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Asymptotic theory for differentially private
generalized β-models with parameters increasing∗
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Modelling edge weights play a crucial role in the analysis
of network data, which reveals the extent of relationships
among individuals. Due to the diversity of weight informa-
tion, sharing these data has become a complicated challenge
in a privacy-preserving way. In this paper, we consider the
case of the non-denoising process to achieve the trade-off
between privacy and weight information in the generalized
β-model. Under the edge differential privacy with a discrete
Laplace mechanism, the Z-estimators from estimating equa-
tions for the model parameters are shown to be consistent
and asymptotically normally distributed. The simulations
and a real data example are given to further support the
theoretical results.
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1. INTRODUCTION

With the rapid development of computer and net-
work technology, the analysis of network data has aroused
widespread concerns in various fields. Unfortunately, col-
lecting, storing, analyzing and sharing these data is chal-
lenging, due to the privacy of individuals (e.g., financial
transactions). Besides, more privacy protection may re-
duce the validity of data [Duncan et al. (2004)]. Many
approaches have been proposed to guarantee the trade-
off between individual privacy and the utility of pub-
lished data, which focus on data encryption, identity
authentication, data perturbation [Samarati and Sweeney
(1998); Fung et al. (2007); Machanavajjhala et al. (2006);
Ghinita et al. (2008); Li et al. (2007); Aggarwal and Yu
(2007)]. Dwork (2006a) proposed a rigorous notion of pri-
vacy named ε-differential privacy to control strong worst-
case privacy risks. More formally, adding or removing
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a single record in the dataset does not have a seri-
ous effect on the outcome of any analysis. Starting from
Dwork (2006a), various types of data and queries were
widely applied by researchers under differential privacy
constraints [Holohan et al. (2017); McSherry and Talwar
(2007); Wasserman and Zhou (2010)].

Random graphs are powerful statistical tools in the study
of network data. These graph models are based on degree
sequences d, which are used in modelling the realistic net-
works. In the undirected case, the β-model is well-known
for the binary network, renamed by Chatterjee et al. (2011).
Many scholars have focused on the studies of the β-model
[Jackson (2008); Lauritzen (2008); Blitzstein and Diaconis
(2011)]. Chatterjee et al. (2011) proved the existence and
consistency of the maximum likelihood estimator (MLE) of
the β-model as the number of parameters goes to infinity.
Yan and Xu (2013) further derived its asymptotic normal-
ity. On the other hand, edge weights reveal the strength of
relationships among individuals, which are critical for under-
standing many phenomena. For example, in friendship net-
works, we can assign close friends with a higher weight and
acquaintances or normal friends with a lower weight, which
are also referred to as the strong tie and weak tie reported by
Granovetter (1993). To this point, Hillar et al. (2013) stud-
ied the maximum entropy distributions on weighted graphs
with the β–model as the special case and proved the consis-
tency of the MLE under the assumption that all parameters
are bounded by a constant; Yan et al. (2015) proved the
asymptotic normality of the MLE.

In the privacy analysis of network data, the raw data
is published via pre-processing so that the confidential and
sensitive information is captured as less as possible. One of
the popular approaches is to add some noises e into the de-
gree sequence d. For example, Hay et al. (2009) applied the
Laplace noise-addition mechanism to release the degree par-
tition of a graph, and designed to reduce the error with the
�2–norm between the true and released degree partitions.
However, the process of adding noises is often ignored when
summary statistics are published in a privacy-preserving
way. As a result, the estimated parameters may not be con-
sistent, even not exist [e.g., Hay et al. (2009)]. Duchi et al.
(2018) illustrated that the estimator operated on private
data has a larger error than the non-private estimator. Based
on privatized data, estimating summary statistics and esti-
mating parameters of models are totally different problems.
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To this point, Karwa et al. (2016) paid attention to the noise
addition process through the denoised method to achieve
valid inference and obtained the consistency and asymptotic
normality of a differential privacy estimator in the β-model.

In this paper, we adopt the non-denoised method to
establish the asymptotic properties of the Z-estimator of
the parameter in the generalized β-model with finite dis-
crete weighted edges under the discrete Laplace mechanism,
which is different from the work of Karwa et al. (2016).
Moreover, Karwa et al. (2016) only considered binary edges.
In some scenarios, edge weights play important roles in the
analysis of network data. For example, weighted social net-
works often provide a more realistic representation of the
complex social interactions among individuals than binary
networks [e.g., Farine (2014)]. Furthermore, edge weights
may further increase the risk of privacy disclosure, due to
the diversity of weight-related information. For instance,
edge weights represent the numbers of co-written papers
in a coauthorship network. A hacker can easily identify an
author via the total number of published papers [Li et al.
(2016)]. In the generalized β-model, each node is assigned
one parameter, so the number of parameters increases with
n. The asymptotic properties for the increasing dimensional
Z-estimator cannot directly be followed from the classical
Z-estimation theory; see chapter 5 of van der Vaart (1998).
Therefore, based on Yan and Xu (2013), we alternatively
show that the Z-estimator of the parameter involving the
noisy degree sequence is asymptotically consistent and nor-
mally distributed in the generalized β-model under edge dif-
ferential privacy constraints.

The organization of this paper is as follows. In Section 2,
we first introduce some notations and definitions of our re-
sults. Subsequently, we obtain the asymptotic normality of
the Z-estimator in the generalized β-model involving noisy
degree sequence d̄ = d+e, where d is the sufficient statistic
and e are some noises from the discrete Laplace distribu-
tion. In Section 3, we give some simulation results to support
our theories. We further present a data example application,
which is from a community of 27 Grevy’s zebras. A summary
follows in Section 4. All proofs are contained in Appendix.

2. MAIN RESULTS

2.1 Notations

For a vector x = (x1, · · · , xn)
T ∈ Rn, the �∞-norm of

x is denoted by ‖x‖∞ = max
1≤i≤n

|xi|. For an n × n matrix

J = (Jij), ‖J‖∞ denotes the matrix norm induced by the
‖ · ‖∞-norm on vectors in Rn:

‖J‖∞ = max
x �=0

‖Jx‖∞
‖x‖∞

= max
1≤i≤n

n∑
j=1

|Jij |,

i.e., the maximum absolute row sum norm.
We define another matrix norm ‖ · ‖ for a matrix A =

(ai,j) by ‖A‖ := maxi,j |ai,j |, and let ‖x‖1 =
∑

i |xi| be the

�1-norm for a general vector x. We say that an = Ω(rn) if
there exists a real constant c > 0 and there exists an integer
constant n0 ≥ 1 such that an ≥ crn for every n ≥ n0.

Let D be an open convex subset of Rn. An n×n function
matrixG(x) whose elementsGij(x) are functions on a vector
x, is Lipschitz continuous w.r.t the max norm on D if there
exists a real number κ such that for any v ∈ Rn and any
x,y ∈ D,

‖G(x)(v)−G(y)(v)‖∞ ≤ κ‖x− y‖∞‖v‖∞,

where κ may depend on n but it is independent of x and y.
For every fixed n, κ is a constant.

2.2 Edge differential privacy

In the contexts of network data, there are two main vari-
ants of differential privacy: edge differential privacy (EDP)
[Nissim et al. (2007)] and node differential privacy (NDP)
[Hay et al. (2009), Kasiviswanathan et al. (2013)], which
are based on the different definitions of graph neighbors.
Specifically, EDP guarantees that released databases do not
reveal the addition or removal of a special edge, while NDP
hides the addition or removal of a node (along with its edges)
in a graph G. In this paper, we refer to EDP, where two
graphs G and G′ are said to be neighbors if they differ in
exactly one edge.

Definition 2.1 (Edge differential privacy). Let ε ≥ 0 be a
privacy parameter. A randomized mechanism (or a family
of conditional probability distributions) Q(·|G) is ε- edge
differentially private if

sup
G,G′∈G,δ(G,G′)=1

sup
S∈S

Q(S|G)

Q(S|G′)
≤ eε,

where G is the set of all undirected graphs of interest on n
nodes, δ(G,G′) is the number of edges on which G and G′

differ, S is the set of all possible outputs (or the support of
Q).

The above definition of EDP is based on ratios of proba-
bilities. Generally, the data curator chooses an appropriate
privacy parameter ε to achieve the trade-off between pri-
vacy and validity. As the value of ε is extremely small, more
privacy is protected. Under EDP constraints, changing one
record in the dataset cannot affect seriously on the distri-
bution of the output. For example, a hospital can release
some medical information about their patients to the pub-
lic, while simultaneously ensuring very high levels of privacy
in the case of EDP. This is because EDP offers a guaran-
tee no matter whether or not the patient participates in
the study, the probability of a possible output is almost the
same. As a result, an attacker can not find whether a single
individual is in the original database or not. As we know,
the effective implementation of ε-differential privacy is as-
sociated with the magnitude of additional random noise.
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To this end, Dwork et al. (2006b) introduced the notion of
global sensitivity, which is referred to as the maximum �1-
norm among various dataset pairs (G,G′).

Definition 2.2 (Global sensitivity). Let f : G → Rk. The
global sensitivity of f is defined as

�G(f) = max
δ(G,G′)=1

‖f(G)− f(G′)‖1,

where ‖ · ‖1 is the �1-norm for vector.

Although there are many mechanisms for releasing the
output of any function f under differential privacy, the
Laplace mechanism is the most common one. Karwa et al.
(2016) presented a discrete Laplace mechanism to achieve
edge differential privacy, which is given below.

Let f : G → Zk, and let Z1, . . . , Zk be independent
and identically distributed discrete Laplace random vari-
ables with probability mass function defined by

P (Z = z) =
1− λ

1 + λ
λ|z|, z ∈ Z, λ ∈ (0, 1).

Then the algorithm which outputs f(G)+(Z1, . . . , Zk) with
inputs G is ε-edge differentially private, where ε = − �G

(f) log λ.
Based on the definition of differential privacy,

Dwork et al. (2006b) found that any function of a dif-
ferentially private mechanism is also differentially private,
as follow: Let f be an output of an ε-differentially private
mechanism and g be any function. Then g(f(G)) is also
ε-differentially private. This result indicates that any
post-processing done on the noisy degree sequence obtained
as an output of a differentially private mechanism is also
differentially private.

More generally, we may consider the skew discrete Laplace
mechanism. When the positive noises and negative noises
arising with different probability law, the skew discrete
Laplace distribution [Kozubowski and Inusah (2006)] as a
discretization of non-symmetric Laplace distribution could
be used. The skew Laplace distribution is useful in applica-
tions to communications, engineering, and finance and eco-
nomics, see Kotz et al. (2012) and references therein. For
more information on the skew discrete Laplace mechanism,
see the supplementary material for details.

2.3 Estimation

Let Gn be a simple undirected graph including n nodes.
Let aij be the weight of edge (i, j), 1 ≤ i 	= j ≤ n, taking
values from the set {0, 1, . . . , q − 1}. Let A = (aij) be the
adjacency matrix of Gn. Note that Gn has no self-loops, aii =
0. Define di =

∑
j �=i aij and d = (d1, · · · , dn)T as the degree

sequence of Gn. The density or probability mass function
on Gn with respect to some canonical measure ν has the
exponential-family random graph models with the degree
sequence as sufficient statistic, i.e.,

p(Gn;α) = exp(αTd− Z(α)),

where Z(α) is the normalizing constant, α = (α1, · · · , αn)
T

is a vector parameter.
We assume that the edge weights {aij} are independently

multinomial random variables with the probability mass
function:

P (aij = a) =
ea(αi+αj)∑q−1
k=0 e

k(αi+αj)
, a = 0, 1, . . . , q − 1.(1)

where q ≥ 2 is a fixed number of the class. Thus the likeli-
hood of α is

L(α) ∝
∏
j �=i

q−1∏
a=0

[P (aij = a)]
1(aij=a)

,

which gives the log-likelihood of α,

logL(α) ∝
∑
j �=i

q−1∑
a=0

[
1(aij = a) ·

{
a(αi + αj)− log

(
q−1∑
k=0

ek(αi+αj)

)}]
.

So the log-partition function in (1) is given by Z(α) =∑
j �=i log

∑q−1
k=0 e

(αi+αj)k. This model is a direct generaliza-
tion of the β-model, which only considers the dichotomous
edges.

Moreover, the first order condition for the log-likelihood
function w.r.t. αi are

∂ logL(α)

∂αi
=

n∑
j �=i

aij −
∑

j=1;j �=i

q−1∑
a=0

aea(αi+αj)

q−1∑
k=0

ek(αi+αj)

, i=1, . . . , n.

Let ei be a noise independently drawn from discrete Laplace
distribution with parameter λn. We output d̄i := di + ei
using the discrete Laplace mechanism. However, the degree
di =

∑n
j �=i aij of vertex i is not attainable, since the observed

degree contains unknown noise in private date set. We resort
to the moment equations which are given by the following
system of functions:

Fi(α) = d̄i − E(d̄i) = d̄i − E(di), i = 1, . . . , n,

F (α) = (F1(α), . . . , Fn(α))T .

Under this case, since adding or removing an edge can
change the degree of at most two nodes, by 1 each, the
global sensitivity for the degree sequence d is 2. Therefore,
we have the privacy parameter

εn := −�G (f) log λn = −2 log λn.

So, λn = exp(− εn
2 ).

We use α̂ to denote the Z-estimator of α satisfying
F (α̂) = 0. Since the noises ei’s (i = 1, 2, · · · , n) are indepen-
dently drawn from symmetric discrete Laplace distribution
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with parameter λn, E(ei) = 0. Note that di is a sum of edge
weights aij ’s (j = 1, . . . n, j 	= i). So we have

E(d̄i) = E(di + ei) = E(di) =
n∑

j=1;j �=i

E(aij)

=

n∑
j=1;j �=i

q−1∑
k=0

kP (aij = k) =

n∑
j=1;j �=i

q−1∑
k=0

kek(αi+αj)

q−1∑
k=0

ek(αi+αj)

.

Therefore the moment-based estimating equations with
noisy degree sequences are

(2) d̄i =

n∑
j=1;j �=i

q−1∑
a=0

aea(α̂i+α̂j)∑q−1
k=0 e

k(α̂i+α̂j)
, i = 1, . . . , n.

2.4 Consistency and asymptotical normality

In this section, we obtain that the Z-estimator of the
parameter involving noisy degree sequence is asymptotically
consistent and normally distributed.

Given m,M > 0, we say an n × n matrix Vn = (vij)
belongs to the matrix class Ln(m,M) if Vn is a symmetric
nonnegative matrix satisfying

vii =

n∑
j=1,j �=i

vij ; M ≥ vij = vji ≥ m > 0, i 	= j.

Generally, the inverse of Vn, V
−1
n , does not have a closed

form. Yan and Xu (2013) proposed a simple matrix S̄ =

(s̄ij) to approximate V −1
n , where s̄ij =

δij

vii
−

1

v..
, δij is

the Kronecker delta function, and v.. =
∑n

i,j(1 − δij)vij =∑n
i=1 vii.
Similar to Yan et al. (2016b), let the parameter vector

α = (α1, · · · , αn)
T belong to the symmetric parameter

space

D = {α ∈ Rn : −Qn ≤ αi + αj ≤ Qn, 1 ≤ i < j ≤ n},

where {Qn} is the sequence of upper bound of the parame-
ters. Let F ′(α) be the Jacobian matrix of F (α) at α, then
for i, j = 1, . . . n,

∂Fi

∂αi
=

n∑
j=1;j �=i

∑
0≤k<l≤q−1(k − l)2e(k+l)(αi+αj)

(
∑q−1

a=0 e
a(αi+αj))2

,

∂Fi

∂αj
=

∑
0≤k<l≤q−1(k − l)2e(k+l)(αi+αj)

(
∑q−1

a=0 e
a(αi+αj))2

, j=1, . . . n; j 	= i.

Here we need assume Vn := F ′(α) ∈ Ln(m,M), i.e., vii =
∂Fi

∂αi
and vij =

∂Fi

∂αj
, where

(3) m = (2(1 + e
Qn

))−1 and M =
q2

2
.

First, we give the convergence rate of the �∞ error which
directly shows the consistency of the parameters under some
mild conditions.

Theorem 2.1. Consider the discrete Laplace mechanism
with λn = exp(−εn/2) and assume that α ∈ D and eQn =

o((n/ log n)
1
12 ), where D = {α ∈ Rn : −Qn ≤ αi + αj ≤

Qn, for 1 ≤ i < j ≤ n}. If εn ≥ c
√
logn (denoted as εn =

Ω(
√
logn)), where c ≥ 4 is a constant, then as n goes to

infinity, α̂ exists and satisfies

(4) ‖α̂−α‖∞ = Op(e
3Qn

√
log n

n
) = op(1).

Remark 2.1. In Theorem 2.1, we use Newton’s method to
obtain the existence and consistency of α̂. This indicates
that the Z-estimator of the parameter α involving a noisy
sequence is accurate under the non-denoised process. If Qn

is bounded and thus α is a sparse vector, this convergence
matches the minimax optimal upper bound ‖β̂ − β∗‖∞ =

Op(
√

log p
n ) for the Lasso estimator in the linear model with

p = n − 1-dimensional true parameter vector β∗ and the
sample size n, see Lounici (2008).

Second, we get the asymptotic normality of the estimator
in the restricted parameter space under the slower rate con-
dition for eQn compared with the rate for eQn in Theorem
2.1, as follow.

Theorem 2.2. Consider the discrete Laplace mechanism
with λn = exp(−εn/2) and assume that the conditions
in Theorem 2.1 hold. If we assign a smaller eQn =
o
(
n1/18/(logn)1/9

)
, then as n goes to infinity, for any fixed

r ≥ 1, the vector

(v
1/2
11 (α̂1 − α1), · · · , v1/2rr (α̂r − αr))

d→ Nr(0, Ir)

where Ir is a r × r identity matrix.

Remark 2.2. By Theorem 2.2, for any fixed i, the con-

vergence rate of α̂i is 1/v
1/2
ii , when εn = Ω(

√
logn). Since

(n− 1)(2(1 + e
Qn

))−1 ≤ vii ≤ (n− 1)q2/2, the convergence
rate is between O(n−1/2eQn/2) and O(n−1/2), which is the
same as the non-privacy estimator [Yan et al. (2016b)].

The proofs of Theorems 2.1 and 2.2 are postponed in
the Appendix section. After deriving the theoretical results,
numerical studies are carried out in the next section to verify
the asymptotic properties of the Z-estimate. Theorem 2.2
can be also used to construct a confidence interval for the
parameters. For instance, an approximate 1 − α confidence
interval for αi − αj is α̂i − α̂j ± Z1−α/2(1/v̂ii + 1/v̂jj)

1/2,
where Z1−α/2 is the 1 − α-quantile of the standard normal
distribution, v̂ii and v̂jj are the Z-estimates of vii and vjj
by replacing all αi with their Z-estimates.
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3. NUMERICAL STUDIES

3.1 Simulations

We first consider simulations under a discrete weight
q = 3. In this case, we evaluate asymptotic properties by
simulating finite sample data in finite networks. We con-
sider the changes of n, ε and L. Based on Yan and Leng
(2015) and Yan et al. (2016a), the setting of the true pa-
rameter vector α∗ takes a linear form. Specifically, we set
α∗
i = (n − i + 1)L/n, for i = 1, · · · , n. We discuss three

distinct values for L, L = 0, log(logn), (log n)1/2, respec-
tively. We simulate three distinct values for ε: one is fixed
(ε = 2) and the other two values tend to zero with n, i.e.,
ε = log(n)/n1/4, log(n)/n1/2. Here we discuss three values
for n, n = 100, 200 and 500. Each simulation is repeated
10,000 times.

By Theorem 2.2, ξ̂ij = [α̂i − α̂j − (α∗
i − α∗

j )]/(1/v̂ii +

1/v̂jj)
1/2 converges to the standard normal distribution,

where v̂ii is the estimator of vii by replacing α∗
i with α̂i.

Hence, we apply the quantile-quantile (QQ) plot to demon-

strate the asymptotic normality of ξ̂ij . Three special pairs
(1, 2), (n/2, n/2 + 1) and (n − 1, n) for (i, j) are presented
in Figure 1. Further, we list the coverage probability of the
95% confidence interval, the length of the confidence inter-
val, and the frequency that the estimate does not exist.

For ε = 2, log(n)/n1/4, the QQ-plots under n = 100, 200
and 500 are similar. Thus, we here only show the QQ-plots
for ξ̂ij under the case of ε = 2 and n = 100 in Figure 1 to
save space. In Figure 1, the horizontal and vertical axes are
the theoretical and empirical quantiles, respectively, and the
red lines correspond to the reference lines y = x. From Fig-
ure 1, we see that for fixed pair (i, j) = (1, 2), the empirical
quantiles coincide well with the ones of the standard normal-
ity for noisy estimates (i.e., ξ̂ij) expect for L = (logn)1/2.
When L = (log n)1/2, notable deviations exist for pair (1, 2)
in Figure 1. For other pairs (n/2, n/2 + 1) and (n − 1, n),
the approximation of asymptotic normality is good when
L = 0, log(logn), (log n)1/2. While ε = log(n)/n1/2, the

approximation of asymptotic normality respecting to ξ̂ij is
bad, see Figure 1 of the supplementary material.

The coverage probability of the 95% confidence interval
for α∗

i − α∗
j , the length of the confidence interval, and the

frequency that the estimate does not exist, are reported in
Table 1. The length of the confidence interval is related
to L and n. That is, the length increases as L increases,
or the length decreases as n increases. Under the case of
ε = 2, log(n)/n1/4, the coverage frequencies of pair (1, 2)
are higher than the nominal level 95% expect for L = 0; for
other pairs (n/2, n/2+1) and (n−1, n), the coverage frequen-
cies are all close to the nominal level 95% for all L, where
the ones are the closest at n = 500. For ε = log(n)/n1/2,
the coverage frequencies are lower than the nominal level
95% for all L. This indicates that as ε reduces to a specific
value (e.g., log(n)/n1/2), notable deviations exist between

Figure 1. The QQ plots (n = 100, ε = 2).

the coverage frequencies and the nominal level 95%, espe-
cially the probabilities of the non-existent estimates are very
high when L = (log n)1/2.

Second, we compare the simulation results between with
the denoising process [Karwa et al. (2016)] and without the
denoising process in the case of q = 2. Here the settings of
α̂∗, ᾱ∗, L and ε are the same as those in the first simula-
tion. Here, we only consider n = 100, 200 without 500. Each
simulation is repeated 10, 000 times.

According to the results in Karwa et al. (2016), ξ̄ij =
[ᾱi − ᾱj − (α∗

i − α∗
j )]/(1/v̄ii + 1/v̄jj)

1/2 converges to the
standard normal distributions, where ᾱi is the estimate of
αi with the denoising process and v̄ii is the estimate of vii by
replacing αi with ᾱi. We apply the quantile-quantile (QQ)
plot and record the coverage probability of the 95% con-
fidence interval, the length of confidence interval, and the
frequency that the estimate does not exist, to compare the
performance of ξ̂ij and ξ̄ij . The QQ-plots are shown in Fig-
ure 2 and numeric comparison results are given in Table 2.
In Figure 2, the QQ-plots for both ξ̂ij denoted by the red
color and ξ̄ij denoted by the blue color are very close and
coincide well with the ones of the standard normality when
ε = 2, log(n)/n1/4 and L ≤ log(logn). (We only show the
QQ-plots of ε = 2 and n = 100 in Figure 2 to save space
and the other cases are similar.) This indicates that the pa-
rameter estimates are nearly the same with and without the
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Table 1. Estimated coverage probabilities (×100%) of α∗
i − α∗

j for pair (i, j) as well as the length of confidence intervals (in
square brackets), and the probabilities (×100%) that the estimate does not exist (in parentheses)

n (i, j) L = 0 L = log(log n) L = (logn)1/2

ε = 2

100 (1, 2) 94.63[0.35](0) 96.75[0.81](0.41) 99.75[1.13](31.79)
(50, 51) 94.80[0.35](0) 94.79[0.55](0.41) 95.07[0.73](31.79)

(99, 100) 94.90[0.35](0) 94.04[0.41](0.41) 94.55[0.46](31.79)

200 (1, 2) 94.40[0.25](0) 97.68[0.62](0) 99.86[0.85](6.42)
(50, 51) 94.51[0.25](0) 94.54[0.41](0) 95.74[0.54](6.42)

(99, 100) 94.44[0.25](0) 94.45[0.30](0) 94.92[0.33](6.42)

500 (1, 2) 95.17[0.16](0) 98.62[0.42](0) 99.98[0.57](0.03)
(50, 51) 94.79[0.16](0) 94.67[0.27](0) 96.81[0.36](0.03)

(99, 100) 95.05[0.16](0) 94.91[0.19](0) 95.20[0.21](0.03)

ε = log(n)/n1/4

100 (1, 2) 94.41[0.35](0) 95.80[0.81](1.42) 99.48[1.12](51.83)
(50, 51) 94.40[0.35](0) 94.07[0.56](1.42) 93.96[0.73](51.83)

(99, 100) 94.39[0.35](0) 93.66[0.41](1.42) 94.12[0.46](51.83)

200 (1, 2) 94.40[0.25](0) 96.90[0.62](0.03) 99.70[0.84](17.92)
(50, 51) 94.34[0.25](0) 94.10[0.41](0.03) 95.13[0.54](17.92)

(99, 100) 94.24[0.25](0) 94.09[0.30](0.03) 94.42[0.33](17.92)

500 (1,2) 95.03[0.16](0) 98.30[0.42](0) 99.94[0.57](0.73)
(50, 51) 94.60[0.16](0) 94.53[0.27](0) 96.40[0.36](0.73)

(99, 100) 94.92[0.16](0) 94.82[0.19](0) 95.00[0.21](0.73)

ε = log(n)/n1/2

100 (1, 2) 88.65[0.35](0) 83.92[0.82](61.94) 87.50[1.03](99.60)
(50, 51) 88.84[0.35](0) 81.56[0.57](61.94) 77.50[0.76](99.60)

(99, 100) 88.00[0.35](0) 84.73[0.42](61.94) 67.50[0.47](99.60)

200 (1, 2) 90.03[0.25](0) 81.25[0.63](40.95) 86.21[0.78](99.71)
(50, 51) 89.57[0.25](0) 81.69[0.42](40.95) 72.41[0.53](99.71)

(99, 100) 89.27[0.25](0) 87.33[0.30](40.95) 93.10[0.33](99.71)

500 (1, 2) 91.52[0.16](0) 83.64[0.43](12.78) 93.55[0.56](99.38)
(50, 51) 91.38[0.16](0) 84.41[0.28](12.78) 75.81[0.37](99.38)

(99, 100) 91.59[0.16](0) 89.46[0.19](12.78) 87.10[0.21](99.38)

denoising process. However, when ε = log(n)/n1/2, the ap-

proximation of asymptotic normality of both ξ̂ij and ξ̄ij is
not good, see Figure 2 of the supplementary material.

In Table 2, Type “A” and “B” represent the estimates
without and with the denoised process, respectively. From
this table, we can see that the difference between both esti-
mates is very small. Similar to the analysis of Table 1, the
length of confidence interval increases as L increases and de-
creases as n increases. Under the case of ε = 2, log(n)/n1/4,
the coverage frequencies of all pairs are all close to the nom-
inal level 95% when L = 0, log(log n); for L = (logn)1/2,
both the non-denoised and denoised estimates often failed
to exist for n = 100, while n = 200 the non-existent fre-
quencies of estimates are lower. For ε = log(n)/n1/2, the
coverage frequencies for both non-denoised and denoised es-
timates exist a great gap compared with the nominal level

95% for all L, and the probabilities of the non-existent esti-
mates also increase as L increases.

3.2 Real data example

We use the affiliation network dataset in
Sundaresan et al. (2007) as a data example. As dis-
cussed in Haratym (2017), it remains an interesting issue
that the animals should have some sort of privacy rights.
In some ways, society has already begun moving in that
direction. This network dataset is based on a study of a
community of 28 Grevy’s zebras. Sundaresan et al. (2007)
showed that Grevy’s zebra individuals are more selective
in their choices of associates, tending to form bonds with
others in the same reproductive state. In the dataset,
Grevy’s zebras are labelled from 1 to 28, and 111 edges
with finite weight q = 3. The edge weight of 0 denotes
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Figure 2. The QQ plots of the non-denoised and denoised
estimates (n = 100, ε = 2).

that a pair of zebras never appeared during the study, the
edge weight of 1 denotes that a pair of zebras appeared
together at least once, while the edge weight of 2 indicates a
statistically significant tendency of pairs to appear together.
On the other hand, the estimate α̂ does not exist when the
degree of a vertex is zero. Hence we removed the vertex 8
whose degree is zero before analysis. The network with the
left 27 vertices is shown in Figure 3. We chose the privacy
parameter ε as 1. Figure 4 reports the scatter plots of noisy
degree sequence d̄ vs the estimates α̂ for the 27 Grevy’s
zebra dataset. From Figure 4, the value of α̂ increases as
the number of d̄ increases. Furthermore, the estimates can
reveal a trend in these zebras’ choices of associates. The
larger the estimates α̂, the more zebras have associates or
the higher the frequency of pairs to appear together. As
shown in Figure 4, the number of zebras’ associates and the
frequency of pairs to appear together are more and higher
under the case that α̂ is around zero. Table 3 reports the
estimates, the 95% confidence interval, the corresponding
standard errors and the noisy degree sequence. In Table 3,
the larger estimates correspond to the larger noisy degrees.
The largest degree is 23 for vertex 4, which also has the
largest estimate 0.447. On the other hand, the vertex for 22
with the smallest estimate −2.260, has degree 2 in Table 3.

Figure 3. the Sundaresan, Fischoff, Dushoff, Rubenstein
Zebra Affiliation network becomes a community network of 27
Greavey’s zebras with 111 edges, after removing the isolated
vertex 8. There are 3 edge weights representing the trend of a
pair of zebras appeared together during the study: 0 means
none; 1 means at least once; 2 means very significantly.

Figure 4. The scatter plots (d̄ vs α̂). The d̄ denotes the noisy
degree sequence and α̂ denotes the corresponding estimate.

4. SUMMARY AND FUTURE STUDY

In this paper, we have established the uniform consis-
tency and asymptotic normality of the Z-estimator in the
generalized β-model involving noisy degree sequence d̄ =
d+e, where d is the sufficient statistic and e are some noises
from discrete Laplace distribution. By using the Newton-
Kantorovich theorem, we try to ignore adding noisy process,
and obtain the existence and consistency of the Z-estimator
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Table 2. Estimated coverage probabilities (×100%) of α∗
i − α∗

j for pair (i, j) as well as the length of confidence intervals (in
square brackets), and the probabilities (×100%) that the estimate does not exist (in parentheses). Type “A” denotes the

estimate with the non-denoised process and “B” denotes the estimate with the denoised process

n (i, j) Type L = 0 L = log(log(n)) L = (log n)1/2

ε = 2

100 (1,2) A 93.62[0.57](0) 93.38[1.01](1.25) 97.38[1.46](43.88)
B 93.79[0.57](0) 93.76[1.01](1.30) 97.35[1.47](44.17)

(50,51) A 93.44[0.57](0) 93.57[0.76](1.25) 93.16[0.94](43.88)
B 93.62[0.57](0) 93.48[0.76](1.30) 93.19[0.94](44.17)

(99,100) A 93.42[0.57](0) 93.63[0.63](1.25) 93.16[0.68](43.88)
B 93.82[0.57](0) 92.90[0.63](1.30) 93.43[0.68](44.17)

200 (1,2) A 94.55[0.40](0) 93.80[0.75](0.03) 96.60[1.11](9.94)
B 94.85[0.40](0) 94.04[0.75](0.03) 96.75[1.11](10.55)

(100,101) A 95.09[0.40](0) 94.28[0.55](0.03) 93.93[0.68](9.94)
B 94.77[0.40](0) 94.58[0.55](0.03) 93.87[0.68](10.55)

(199,200) A 94.89[0.40](0) 94.20[0.45](0.03) 93.75[0.48](9.94)
B 94.28[0.40](0) 94.23[0.45](0.03) 93.56[0.48](10.55)

ε = log(n)/n1/4

100 (1,2) A 92.62[0.58](0) 91.31[1.02](4.46) 96.04[1.46](65.58)
B 92.74[0.58](0) 91.74[1.02](5.14) 95.99[1.45](66.34)

(50,51) A 92.56[0.58](0) 91.88[0.76](4.46) 91.11[0.95](65.58)
B 92.67[0.58](0) 92.00[0.76](5.14) 91.21[0.95](66.34)

(99,100) A 92.70[0.58](0) 92.58[0.63](4.46) 91.81[0.68](65.58)
B 92.78[0.58](0) 91.79[0.64](5.14) 92.13[0.68](66.34)

200 (1,2) A 94.14[0.40](0) 92.03[0.76](0.19) 95.34[1.12](26.08)
B 94.31[0.40](0) 92.69[0.76](0.21) 95.00[1.12](26.44)

(100,101) A 94.72[0.40](0) 93.40[0.55](0.19) 92.48[0.68](26.08)
B 94.21[0.40](0) 93.46[0.55](0.21) 92.62[0.68](26.44)

(199,200) A 94.46[0.40](0) 93.51[0.45](0.19) 93.06[0.48](26.08)
B 93.92[0.40](0) 93.46[0.45](0.21) 92.71[0.48](26.44)

ε = log(n)/n1/2

100 (1, 2) A 79.34[0.58](0.24) 72.51[1.05](88.03) 100.00[1.44](99.97)
B 78.94[0.58](0.24) 75.06[1.05](87.29) 66.67[1.27](99.97)

(50, 51) A 78.51[0.58](0.24) 73.68[0.81](88.03) 100.00[0.87](99.97)
B 79.20[0.58](0.24) 72.46[0.80](87.29) 100.00[0.82](99.97)

(99, 100) A 78.81[0.58](0.24) 75.86[0.65](88.03) 100.00[0.70](99.97)
B 78.73[0.58](0.24) 75.30[0.66](87.29) 100.00[0.67](99.97)

200 (1, 2) A 82.64[0.41](0) 69.26[0.80](70.75) 100.00[1.23](99.96)
B 82.51[0.41](0) 70.91[0.79](71.16) 100.00[0.83](99.96)

(50, 51) A 83.03[0.41](0) 74.50[0.57](70.75) 50.00[0.94](99.96)
B 82.74[0.41](0) 75.24[0.57](71.16) 50.00[0.64](99.96)

(99, 100) A 82.66[0.41](0) 77.88[0.45](70.75) 100.00[0.50](99.96)
B 82.54[0.41](0) 79.96[0.45](71.16) 50.00[0.47](99.96)
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Table 3. Sundaresan, Fischoff, Dushoff, Rubenstein Zebra Affiliation network dataset: the estimate α̂, 95% confidence
intervals (in square brackets), and their standard errors (in parentheses)

Vertex α̂i Degree Vertex α̂i Degree

ε = 1

1 0.065[−0.477, 0.606](0.276) 18 16 −0.186[−0.751, 0.379](0.288) 15
2 0.298[−0.229, 0.825](0.269) 21 17 −1.204[−1.994,−0.414](0.403) 6
3 −0.276[−0.851, 0.300](0.294) 14 18 −1.383[−2.242,−0.524](0.438) 5
4 0.447[−0.075, 0.968](0.266) 23 19 −1.599[−2.554,−0.643](0.488) 4
5 −0.912[−1.611,−0.213](0.356) 8 20 −1.204[−1.994,−0.414](0.403) 6
6 −0.186[−0.751, 0.379](0.288) 15 21 −1.383[−2.242,−0.524](0.438) 5
7 −0.276[−0.851, 0.300](0.294) 14 22 −2.260[−3.611,−0.910](0.689) 2
9 0.065[−0.477, 0.606](0.276) 18 23 −0.912[−1.611,−0.213](0.356) 8
10 0.144[−0.391, 0.680](0.273) 19 24 −1.874[−2.975,−0.773](0.562) 3
11 −0.100[−0.656, 0.456](0.284) 16 25 −0.464[−1.067, 0.138](0.307) 12
12 −0.016[−0.565, 0.532](0.280) 17 26 −1.204[−1.994,−0.414](0.403) 6
13 −0.100[−0.656, 0.456](0.284) 16 27 −0.912[−1.611,−0.213](0.356) 8
14 −1.383[−2.242,−0.524](0.438) 5 28 −0.566[−1.186, 0.054](0.316) 11
15 0.222[−0.309, 0.753](0.271) 20

satisfying the equation (2). Furthermore, we give some sim-
ulation results to illustrate the authenticity of our obtained
results under a non-denoised process. Although the simu-
lation results in Section 3 show that the approximation of
asymptotic normality behaves well under certain conditions,
our theoretical results may be improved but not only in the
generalized β-model.

It should be noted that the discrete Laplace ran-
dom variable is the difference of two i.i.d. geomet-
ric distributed random variables, see Proposition 3.1 in
Inusah and Kozubowski (2006). The geometric distribution
as the class of infinitely divisible distribution is a special
case of discrete compound Poisson distribution. The differ-
ence of geometric noise-addition mechanism can be flexibly
extended to the difference between two i.i.d. (or indepen-
dent) discrete compound Poisson random variables, see Def-
inition 4.2 of Zhang et al. (2014). In fact, the difference of
two independent discrete compound Poisson random vari-
ables follows the infinitely divisible distributions with inte-
ger support, see Chapter IV of Steutel and van Harn (2003).
The frequently employed discrete Laplace noise {ei} in dif-
ferential privacy, may be further optimally selected from
other flexible discrete distributions to achieve effective pri-
vacy protection in the future.

APPENDIX: PROOFS

A.1 Proof of Theorem 2.1

The proof of Theorem 2.1 is based on two steps.

Step 1: we need two lemmas below.

Lemma A.1. Consider the discrete Laplace mechanism
with λn = exp(−εn/2), if εn = Ω(

√
logn) and eQn =

o((n/ log n)
1
12 ), then as n goes to infinity, for any fixed r ≥ 1,

(
d1 − E(d1)√

v11
, · · · , dr − E(dr)√

vrr
)

d→ Nr(0, Ir).

Lemma A.1 indicates that the components of (d̄1 −
E(d1), · · · , d̄r −E(dr)) are asymptotically independent and
normally distributed with variances v11, · · · , vrr, respec-
tively.

Lemma A.2 (Karwa et al. (2016), Proposition E). Let
e1, · · · , en be i.i.d random variables drawn from discrete
Laplace distribution with probability mass function defined
by

P (ei = e) =
1− λ

1 + λ
λ|e|, e ∈ Z, λ ∈ (0, 1).

Then we have E(ei) = 0 and Var(ei) =
2λ

(1− λ)2
. Moreover,

P (|ei| > c) =
2λ[c]+1

1 + λ
, E|ei| =

2λ

1− λ2
;

P (max
i

|ei| > c) = 1−
(
1−

2λ[c]+1

1 + λ

)n

.

Proof of Lemma A.1. By d̄i = di + ei, we can analysis
the asymptotic normality of Lemma A.1 in two parts, i.e.,

(di − E(di))/v
1/2
ii and (ei − E(ei))/v

1/2
ii . On the one hand,

Yan et al. (2015) have verified the result of the first part by
Liapounov’s central limit theorem [Chung (2001)]. On the
other hand, we can easily obtain the stochastic order of the
second part by Chebyshev inequality.

Let d̄i = di + ei, i = 1, · · · , r, then

(5)
d̄i − E(di)√

vii
=

di − E(di)√
vii

+
ei√
vii

, i = 1, · · · , r.
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Now, we only discuss the property of
ei√
vii

. In fact, by

Chebyshev inequality and Lemma A.2, for any constant
a > 0, as n goes to infinity, we have

P (
∣∣ ei√

vii

∣∣ ≥ a) = P (
∣∣ei∣∣ ≥ a

√
vii) ≤

Var(ei)

a2vii

[by (3)] ≤
2(1 + eQn)

a2(n− 1)
×

2e−
εn
2

(1− e−
εn
2 )2

≤ O

(
eQn

n

)
→ 0.

by noticing that e−
εn
2 < 1 for all n.

Step 2: we apply the Newton-Kantorovich theorem
[Gragg and Tapia (1974)] to obtain the existence and con-
sistency of the estimator satisfying the equation (2).

For a subset C ⊂ Rn, let C0 and C denote the interior
and closure of C in Rn, respectively. Let Ω(x, r) denote the
open ball {y : ‖y − x‖ < r}, and Ω(x, r) be its closure.

Proposition A.1 (Gragg and Tapia (1974)). Let F (x) =
(F1(x), · · · , Fn(x))

T be a function vector on x ∈ Rn. As-
sume that the Jacobian matrix F ′(x) is Lipschitz continu-
ous on an open convex set D with the Lipschitz constant κ.
Given x0 ∈ D, assume that [F ′(x0)]

−1 exists,

‖[F ′(x0)]
−1‖∞ ≤ ℵ,

‖[F ′(x0)]
−1F ′(x0)]‖∞ ≤ δ, h = 2ℵκδ ≤ 1,

Ω(x0, t
∗) ⊂ D0, t∗ :=

2

h
(1−

√
1− h)δ =

2

1 +
√
1− h

δ ≤ 2δ,

where ℵ and δ are positive constants that may depend on
x0 and the dimension n of x0. Then the Newton iteration
xk+1 = xk − [F ′(xk)]

−1F (xk) exists and xk ∈ Ω(x0, t
∗) ⊂

D0 for all k ≥ 0; x̂ = limxk exists, x̂ ∈ Ω(x0, t∗) ⊂ D and
F (x̂) = 0.

Besides, we also need the following four lemmas to prove
Theorem 2.1. Specifically, Lemmas A.3–A.5 are served for
Newton-Kantorovich theorem, and Lemma A.6 is based on
Hoeffding’s inequality and Lemma A.2.

Lemma A.3 (Yan and Xu (2013)). If Vn ∈ Ln(m,M), and
n is large enough, then

‖V −1
n − S̄n‖ ≤ cM2

m3(n− 1)2
,

where (S̄n)ij :=
δij

vii
−

1

v..
, v.. :=

∑n
i=1 vii, c is a constant that

not depends on M,m and n.

To establish the form ‖[F ′(α)]−1F (α)‖∞ ≤ δ in Theorem
2.1, we first use a simple matrix Sn = (sij) to approximate
V −1
n . The upper bound of the approximation error is given

below.

Lemma A.4. Assume that α ∈ D, where D = {α ∈ Rn :
−Qn ≤ αi + αj ≤ Qn, for 1 ≤ i < j ≤ n}. If n is large
enough, then

‖V −1
n − Sn‖ ≤ c1(1 + eQn)3

(n− 1)2
,

where Vn := F ′(α), (Sn)ij :=
δij

vii
, c1 is a constant that not

depends on eQn and n.

Proof. By (3), v.. =
∑n

i=1 vii ≥ n(n− 1)m and Lemma A.3,
we can easily obtain

‖V −1
n − Sn‖ ≤ ‖V −1

n − S̄n‖+ ‖S̄n − Sn‖

≤ cM2

m3(n− 1)2
+

1

n(n− 1)m

≤ (c+
m2

M2
)

M2

m3(n− 1)2

≤ (c+ 1)
M2

m3(n− 1)2
=

c1(1 + eQn)3

(n− 1)2
,

where c1 is a constant that not depends on eQn and n.

To confirm the value of ℵ in Newton-Kantorovich theo-
rem, we use triangle inequality and Lemma A.4 to obtain
the upper bound of V −1

n , as follow.

Lemma A.5. Assume that α ∈ D, where D = {α ∈ Rn :
−Qn ≤ αi + αj ≤ Qn, for 1 ≤ i < j ≤ n}. If n is large
enough, then

‖V −1
n ‖∞ ≤ c2(1 + eQn)3

n− 1
,

where Vn := F ′(α), (Sn)ij :=
δij

vii
, c2 is a constant that not

depends on eQn and n.

Proof. By (3) and Lemma A.4, we obtain

‖V −1
n ‖∞ ≤ ‖V −1

n − Sn‖∞ + ‖Sn‖∞

≤ c1n(1 + eQn)3

(n− 1)2
+

2(1 + eQn)

n− 1

≤ c2(1 + eQn)3

n− 1
,

where c2 is a constant that not depends on eQn and n.

The following lemma guarantees that the upper bound of
‖d̄− E(d)‖∞ is the magnitude of (n log n)1/2.

Lemma A.6. Let κn = 2(q−1)
√

(n− 1) log(n− 1). If εn =
Ω(

√
logn), then with probability approaching one as n →

∞,

(6) max
1≤i≤n

|d̄i − E(di)| ≤ 2(q − 1)
√
(n− 1) log(n− 1).
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Proof. Let κn = 2(q − 1)
√

(n− 1) log(n− 1), then

P (max
i

| d̄i − E(di) |≥ κn)

≤ P (max
i

| di − E(di) |≥
κn

2
) + P (max

i
| ei |≥

κn

2
).

(7)

Here, the inequality (7) is divided into two parts and is given
respective discussions. For the first part, we have

P (max
i

| di − E(di) |≥
κn

2
) ≤

∑
i

P (| di − E(di) |≥
κn

2
).

By Hoeffding’s inequality, it implies

P (| di − E(di) |≥
κn

2
)

≤ 2 exp

(
−

2
(
κn

2

)2
(n− 1)(q − 1)2

)

= 2 exp

(
−2(q − 1)2(n− 1) log(n− 1)

(n− 1)(q − 1)2

)

=
2

(n− 1)2
.

(8)

For the second part, by definition of maximum and λn =
exp(−εn/2), we obtain

P (max
i

| ei |≥
κn

2
) = 1−

n∏
i=1

P (| ei |≤
κn

2
)

(By Lemma A.2) = 1− (1− 2λn
[κn

2 ]+1

1 + λn
)n

= 1− (1− 2e−εn([
κn
2 ]+1)/2

1 + e−
εn
2

)n.

For x ∈ (0, 1), f(x) = 1−(1−x)n is an increasing function
on x. Then we get

1− (1− 2e−εn([
κn
2 ]+1)/2

1 + e−
εn
2

)n ≤ 1− (1− 2e−εn([
κn
2 ]+1)/2)n.

For x ∈ (0, 1), (1− x)n ≥ 1− nx. Then we also get

1− (1− 2e−εn([
κn
2 ]+1)/2

1 + e−
εn
2

)n ≤ 1− (1− 2ne−εn([
κn
2 ]+1)/2)

= 2ne−εn([
κn
2 ]+1)/2

≤ 2ne−εn[
κn
2 ]/2.

By εn = Ω(
√
log n), we obtain εn ≥ c

√
logn ≥ c

√
logn
n ,

and thus εn[
κn

2 ] ≥ 4 logn. This implies

(9) P (max
i

|ei| ≥
κn

2
) ≤

2n

n2
.

Therefore, by (8) and (9), with probability approaching one
as n → ∞, we have

max
i

|d̄i − E(di)| ≤ 2(q − 1)
√
(n− 1) log(n− 1).

Proof of Theorem 2.1. In the Newton’s iterative step,
putting the initial value α0 := α. Let Vn = F ′(α) ∈
Ln(m,M) and Wn = V −1

n − Sn. Let F (α) = d̄ − E(d),
by Lemma A.4 and (6), we get

‖[F ′(α)]−1F (α)‖∞ ≤ n‖Wn‖‖F (α)‖∞ +max
i

|Fi(α)|
vii

≤ (n‖Wn‖+
1

vii
)‖F (α)‖∞

≤
(
c1n(1 + eQn)3

(n− 1)2
+

2(1 + eQn)

n− 1

)
‖F (α)‖∞

≤
(
c1n(1 + eQn)3

(n− 1)2
+

2(1 + eQn)

n− 1

)
× 2(q − 1)

√
(n− 1) log(n− 1)

≤ c3(1 + eQn)3
√

log(n− 1)

n− 1
,

where c3 is a constant.
Combining Lemma A.5, we can set δ = c3(1 +

eQn)3
√

log(n−1)
n−1 and ℵ = c2(1+eQn )3

n−1 in Newton-Kantorovich

theorem.
Next, we indicate that the Jacobian matrix F ′(α) is Lips-

chitz continuous with κ = 4(q−1)3(n−1). Here, our method
is similar to Yan et al. (2016b).

Let

gij(α) = (
∂2Fi

∂α1∂αj
, · · · , ∂2Fi

∂αn∂αj
)T .

By some computations, we have

∂2Fi

∂α2
i

=

n∑
j=1;j �=i

∑
k �=l,a(k − l)2(k + l − 2a)e(k+l+a)(αi+αj)

2(
∑q−1

a=0 e
a(αi+αj))3

,

∂2Fi

∂αjαi
=

∑
k �=l,a(k − l)2(k + l − 2a)e(k+l+a)(αi+αj)

2(
∑q−1

a=0 e
a(αi+αj))3

.

As
∑

k �=l,a e
(k+l+a)(αi+αj) ≤ (

∑q−1
a=0 e

a(αi+αj))3, we have

(10) |
∂2Fi

∂α2
i

| ≤ (q − 1)3(n− 1), | ∂
2Fi

∂αjαi
| ≤ (q − 1)3.

Thus ‖gii(α)‖1 ≤ 2(n− 1)(q − 1)3.
If i 	= j and k 	= i, j,

∂2Fi

∂αk∂αj
= 0.

Then we get ‖gij(α)‖1 ≤ 2(q − 1)3, i 	= j. Therefore, by
the mean-value for vector-valued functions (Lang (1993),
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p. 341), for a vector v,

max
i

⎧⎨
⎩

n∑
j=1

[
∂Fi

∂αj
(x)− ∂Fi

∂αj
(y)

]
vj

⎫⎬
⎭

≤ ‖v‖∞ max
i

n∑
j=1

∣∣∣∣ ∂Fi

∂αj
(x)− ∂Fi

∂αj
(y)

∣∣∣∣
= ‖v‖∞ max

i

n∑
j=1

∣∣∣∣
∫ 1

0

gij(tx+ (1− t)y)(x− y)dt

∣∣∣∣
≤ 4(q − 1)3(n− 1)‖v‖∞‖x− y‖∞.

Thereby, we have

h = 2ℵκδ

=
8c2(1 + eQn)3

n− 1

· (q − 1)3(n− 1)c3(1 + eQn)3
√

log(n− 1)

n− 1
,

= 8c2c3(q − 1)3(1 + eQn)6
√

log(n− 1)

n− 1

= O(e6Qn

√
log n

n
) = o(1).

Thus, all conditions in the Newton-Kantorovich theorem are

satisfied. Since the inequality (6) holds with probability ap-

proaching one, then (4) is fulfilled.

A.2 Proof of Theorem 2.2

The aim of proving Theorem 2.2 is to establish the fol-

lowing equation

(α̂−α)i = [Sn(d̄− E(d))]i + op(n
−1/2).

This will follow directly the from [Wn{d̄ − E(d)}]i =

op(n
−1/2), n → ∞, and by Theorem 2.1. To this end, we

introduce the following lemma.

Lemma A.7. Assume that α ∈ D, where D = {α ∈ Rn :

−Qn ≤ αi + αj ≤ Qn, for 1 ≤ i < j ≤ n}. Let εn =

Ω(
√
log n), eQn = o((n/ log n)

1
12 ), and Un = cov[Wn{d̄ −

E(d)}]. Then

[Wn{d̄− E(d)}]i = op(n
−1/2).

Proof. Let V n = cov{d̄ − E(d)}, Vn = cov{d − E(d)} and

En = cov(e). For 1 ≤ i ≤ n, the random variables di and ei

are mutually independent, then

cov(d̄i − E(di), d̄j − E(dj))

= cov(di + ei − E(di), dj + ej − E(dj))

= cov(di − E(di), dj + ej − E(dj))

+ cov(ei, dj + ej − E(dj))

= cov(di − E(di), dj − E(dj)) + cov(di − E(di), ej)

+ cov(ei, dj − E(dj)) + cov(ei, ej)

= cov(di − E(di), dj − E(dj)) + cov(ei, ej).

Two cases are discussed:

Case 1. If i 	= j, then cov(d̄i−E(di), d̄j −E(dj)) = cov(di−
E(di), dj − E(dj));

Case 2. If i = j, then cov(d̄i−E(di), d̄j −E(dj)) = Var(di−
E(di)) + Var(ei).

Thus the elements of the matrix V n are denoted by v̄ij =
vij , v̄ii = vii+Var(ei), 1 ≤ i 	= j ≤ n. Let Un = cov[Wn{d̄−
E(d)}] with Wn = V −1

n − Sn, then

Un = WnV nW
T
n = Wn(Vn + En)W

T
n

= WnVnW
T
n +WnEnW

T
n .

On the one hand, WnVnW
T
n = (V −1

n −Sn)−Sn(In−VnSn),
where n× n matrix In is an identity matrix.

By (3), we obtain

∣∣{Sn(In − VnSn)}ij
∣∣ = ∣∣ (δij − 1)vij

viivjj

∣∣ ≤ 2q2(1 + eQn)2

(n− 1)2
.

(11)

By Lemma A.4 and (11), we have

‖WnVnW
T
n ‖ ≤ c1(1 + eQn)3

(n− 1)2
+

2q2(1 + eQn)2

(n− 1)2

≤ O

(
e3Qn

n2

)
.

On the other hand,

∥∥(WnEnW
T
n )ij

∥∥ =
∥∥ n=1∑

k=1

wikekwkj

∥∥
≤ max

k
|ek|

n∑
k=1

∣∣wik

∣∣∣∣wkj

∣∣
≤ nmax

k
|ek|‖Wn‖2

≤
2ne−

ε
2

(1− e−
ε
2 )2

× c21(1 + eQn)6

(n− 1)4

≤ O

(
e6Qn

n3

)
.
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Hence, ‖Un‖ ≤ O

(
e3Qn

n2

)
. Furthermore, by Chebyshev in-

equality, for any constant a > 0, we get

P

(
[Wn{d̄− E(d)}]i

n−1/2
≥ a

)

= P
(
[Wn{d̄− E(d)}]i ≥ an−1/2

)

≤
n[cov{Wn(d̄− E(d))}]i

a2
≤ O

(
e3Qn

n

)
.

Then while eQn = o((n/ log n)
1
12 ),

P

(
[Wn{d̄− E(d)}]i

n−1/2
≥ a

)
→ 0,

as n → ∞. Therefore,

[Wn{d̄− E(d)}]i = op(n
−1/2).

Proof of Theorem 2.2. Let r̂ij = α̂i + α̂j − αi − αj . Under
the conditions in Theorem 2.1, we have from the consistency
property

max
i �=j

|r̂ij | = Op(e
3Qn

√
log n

n
).

Let u(t) =
q−1∑
a=0

aeat∑q−1
k=0 e

kt
. For i = 1, · · · , n, by the Taylor’s

expansion, we get

d̄i − E(di) =
∑
j �=i

(u(α̂i + α̂j)− u(αi + αj))

=
∑
j �=i

[u′(αi + αj)((α̂i + α̂j)− (αi + αj))] + hi,

where hi = (1/2)
∑

j �=i u
′′(r̂ij)[((α̂i + α̂j)− (αi +αj))]

2 and
r̂ij = tij(αi + αj) + (1 − tij)(α̂i + α̂j), tij ∈ (0, 1). Writing
the above expressions into a matrix, we have

d̄− E(d) = Vn(α̂−α) + h,

thus

α̂−α = V −1
n (d̄− E(d)) + V −1

n h,

where h = (h1, · · · , hn)
T .

By (10), we know |hi| ≤
1

2
(n− 1)(q − 1)3r̂2ij . Therefore,

|(V −1
n h)i| = |(Snh)i|+ |(Wnh)i|

≤ max
i

|hi|
vii

+ ‖Wn‖
∑
i

|hi| ≤ O

(
e9Qn

logn

n

)
,

If eQn = o

(
n1/18

(logn)1/9

)
, then (V −1

n h)i = o(n−1/2).

By Theorem 2.1 and Lemma A.7, for i = 1, · · · , r, we
have

(α̂−α)i = [Sn(d̄− E(d))]i + op(n
−1/2)

=
d̄i − E(di)

vii
+ op(n

−1/2).

Hence, Theorem 2.2 follows directly from Lemma A.1. Fi-
nally, we conclude the proof by multiplying

√
vii to left and

right of the last display.
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