − x|). This allows us
to write the first term of (11) as

m∑
k=1

F (xk)L2
k(x)

=

m∑
k=1

[F (x) +O(|xk − x|)]L2
k(x)

=
m∑

k=1

F (x)L2
k(x) +

m∑
k=1

O(|xk − x| L2
k(x))

= F (x)Sm(x) +O(Jm(x)),

where Jm(x) =
m∑

k=1

| xk − x | L2
k(x).

For the second term of (11), we instead write F (xk) as

F (xk) = F (x) + (xk − x)f(x) +O((xk − x)2).

Moreover, we have

2P0,m(x) + Sm(x) =

m∑
k,l=1

Lk(x)Ll(x).

Since

m∑
k,l=1

Lk(x)Ll(x) = 1,

Estimation of a distribution function using Lagrange polynomials with Tchebychev-Gauss points 407



it comes that

P0,m(x) =
1

2
(1− Sm(x)).

Then

m∑
k=1
k<l

F (xk)Lk(x)Ll(x)

=

m∑
k=1
k<l

(
F (x) + (xk − x)f(x) +O((xk − x)2)

)
Lk(x)Ll(x)

=

m∑
k=1
k<l

F (x)Lk(x)Ll(x) +

m∑
k=1
k<l

(xk − x)f(x)Lk(x)Ll(x)

+

m∑
k=1
k<l

O
(
(xk − x)2Lk(x)Ll(x)

)
= F (x)P0,m(x) + f(x)P1,m(x) +O(P2,m(x))

=
1

2
F (x)(1− Sm(x)) + f(x)P1,m(x) +O(P2,m(x)).

Moreover, we have

2

m∑
k=1
k<l

F (xk)Lk(x)Ll(x)

= F (x)(1− Sm(x)) + 2f(x)P1,m(x) +O(m−4).

Therefore,

E(η2i )

= F (x) + 2f(x)P1,m(x) +O(Jm(x)) +O(P2,m(x))

−A2
m(x)

= F (x)(1− F (x)) + 2f(x)P1,m(x) +O(Jm(x))

+O(m−4)

= σ2(x) + 2f(x)P1,m(x) +O(Jm(x)) +O(P2,m(x)).(12)

Now, using Cauchy-Schwartz’s inequality combined with the
fact that |Lk(x)| ≤ 1, we get

|Jm(x)| =

∣∣∣∣∣
m∑

k=1

|xk − x| L2
k(x)

∣∣∣∣∣
≤

∣∣∣∣∣
(

m∑
k=1

(xk − x)2Lk(x)

)∣∣∣∣∣
1/2 ∣∣∣∣∣

(
m∑

k=1

L3
k(x)

)∣∣∣∣∣
1/2

≤
[( π

m2
+ o

(
m−2

))
Sm(x)

]1/2
.

On the other side, using the fact that Λm ≤ 2
π ln(m+1)+1

(see [4]), we obtain

Sm(x) ≤
(

m∑
k=1

|Lk(x)|
)2

≤ Λ2
m ≤ 4

π2
ln(m+ 1)2 + 1 +

4

π
ln(m+ 1).

As a matter of fact, we infer that Jm(x) = O(m−1/2). Now,
it follows from (9), that

P2,m(x) = [(1− x)2 +O(m−2)]

m∑
k=1
k<l

Lk(x)Ll(x)

= [(1− x)2 +O(m−2)]

m∑
k=1
k<l

O(m−2).

It follows that P2,m(x) = O(m−1). Moreover, we have

P1,m(x) =

m∑
k=1

(xk − x)Lk(x)

m∑
l=k+1

Ll(x)

= [1− x+O(m−2)]

m∑
k=1
k<l

O(m−2).

Hence, we obtain P1,m(x) = O(m−1) and equation (5) fol-
lows.

A.2 Proof of Proposition 3.2

We first use the fact that∥∥∥F̃n,m − F
∥∥∥ ≤

∥∥∥F̃n,m −Am

∥∥∥+ ‖Am − F‖ .

The use of Jackson’s theorem, ensures that

lim
m→∞

‖Am − F‖ = 0.

Moreover, we have

F̃n,m(x)−Am(x) =

m∑
k=1

(
F̂n(xk)− F (xk)

)
Lk(x),

it comes that∥∥∥F̃n,m −Am

∥∥∥ ≤ max
1≤k≤m

∣∣∣F̂n(xk)− F (xk)
∣∣∣ .

In addition, the application of Clivenco-Cantelli’s theorem,
ensures that

lim
n→∞

∥∥∥F̂n − F
∥∥∥ = 0,

which conclude the proof.

A.3 Proof of Proposition 3.3

First, we note that for all m ≥ 1,∥∥∥F̃n,m − F
∥∥∥ ≤

∥∥∥F̂n − F
∥∥∥+ ‖Am − F‖ .
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Moreover, as F ∈ Lip(α, c), section 1.3.2 of De Dyn Nira et
al. [7] and Jackson [10, 11] implies that

‖Am − F‖ = O

(
log(m)

mα/2

)
.

It follows that

lim sup
n→∞

un

∥∥∥F̃n,m − F
∥∥∥

≤ lim sup
n→∞

un

∥∥∥F̂n − F
∥∥∥+ lim sup

n→∞
un ‖Am − F‖ ,

where un = (2n/ log logn)1/2, for all n ≥ 1. Now, using
equation (7), we obtain

lim sup
n→∞

un

∥∥∥F̂n − F
∥∥∥ = 1 a.s.

Moreover, since n1/2m−α/2 → 0 when n, m → ∞, we have

lim sup
n→∞

un ‖Am − F‖ = lim sup
n→∞

(2n)1/2

(log logn)1/2
logm

mα/2

= lim sup
n→∞

√
n

mα/2

= 0.

It comes that, lim sup
n→∞

un

∥∥∥F̃n,m − F
∥∥∥ ≤ 1. This completes

the proof of proposition 3.3.

A.4 Proof of Proposition 3.4

Since we have

F̃n,m(x)−Am(x) =
1

n

n∑
i=1

ηi.

It follows that,

n1/2
(
F̃n,m(x)−Am(x)

)
=

n∑
i=1

ηi
n1/2

.

Now, in order to check the Lindeberg condition, we notice
for all n ≥ 1 and for i = 1, . . . , n

Xi,n =
ηi

n1/2
and s2n =

n∑
i=1

E(X2
i,n).

We have

n1/2
(
F̃n,m(x)−Am(x)

)
=

n∑
i=1

Xi,n,

with (Xi,n)i≥1 is a sequence of i.i.d. random variables such
that E(Xi,n) = 0. Further, we have for n ≥ 1,

s2n =

n∑
i=1

E(X2
i,n) =

n∑
i=1

1

n
E(η2i ) = E(η21).

However, in the light of (12), we have lim
n→∞

s2n = σ2(x).

Indeed, using the Cauchy-Schwarz inequality, Lk(x) ≤ 1
and by inferring the proof of proposition 3.1, we get
lim
n→∞

Jm(x) = 0 and lim
n→∞

P1,m(x) = 0. Moreover, since
m∑

k=0

Lk(x) = 1, we have

|η1| =

∣∣∣∣∣
m∑

k=1

(
1{Xi≤xk} − F (xk)

)
Lk(x)

∣∣∣∣∣
≤

m∑
k=1

∣∣1{Xi≤xk} − F (xk)
∣∣Lk(x)

≤
m∑

k=1

(1 + 1)Lk(x) = 2.

It comes that

X2
1,n1 |X1,n|

sn
>ε

=
η21
n
1{|η1|>snn1/2ε}

≤ 4

n
1{|η1|>snn1/2ε}.

Hence,

n∑
i=1

E

[
X2

i,m1 |Xi,m|
sn

>ε

]
≤ 4

n

n∑
i=1

1{|ηi|>snn1/2ε}.

Moreover, we have s2n → σ2(x) when n → ∞, then Linde-
berg’s condition

lim
n→∞

1

s2n

n∑
i=1

E

[
X2

i,n1 |Xi,n|
sn

>ε

]
= 0,

is fulfilled. Thus by Lindeberg-Feller’s central limit theorem,
we get

n1/2
(
F̃n,m(x)−Am(x)

)
L→ N (0, σ2(x)),

which concludes the proof.
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