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Multi-dimensional classification with
semiparametric mixture model

Anqi Yin and Ao Yuan
∗

Compared to non-model based classification methods, the
model based classification has the advantage of classifica-
tion together with regression analysis, and is the interest of
our investigation. For robustness, we propose and study a
semiparametric mixture model, in which each sub-density
is only assumed unimodal. The semiparametric maximum
likelihood estimate is used to estimate the parametric and
nonparametric components. Then the Bayesian classifica-
tion rule is used to classify the subjects according to the
model. Large sample properties of the estimates are inves-
tigated, simulation studies are conducted to evaluate the
finite sample performance of the proposed model, and then
the method is applied to analyze a real data.
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1. INTRODUCTION

Classification is an area of extensive studies, in statis-
tics and many other fields in engineering. Statistical meth-
ods for classification are extensive, they can be paramet-
ric, nonparametric or semiparametric. Parametric models
are appealing because they are easy to implement for in-
ferences, and are efficient when the underlying distribution
is correctly specified. But they may lead to biased results
when the model is misspecified, and result in incorrect clas-
sification results. It is known [38, 50] that, if the model is
incorrectly specified, the estimation can be biased. In clas-
sification the correct model specification is particularly im-
portant, as the commonly used classification rules, such as
the Bayesian classification rule, is based on density ratio.

Also, full nonparametric methods often do not work well
for relatively high dimensional data. When the data dimen-
sion is relatively high, the commonly used nonparametric es-
timation, such as kernel density estimator often behaves not
well, and any fully pre-specified model, such as the multi-
variate normal model, is more or less deviated form the true
one. The multivariate copula models [59, 28] may still be

∗Corresponding author.

unsatisfactory. Although regression parameters can be esti-
mated efficiently with nonparametric model, but the loca-
tion parameter, which is crucial in classification, cannot be
estimated in nonparametric model.

For parametric methods, Celeux and Govaert [15] stud-
ied an EM algorithm for classification; Campbell et al. [13],
McLachlan and Peel [44], Dasgupta and Raftery [21] and
Fraley and Raftery [25] studied model based classification;
Bartlett, Jordan, McAuliffe [1] proposed convexity and risk
bounds of classification; Lin [41] studied loss of classification;
Scott and Nowak [57], Han, Chen, Sun [33] and Rigollet and
Tong [55] studied Neyman-Pearson classification; Tsybakov
[64] and Zhang [73] studied statistical behavior of classifica-
tion methods, Boucheron, Bousquet and Lugosi [10], Fraley
and Raftery [25] and Fung [27] provide a comprehensive re-
view.

Nonparametric methods, on the other hand, are robust
because they do not make distributional assumption, but
they are less efficient than the parametric methods when the
latter are correctly specified or nearly so. Popular nonpara-
metric methods include the k-means clustering [43], which
is formulated by minimizing the within cluster distortion
measure and maximizing the intra cluster distance, and is
often used for exploratory clustering analysis. The hierar-
chical clustering methods iteratively merge (or split clusters
according to some criteria until all data becomes one cluster
(or until some stopping criterion is meet to prevent further
splitting) to form a hierarchical tree. The tree is cut at a
place to obtain clusters [72]. The popular supporting vec-
tor machine (SVM) [67, 9] is a minimax classifier. Given
a training sample (x1, y1), ..., (xn, yn), where xi is multi-
dimensional data and yi is the indicator yi = 1 if xi is from
class A and yi = −1 for class B. In this method, one needs to
specify a set of known functions {φ1(·), ..., φk(·)} and some
weights w1, ..., wk to be determined. Then define the deci-
sion function Dw(x) =

∑k
j=1 wjφj(x) + b for some given

b. It classifies x ∈ A if Dw(x) > 0. The optimal weights
w∗ = (w∗

1 , ..., w
∗
k) are obtained from the training sample by

w∗ = arg max
w:||w||=1,

min
1≤i≤n

{yiDw(xi)}.

This weight maximizes the closest distance M of all data
points to the hyperplane Dw(x) = M , and makes the opti-
mal separation of the two clusters. This method is easy to
use, but like many other similar methods, it does not provide
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regression coefficients estimation, and so the relationship be-
tween response and the covariates is unclear. The support
vector network [19] is similar. Here the φj(·)’s and k need to
be subjectively chosen. The random decision forest [35, 11] is
another well known classification algorithm. Given a train-
ing sample (x1, y1), ..., (xn, yn), where xi is covariate vector
and yi is the response, it first splits the xi’s into m trees
using the classification tree algorithm. Then for a given sets
of weight wj(·, ·), it predict the response of a new point x′

by

ŷ =
1

m

m∑
j=1

wj(xi,x
′)yi.

Often wj(xi,x
′) = 1/m if xi is one of the m points in

the same leaf as x′, and zero otherwise. Here the choice
of weights and the number of trees m is still subjective.

Kernel method is also applied to nonparametric cluster-
ing approach to estimate the data distribution [26, 18, 14]
and a mean-shift algorithm is inoked to iteratively transform
and group the data.

Here our goal is to model the regression relationship be-
tween the response and covariates and classify the subjects
into two groups based on the model. Since the member-
ship of each subject is unknown, the model is a mixture.
For robustness, we specify the common density of all group
to be unimodal, otherwise unspecified. The assumption of
unimodality is for indentifiablity of nonparametric mixture
model. The unimodal model is closely related to monotonic
model. Qin et al. [54] applied isotonic regression to predict
genetic risk under monotone distributions. The unimodal
density is piecewise monotone and our model is a mixture.
Yuan, Zhou, Tan [71] studied a similar model for subgroup
analysis, in which the subgroup density is required to be
unimodal and symmetric around zero. The symmetry con-
dition is rather restrictive in application, here we relax this
condition.

Mixture models, parametric, nonparametric and semi-
parametric, are studied extensively. Titterington [61] con-
sidered minimal distance nonparametric estimation in mix-
ture model. Titterington et al. [62] introduced statistical
applications of finite mixture model. A general form is
G(x) =

∫
F (x, θ)dH(θ) (as in [42]), where F (·, θ) is a

known parametric disitribution and H(·) an unknown dis-
tribution. Qin [52, 53] studied goodness of fit tests based
on semiparametric mixture model, and empirical likelihood
ratio confidence interval for mixing proportion. McLach-
lan and Peel [45] provide an over view in this field. Hall
and Zhou [32] considered nonparametric estimation of the

model F (x) = π
∏k

j=1 Fj1(xj)+(1−π)
∏k

j=1 Fj2(xj) (k ≥ 3
for identifiability), where x = (x1, ..., xk), Fjl’s are un-
known distribution functions, π is unknown proportion.
Hunter et al. [39] considered mixture models with symmetric
distributions. Cruz-Medina and Hettmansperger [20] con-
sidered nonparametric estimation in semiparametric mix-
ture model. Bordes et al. [7] studies models of the form

G(x) = λF (x− μ1) + (1− λ)F (x− μ2), with unknown dis-
tribution F (·) and unknown parameters (μ1, μ2, λ). Pu and
Arias-Castro [51] considered semiparametric estimation of
symmetric mixture models with monotone and log-concave
densities. Yuan and He [70] proposed semiparametric mix-
ture model for this problem, in which the sub-densities of the
clusters are modelled nonparametric via shape constraints.
Using kernel density estimators, their method successfully
handles the lower dimensional case.

The semiparametric maximum likelihood estimate
(MLE) is used to estimate the model parameter and the un-
known density. Then we use the commonly used Bayesian
classification rule to classify the subjects according to this
semiparametric model. Simulation studies are conducted to
evaluate the performance of the proposed method, and the
method is used to analyse a real data set. In Section 2
we describe the proposed method, in Section 3 we study
the asymptotic behavior of the estimates, in Section 4 we
present some simulation results and apply our method on
a real dataset; lastly some concluding remarks are given at
the end of the paper. The relevant technical proofs are given
in the Appendix.

2. THE PROPOSED METHOD

The observed data are Dn = {(yi,xi) : i = 1, ..., n},
where yi ∈ R is the response and xi ∈ Rd is the covariates
of the i-subject. Each subject belongs to one of k sub-groups,
but the sub-group label is unknown, and our goal is to clas-
sify each subject to the most likely subgroup. We focus on
the case of k = 2 subgroups. For this, let δi be the latent in-
dicator of subject i belonging to group one/two (δi = 1/0).
Conditioning on the covariates, the model for the response
can be specified as

yi = β′xi + δiα+ εi,

where β ∈ Rd is the regression parameters (unknown), α is
the extra effect for subgroup one, and εi is the residual error
accounts for the departure of the above linear relationship
specification.

Let θ = (β′, α, λ)′, we specify the likelihood for the ob-
served data as
(1)

L(θ|Dn) =

n∏
i=1

(
λg(yi−β′xi−α)+(1−λ)g(yi−β′xi)

)
, g ∈ G

G be the collection of unimodal density functions with model
at 0, and satisfies the following conditions

lim
y→−∞

g(y − α)

g(y)
= lim

y→∞
g(y)

g(y − α)
= 0, ∀ α > 0.

The first condition is also used in modal regression problems,
see Chen et al. [17]. The second condition is adopted from
Hohmann and Holzman [36] for model identifiability, see
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below. This condition is satisfied by most commonly used
models.

It is known that mixture of nonparametric densities in the
general case is not identifiable. Borders et al. [6] showed that
if the components densities are symmetric and equal up to
a shift parameter, plus a few conditions then the nonpara-
metric mixture is identifiable. They estimate their model
parameters and the unknown density by moment method
or kernel method, etc.; while we estimate the model param-
eters by semiparametric MLE. Hohmann and Holzman [36]
studied identifiability of nonparametric mixture model in
more general form below

F (y|x) = (1− λ(x))F0(y) + λ(x)F1(y).

They showed that the above model is nonparametrically
identifiable, if

lim
y→−∞

F1(y)/F0(y) = 0

and

lim
y→∞

(1− F0(y))/(1− F1(y)) = 0.

By L’Hospital’s rule, in terms of density functions f1 and
f0, the above is equivalent to

lim
y→−∞

f1(y)/f0(y) = 0 and lim
y→∞

f0(y)/f1(y) = 0.

The above condition is satisfied for many commonly used
distributions, such as the normal distributions with different
means.

Here in our case, if we set y = yi−β′xi−α or = yi−β′xi,
then model (1) is a special case of that in Hohmann and
Holzman [36] and the identifiability condition can be meet.

We estimate (θ, g) by (θ̂n, ĝn),

(θ̂n, ĝn) = arg max
(θ,g)∈(Θ,G)

L(θ|Dn).

However, direct maximization of the above likelihood is not
easy, especially for g, and a common alternative is to esti-
mate them via the ‘augmented’ data model, which assume
either the latent status δi’s be observed, together with the
EM-algorithm [22]. However, we’ll see that none of these
two augmented data model is easy to work with. So we will
adopt the ‘complete data’ model, which assumes the δi’s are
observed, and this method works for our case. Below we de-
scribe the ‘complete data’ model and use this model for our
estimation.

The “Complete data” model. Let zi = (yi,xi, δi)
(i = 1, 2, ..., n) be the “complete data”. Under this “com-
plete data”, the model is

(2) f(y, δ|x) =
[
λg(y − β′x− α)

]δ[
(1− λ)g(y − β′x)

]1−δ

and the “complete data” log-likelihood for the augmented
data {(yi,xi, δi) : i = 1, ..., n} is

	n(θ, g) =

n∑
i=1

(
δi log g(yi − β′xi − α)+

(3)

(1− δi) log g(yi − β′xi) + δi log λ+ (1− δi) log(1− λ)
)
.

The true parameter (θ0, g0) are estimated by the MLE

(θ̂n, ĝn) = arg max
(θ,g)∈(Θ,G)

	n(θ, g).

Our interest here is the joint maxima (θ̂n, ĝn), so we use
the following iterative maximization. The detailed algorithm
for ĝn part is non-trivial, we first give a general description
of the algorithm, justify its convergence property, then give
detailed description latter. For a starting value θ(0) of θ,
find g(1)(·) ∈ G as the maxima of 	n(θ

(0), g), then fix g(1),

find θ(g) ∈ Θ as the maxima of 	n(θ, g
(1)), and so on. . .

until convergence of the sequence {(θ(r), g(r))}.
It is known that the sequence {(θ(r), g(r))} increasing the

likelihood at each iteration, and will converge to at least
some local maxima of 	n(θ, g). In fact, the increasing likeli-
hood property is obvious, as for all integer r,

	n(θ
(r+1), g(r+1)) ≥ 	n(θ

(r), g(r+1)) ≥ 	n(θ
(r), g(r)).

A formal justification of the convergence of the above it-
erative algorithm is a case of the block coordinate descent
methods in [3].

The computation of θ(r) can be realized by the well
known EM-algorithm [22]. It is known that there is no guar-
antee for the EM algorithm convergence to the MLE, and
generally it converges to a local maxima ([68]; Theorem 3).
If the underlying model has the concave property, then EM
algorithm converges to the global MLE. On the other hand,
it may converges to some local maxima. Thus in application,
one needs to apply the EM algorithm with different starting
values, to get possible different local stationary points, and
compare the log-likelihood at these stationary points to find
the global maxima.

Our algorithm is a semiparametric version of EM algo-
rithm, see also [60], chap. 2 for bio-medical applications of
this algorithm. The semiparametric and nonparametric EM
algorithm were used in a large number of literatures, such as
in [46, 12, 34, 20], and see the argument there for the con-
vergence of such algorithm (pp. 67–68). Chen, Zhang and
Davidian [16] applied the EM algorithm to a semiparamet-
ric random effects model, Borders, Chauveau and Vandek-
erknove [8] applied the EM algorithm to a semiparametric
mixture model, using simulation studies to justify the con-
vergence of the algorithm.

However, since the δi’s are unobserved, we cannot es-
timate (θ0, g0) directly based on (3). Instead, we use the
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EM-algorithm [22]. In this model, given starting value

(θ(0), g(0)), compute the next step estimate (θ(1), g(1)), . . . .
Generally, at the r-th step, let

(4) Qn

(
θ, g

∣∣θ(r), g(r)
)
= Eδ

[
	n(θ, g)

∣∣yn,xn,θ(r), g(r)
]
,

where the expectation is with respect to δ, and as if the true
data is generated from parameter (θ(r), g(r)).

Specifically, at each iteration r, we compute the following

i) compute the δ
(r)
i ’s as given in the Appendix, computa-

tion of (4).
ii) compute g(r+1) (see below).

iii) compute θ(r+1) = (β
′(r+1), α(r+1), λ(r+1))′ as

θ(r+1) = argmax
θ

Qn

(
θ, g(r+1)

∣∣θ(r), g(r)
)

= sup
(β,α,λ)

n∑
i=1

[
δ
(r)
i log g(r+1)(yi − β′xi − α)

+ (1− δ
(r)
i ) log g(r+1)(yi − β′xi) + δ

(r)
i log λ

+ (1− δ
(r)
i ) log(1− λ)

]
.

In principle,

g(r+1)(·)

(5)

= argmax
g∈G

n∑
i=1

(
δ
(r)
i log g(ε

(r)
1i ) + (1− δ

(r)
i ) log g

(
ε
(r)
0i

))
,

where ε
(r)
0i = yi − β(r)′

xi and ε
(r)
1i = yi − β(r)′

xi − α(r).

We combine the ε
(r)
0i ’s and ε1i’s, arrange them in increasing

order, and denote them as {ε(r)i : i = 1, ..., N} with N =
2n, so that the technique of isotonic regression can be used
to compute g(r+1). In particular, the R-code PAVA (pull
adjacent violator algorithm, [4]) can be used to solve g(r+1).
See below.

It is known that L(θ(r+1), g(r+1)|Dn) ≥ L(θ(r), g(r)|Dn)
for all r, and under suitable conditions, as r → ∞,

(θ(r), g(r)) → (θ̂n, ĝn).

The iteration continues until a convergence criterion is meet
for the (θ(r), g(r))’s.

Computation of g(r+1). The computation of the
NPMLE g(r+1) at each iteration is non-trivial, and needs
more attention. Below we using the isotonic regression tech-

nique to compute it. Denote ĝ for g
(r)
n and similarly for δ̂i,

ε̂i, etc. Suppose that ε̂i = yi − β̂
′
xi (i = 1, ..., n). We ar-

range δ̂i (i = 1, ..., n) in increasing order. Calculate nλ̂ and

set it as integer. Let ε̂0i = yi − β̂
′
xi (i = 1, ..., n − nλ̂),

ε̂1i = yi − β̂
′
xi − α̂ (i = n− nλ̂+ 1, ..., n), combine the ε̂0i’s

and ε̂1i’s, and arrange them as ε̂i (i = 1, ..., n). Then

ĝn(·) = argmax
g∈G

N∑
i=1

log g
(
ε̂i

)
.

Let

Gn(t) =

N∑
i=1

1

n
I(ε̂i ≤ t)

be the weighted empirical distribution function of the ε̂i’s,
G−

n (·) be the greatest convex minorant of Gn(·) on R−, and
G+

n (·) be its least concave majorant on R+. Modifying the
argument in [56], pp. 332–334, we have

Lemma. On R−, ĝn(·) is the right derivative (slope) of
G−

n (·); and on R+, ĝn(·) is the left derivative (slope) of
G+

n (·).

For computation of ĝn(·), let ci = ε̂i − ε̂i−1, hi = 1/[nci]
and wi = nci. Then by Theorem 1.5.1 in [56], p. 31, ĝn is
the following isotonic regression solution

ĝn = argmin
g∈G

n∑
i=1

wi

(
hi − gi

)2
.

Classification. Initially we considered two commonly
used classification rules, the Bayesian rule and the Neyman-
Pearson rule. The former rule is for the case the two groups
to be classified have the same status of preference, the latter
is for the case one group has more preference than the other.
However, in our simulation studies, the Neyman-Pearson
rule does not work well for the simulated rule, so we adopt
the Bayesian rule below.

For each subject i = 1, 2, ..., n, the probability of subject
i belonging to group 1 is

P (δi = 1|yi,xi, hn, θ̂)

=
λ̂ĝn(yi − β̂

′
xi − α̂)

λ̂ĝn(yi − β̂
′
xi − α̂) + (1− λ̂)ĝn(yi − β̂

′
xi)

.

With the Bayesian rule, we classify this subject to the sub-
group S1 corresponds to δi = 1, if P (δi = 1|yi,xi, ĝn, δ̂, θ̂) >
1/2 or

(6) λ̂ĝn(yi − β̂
′
xi − α̂) > (1− λ̂)ĝn(yi − β̂

′
xi),

otherwise classify the i-th subject to subgroup S0 corre-
sponds to δi = 0. From the above we see that a good classi-
fication requires both ĝn and β̂ to be accurately estimated.
For parametric model, if g is incorrectly specified, the clas-
sification error can be serious, and a semiparametric model
is much safer.
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3. ASYMPTOTIC PROPERTIES

The classification rule is good only if the parameters in
the model can be estimated well. We see from the above that
the classification only depends on the estimated parameters
(β̂, α̂). Now we study the asymptotic properties of the these
parameter estimators in the model. As the model and that
in [71] are similar, so are the conditions, results and proofs.

The classification is consistent only if the corresponding
parameter estimation is consistent. We assume the condition
for model identifiability as in [36], this condition is very easy
to meet. We list the following conditions.

(C1). X has bounded support.
(C2). Θ is bounded.
(C3). For all g in a neighborhood of g0 ∈ G, g(·) has deriva-

tive ġ(·) and ġ(·)/g(·) ∈ L1(P ).
(C4). G is bounded.
(C5). g0 is second order differentiable.
(C6). The derivative ġ0(t) �= 0.

(C7). ‖β̂ − β0‖ = op(n
−1/3).

Conditions (C1)–(C2) and (C4) are reasonable and prac-
tical for most applications. Condition (C3) is for the proof
of strong consistency of the semiparametric MLE, it will be
true if ġ is integrable and the ratio g0/g is bounded. (C5) is
a commonly assumed condition to get asymptotic distribu-
tion of β̂, here it is used to get its convergence rate. (C6) is
used to get asymptotic distribution of ĝ. The same condition
is used to get the corresponding results in other literatures
mentioned below. (C7) is a technical assumption used to de-
rive the asymptotic distribution of ĝ, see the comment after
Theorem 2.

Theorem 1. Assume (C1)–(C4), then

θ̂n
a.s→ θ0. sup

x
|ĝn(x)− g0(x)| a.s→ 0.

As pointed out by a number of researchers [37] Section
3.2.2; [47] Sections 2–3 and [31], the

√
n-consistency of the

MLE β̂ is an open question. The reason is that β̂ is bundled
with the nonparametric MLE ĝ(·), which is a non-smooth
piecewise step function. Below, as in [71], we give the conver-

gence rate of β̂ and ĝ, with ‖β̂n − β0‖ being the Euclidean

distance between β̂ and β0, and ||ĝn − g0|| being any com-
monly used distance between two functions ĝ and g0.

Theorem 2. Assume (C1)–(C6), then

‖β̂ − β0‖+ ‖ĝ − g0‖ = Op(n
−1/3).

Even though currently there is no proof of the sharper
convergence rate given in (C8), numerical studies by the
above mentioned authors suggest this rate. So we regard

(C8) is reasonable. Denote
D→ for convergence in distribu-

tion. Let B(·) be the two-sided Browning motion originating
from zero: a mean zero Gaussian process onR with B(0) = 0,

and E
(
B(s)− B(h)

)2
= |s− h| for all s, h ∈ R.

Theorem 3. Assume (C1)–(C5) and (C7), then

n1/3(ĝn(t)−g0(t))
D→

(
4|ġ0(t)|g0(t)

)1/3

argmax
h∈R

{B(h)−h2}.

4. SIMULATION STUDY AND
APPLICATION

4.1 Simulation studies

We simulate n = 500 i.i.d. data with response
yi and with several different dimensions of covariates
xi = (xi1, ..., xi2), xi = (xi1, ..., xi4), xi = (xi1, ..., xi7)
and xi = (xi1, ..., xi10). We first generate the covari-
ates, sample the xi’s from different dimensional normal
distribution with mean vector μ = (3.1, 1.8)′, μ =
(3.1, 1.8,−0.5, 1.2)′, μ = (3.1, 1.8,−0.5, 1.2,−2.3, 4.5, 2.4)′

and μ = (3.1, 1.8,−0.5, 1.2,−2.3, 4.5, 2.4,−3.0, 1.7, 2.1)′

and some covariance matrix Γ, Then we generate the re-
sponse data, which, given the covariates, are from the mix-
ture λ0g1 + (1− λ0)g2. The yi’s are generated as

yi = β′
0xi + δiα0 + εi, (i = 1, ..., n).

The distribution of the εi’s is a mixture. With probability
λ0, εi ∼ g1(·), and with probability (1− λ0), εi ∼ g2(·). We
consider 2 cases for εi. In case 1, g1(·) and g2(·) are both
skew normal distributions, and in case 2, g1(·) and g2(·) are
both normal distributions.

Then with the simulated data (yi,xi)’s, we first fit model
(3) – actually model (4) treating the δi’s as missing data via
the EM-algorithm. In particular, we set the starting values
as θ(0) as the MLE of θ under standard normal distribution.
Then compute (g(r),θ(r), δ

(r)
i )’s by the EM-algorithm. Con-

vergence of the algorithm can be accessed by the relative
error criterion, with a given ρ (here we choose ρ = 10−4 to
achieve high accuracy) or 100 iterations,

||θ(r+1) − θ(r)||
||θ(r)||

≤ ρ.

When the above criterion is meet at the (r+1)-th iteration,

the EM algorithm is stopped, and θ(r+1) is treated as the
profile MLE θ̂n.

Below in Table 1, Table 2, Table 3 and Table 4, we show
estimation results with different choices of θ = (β′, α, λ)′

based on the the following models under sample size n =
500. SD is the estimated standard deviation of the esti-
mator. Table 1. Semiparametric model and normal mixture
model when the true distribution is normal mixture. We see
that the estimation results from the normal model is slightly
better than those from the semiparametric model. This is
expected as the normal mixture model is the true one gen-
erating the observed data. Table 2. Semiparametric model
and skew normal mixture model when the true distribution
is normal mixture. In this case, the skew normal mixture
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Table 1. Parameter estimation under semiparametric model and normal mixture model when the true distribution is normal
mixture. n = 500.

α λ β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

1
TRUE 3.110 0.800 1.920 4.130
Semiparametric 3.099 0.766 1.881 4.125
(SD) (0.105) (0.025) (0.068) (0.083)
Mixture normal 3.102 0.801 1.925 4.129
(SD) (0.104) (0.021) (0.043) (0.069)
2
TRUE 3.140 0.800 1.920 2.380 -1.750 0.580
Semiparametric 3.135 0.766 1.885 2.392 -1.731 0.584
(SD) (0.116) (0.029) (0.086) (0.093) (0.067) (0.030)
Mixture normal 3.147 0.801 1.903 2.400 -1.755 0.582
(SD) (0.143) (0.027) (0.086) (0.093) (0.056) (0.026)
3
TRUE 2.250 0.600 1.640 0.980 -2.340 1.170
Semiparametric 2.262 0.560 1.606 0.965 -2.304 1.166
(SD) (0.112) (0.030) (0.086) (0.103) (0.081) (0.033)
Mixture normal 2.263 0.611 1.634 0.976 -2.339 1.167
(SD) (0.152) (0.081) (0.093) (0.098) (0.070) (0.031)
4
TRUE 3.270 0.800 0.640 1.590 -2.530 2.620 -1.560 0.870 2.340
Semiparametric 3.255 0.776 0.648 1.567 -2.512 2.612 -1.543 0.873 2.336
(SD) (0.130) (0.025) (0.152) (0.177) (0.125) (0.146) (0.122) (0.061) (0.059)
Mixture normal 3.217 0.792 0.654 1.568 -2.513 2.615 -1.574 0.877 2.344
(SD) (0.208) (0.031) (0.156) (0.182) (0.126) (0.146) (0.121) (0.066) (0.059)
5
TRUE 2.460 0.700 1.880 1.390 -2.460 1.970 -1.340 1.910 0.790
Semiparametric 2.473 0.646 1.841 1.450 -2.508 2.016 -1.307 1.893 0.789
(SD) (0.118) (0.033) (0.173) (0.197) (0.149) (0.168) (0.122) (0.072) (0.077)
Mixture normal 2.458 0.687 1.845 1.452 -2.511 2.018 -1.332 1.897 0.792
(SD) (0.209) (0.084) (0.174) (0.194) (0.146) (0.171) (0.136) (0.072) (0.081)
6
TRUE 3.390 0.800 1.670 0.910 -1.640 3.140 -1.690 1.780 1.650 -2.380 1.630 2.310
Semiparametric 3.386 0.999 1.679 0.896 -1.630 3.138 -1.694 1.781 1.654 -2.376 1.622 2.315
(SD) (0.119) (0.001) (0.213) (0.184) (0.207) (0.181) (0.088) (0.063) (0.114) (0.117) (0.068) (0.040)
Mixture normal 3.399 0.802 1.677 0.899 -1.629 3.139 -1.694 1.779 1.652 -2.375 1.623 2.315
(SD) (0.167) (0.030) (0.221) (0.185) (0.210) (0.186) (0.089) (0.069) (0.116) (0.120) (0.070) (0.042)
7
TRUE 2.570 0.600 2.330 1.780 -2.880 0.730 -1.240 2.140 1.570 -1.260 2.160 1.390
Semiparametric 2.561 0.998 2.333 1.785 -2.870 0.724 -1.246 2.137 1.571 -1.265 2.166 1.392
(SD) (0.109) (0.003) (0.217) (0.215) (0.248) (0.223) (0.083) (0.073) (0.119) (0.119) (0.074) (0.048)
Mixture normal 2.586 0.599 2.332 1.782 -2.869 0.724 -1.243 2.130 1.570 -1.264 2.168 1.392
(SD) (0.123) (0.070) (0.227) (0.220) (0.255) (0.228) (0.080) (0.074) (0.123) (0.120) (0.079) (0.050)

model is still correctly specified as the normal model is a spe-
cial case of the skew normal. The semiparametric model has
comparable or slightly better overall performance than the
skew normal mixture, reflecting the flexibility of the model.
Table 3. Semiparametric model and normal mixture model
when the true distribution is skew normal mixture, we see
that results from the semiparametric model is slightly bet-
ter. Table 4. Semiparametric model and skew normal mix-
ture model when the true distribution is skew normal mix-
ture. In this case, as expected, the skew normal mixture
model has slightly overall better performance, as it is the
true model generating the data.

The estimated density ĝn(·), the corresponding normal
density and the true density functions are shown in Fig-
ure 1 and Figure 2, for some selected data sets with differ-
ent dimension of covariates. It is seen that ĝn is much more
closer to the true density than the normal density. This is
important in classification as the commonly used Bayesian
classification rule is based on density ratio, better density
estimate implies more accurate classification.

Then we use the Bayesian rule to classify each of the yi’s,
and below in Table 5 we report the overall classification er-
ror for the two groups based on the proposed semiparametric
model, and compare with the commonly used mixture nor-
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Table 2. Parameter estimation under semiparametric model and skew normal mixture model when the true distribution is
normal mixture. n = 500.

α λ β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 γ1 γ2
1
TRUE 3.110 0.800 1.920 4.130 1.500 1.800
Semiparametric 3.127 0.765 1.884 4.115
(SD) (0.114) (0.025) (0.075) (0.071)
Skew normal 3.131 0.803 1.919 4.124 0.993 1.002
(SD) (0.117) (0.023) (0.058) (0.069) (0.109) (0.229)
2
TRUE 3.140 0.800 1.920 2.380 -1.750 0.580 1.500 1.800
Semiparametric 3.141 0.767 1.899 2.370 -1.718 0.579
(SD) (0.117) (0.027) (0.082) (0.095) (0.068) (0.027)
Skew normal 3.102 0.796 1.936 2.371 -1.748 0.578 1.008 1.029
(SD) (0.237) (0.045) (0.120) (0.103) (0.069) (0.027) (0.162) (0.630)
3
TRUE 2.250 0.600 1.640 0.980 -2.340 1.170 1.700 1.300
Semiparametric 2.246 0.555 1.590 0.979 -2.300 1.164
(SD) (0.105) (0.035) (0.109) (0.116) (0.103) (0.038)
Skew normal 2.130 0.610 1.650 0.988 -2.349 1.169 1.421 1.126
(SD) (0.313) (0.149) (0.152) (0.114) (0.082) (0.039) (1.122) (0.893)
4
TRUE 3.270 0.800 0.640 1.590 -2.530 2.620 -1.560 0.870 2.340 3.600 2.900
Semiparametric 3.266 0.770 0.619 1.614 -2.544 2.640 -1.545 0.861 2.341
(SD) (0.121) (0.025) (0.177) (0.209) (0.149) (0.181) (0.117) (0.069) (0.063)
Skew normal 3.133 0.773 0.639 1.601 -2.537 2.639 -1.592 0.873 2.350 1.359 1.030
(SD) (0.345) (0.065) (0.194) (0.235) (0.170) (0.192) (0.151) (0.081) (0.077) (1.077) (0.810)
5
TRUE 2.460 0.700 1.880 1.390 -2.460 1.970 -1.340 1.910 0.790 2.400 2.700
Semiparametric 2.465 0.651 1.861 1.391 -2.463 1.987 -1.325 1.908 0.786
(SD) (0.122) (0.036) (0.185) (0.218) (0.163) (0.186) (0.115) (0.070) (0.069)
Skew normal 2.328 0.700 1.853 1.403 -2.468 2.003 -1.372 1.909 0.797 1.202 1.135
(SD) (0.399) (0.133) (0.193) (0.228) (0.168) (0.189) (0.143) (0.078) (0.075) (0.931) (0.951)
6
TRUE 3.390 0.800 1.670 0.910 -1.640 3.140 -1.690 1.780 1.650 -2.380 1.630 2.310 2.700 3.800
Semiparametric 3.382 0.999 1.689 0.897 -1.616 3.122 -1.690 1.782 1.642 -2.377 1.634 2.312
(SD) (0.155) (0.002) (0.209) (0.177) (0.200) (0.205) (0.074) (0.068) (0.107 (0.105) (0.070 (0.042)
Skew normal 3.148 0.774 1.739 0.902 -1.587 3.070 -1.720 1.824 1.625 -2.362 1.632 2.311 2.311 0.985
(SD) (0.455) (0.063) (0.285) (0.184) (0.236) (0.275) (0.094) (0.111) (0.123) (0.116) (0.078) (0.048) (0.048) (0.090)
7
TRUE 2.570 0.600 2.330 1.780 -2.880 0.730 -1.240 2.140 1.570 -1.260 2.160 1.390 2.500 3.300
Semiparametric 2.548 0.998 2.309 1.806 -2.905 0.738 -1.233 2.134 1.573 -1.272 2.170 1.391
(SD) (0.104 (0.002 (0.208 (0.191 (0.210 (0.217 (0.098 (0.071 (0.120 (0.129 (0.081 (0.051
Skew normal 2.298 0.591 2.320 1.817 -2.906 0.730 -1.245 2.151 1.568 -1.275 2.172 1.391 1.391 1.042
(SD) (0.383) (0.169) (0.233) (0.199) (0.222) (0.240) (0.123) (0.108) (0.135) (0.145) (0.100) (0.062) (0.062) (0.263)

mal model, mixture skew normal, K-means, support vector
machine (SVM), and the classification errors based on the
real likelihood ratio values (denoted as Exact), under sam-
ple size n = 500. The seven data sets generated from the
mixture skew normal, as in Tables 3 and Table 4, are used
for the classification. We see that the mixture skew normal
model has the smallest overall classification error, this is ex-
pected as the data are generated from this distribution; the
semiparametric method has apparent smaller classification
errors than the other models for most data sets, except data
sets 6 and 7.

4.2 Real data analysis

We analyse the data DATATOP (Deprenyl and Toco-
pherol Antioxidative Therapy of Parkinsonism) [49]. It is
sponsored by NIH (The National Institutes of Health), and
a multicenter randomized controlled clinical trial for study-
ing the early Parkinson’s disease treatment. The DATATOP
trial was conducted at 28 US and Canadian sites from
September 1987 to November 1989. About 800 patients with
the early stages of untreated Parkinson’s disease were en-
rolled in the trial and were randomly assigned to one of four
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Table 3. Parameter estimation under semiparametric model and normal mixture model when the true distribution is skew
normal mixture. n = 500.

α λ β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

1
TRUE 3.110 0.800 1.920 4.130
Semiparametric 3.191 0.808 1.872 4.121
(SD) (0.092) (0.028) (0.053) (0.055)
Mixture normal 3.195 0.831 1.873 4.122
(SD) (0.092) (0.019) (0.044) (0.058)
2
TRUE 3.140 0.800 1.920 2.380 -1.750 0.580
Semiparametric 3.290 0.811 1.843 2.399 -1.720 0.575
(SD) (0.102) (0.027) (0.072) (0.086) (0.056) (0.022)
Mixture normal 3.497 0.865 1.755 2.413 -1.689 0.566
(SD) (0.095) (0.018) (0.063) (0.086) (0.052) (0.020)
3
TRUE 2.250 0.600 1.640 0.980 -2.340 1.170
Semiparametric 2.219 0.559 1.605 0.977 -2.318 1.178
(SD) (0.107) (0.039) (0.101) (0.118) (0.089) (0.037)
Mixture normal 2.424 0.816 1.434 1.011 -2.268 1.154
(SD) (0.130) (0.049) (0.073) (0.098) (0.061) (0.033)
4
TRUE 3.270 0.800 0.640 1.590 -2.530 2.620 -1.560 0.870 2.340
Semiparametric 3.444 0.813 0.620 1.609 -2.547 2.623 -1.498 0.861 2.321
(SD) (0.107) (0.023) (0.161) (0.198) (0.139) (0.161) (0.101) (0.069) (0.063)
Mixture normal 3.617 0.856 0.596 1.623 -2.566 2.627 -1.450 0.849 2.306
(SD) (0.109) (0.018) (0.168) (0.203) (0.140) (0.166) (0.100) (0.068) (0.061)
5
TRUE 2.460 0.700 1.880 1.390 -2.460 1.970 -1.340 1.910 0.790
Semiparametric 2.460 0.659 1.878 1.403 -2.469 1.977 -1.302 1.896 0.786
(SD) (0.114) (0.031) (0.169) (0.201) (0.147) (0.170) (0.113) (0.073) (0.062)
Mixture normal 2.803 0.845 1.846 1.416 -2.500 1.962 -1.187 1.876 0.750
(SD) (0.100) (0.029) (0.175) (0.195) (0.143) (0.170) (0.111) (0.067) (0.063)
6
TRUE 3.390 0.800 1.670 0.910 -1.640 3.140 -1.690 1.780 1.650 -2.380 1.630 2.310
Semiparametric 3.554 0.999 1.629 0.925 -1.670 3.177 -1.672 1.754 1.654 -2.375 1.619 2.316
(SD) (0.104) (0.001) (0.194) (0.161) (0.181) (0.183) (0.075) (0.060) (0.097) (0.102) (0.064) (0.038)
Mixture normal 3.709 0.852 1.578 0.927 -1.699 3.221 -1.649 1.719 1.663 -2.383 1.619 2.318
(SD) (0.099) (0.018) (0.194) (0.151) (0.171) (0.178) (0.069) (0.061) (0.105) (0.107) (0.068) (0.040)
7
TRUE 2.570 0.600 2.330 1.780 -2.880 0.730 -1.240 2.140 1.570 -1.260 2.160 1.390
Semiparametric 2.541 0.999 2.352 1.775 -2.874 0.726 -1.243 2.135 1.564 -1.248 2.160 1.389
(SD) (0.108) (0.002) (0.223) (0.203) (0.228) (0.218) (0.105) (0.077) (0.114) (0.125) (0.085) (0.051)
Mixture normal 2.747 0.781 2.234 1.786 -2.941 0.835 -1.190 2.048 1.585 -1.262 2.161 1.393
(SD) (0.104) (0.041) (0.210) (0.164) (0.209) (0.212) (0.085) (0.061) (0.107) (0.114) (0.074) (0.045)

treatment groups: (1) active deprenyl, (2) active tocopherol,
(3) active deprenyl and tocopherol, and (4) placebo. The de-
velopment of disability requiring the onset of levodopa ther-
apy was the primary endpoint in the DATATOP trial. The
Parkinson Study Group reported the results that deprenyl
(10 mg per day) slowed the disease progression measured
by the total Unified Parkinson’s Disease Rating Scale (UP-
DRS), its subscales about motor, mentation and activities
of daily living. Moreover, some covariates such as baseline
age, years of education and gender could be potential con-
founder, that are associated with the deprenyl treatment
and the disease progression.

In this study, the UPDRS was treated as response data,
and three key movement dysfunction measures from UP-
DRS subscales (motor, mentation and activities of daily liv-
ing) as well as four covariates information, such as base-
line age, treatment (whether receive deprenyl), gender and
years of education, were treated as covariates. We aimed to
use the data to construct a semiparametric model, then use
the Bayesian rule to classify the 800 patients into one of
two subgroups. It is a longitudinal data and each patient
had 6 or 9 repeated measurements. Therefore, we calcu-
lated the mean value for activities of daily living, motor and
mentation. Also, one patient had no UPDRS, we excluded

354 A. Yin and A. Yuan



Table 4. Parameter estimation under semiparametric model and skew normal mixture model when the true distribution is skew
normal mixture. n = 500.

α λ β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 γ1 γ2
1
TRUE 3.110 0.800 1.920 4.130 2.500 2.500
Semiparametric 3.104 0.802 1.890 4.121
(SD) (0.084) (0.030) (0.053) (0.052)
Skew normal 3.109 0.800 1.919 4.130 2.685 3.105
(SD) (0.083) (0.022) (0.030) (0.044) (0.538) (1.033)
2
TRUE 3.140 0.800 1.920 2.380 -1.750 0.580 2.500 2.500
Semiparametric 3.142 0.801 1.907 2.372 -1.725 0.578
(SD) (0.072) (0.024) (0.055) (0.063) (0.047) (0.018)
Skew normal 3.144 0.799 1.924 2.376 -1.744 0.579 2.902 3.139
(SD) (0.072) (0.017) (0.050) (0.059) (0.035) (0.016) (0.803) (1.070)
3
TRUE 2.250 0.600 1.640 0.980 -2.340 1.170 3.400 1.800
Semiparametric 2.247 0.581 1.597 0.970 -2.304 1.164
(SD) (0.079) (0.038) (0.076) (0.081) (0.053) (0.023)
Skew normal 2.241 0.601 1.643 0.980 -2.342 1.169 4.253 1.907
(SD) (0.080) (0.026) (0.054) (0.076) (0.041) (0.020) (0.997) (0.292)
4
TRUE 3.270 0.800 0.640 1.590 -2.530 2.620 -1.560 0.870 2.340 1.800 1.300
Semiparametric 3.269 0.797 0.621 1.609 -2.537 2.627 -1.556 0.857 2.351
(SD) (0.109) (0.022) (0.134) (0.184) (0.141) (0.139) (0.087) (0.053) (0.047)
Skew normal 3.269 0.803 0.623 1.610 -2.538 2.626 -1.569 0.858 2.353 1.962 1.371
(SD) (0.109) (0.020) (0.134) (0.184) (0.140) (0.139) (0.083) (0.052) (0.047) (0.343) (0.277)
5
TRUE 2.460 0.700 1.880 1.390 -2.460 1.970 -1.340 1.910 0.790 1.500 1.800
Semiparametric 2.474 0.663 1.870 1.383 -2.459 1.980 -1.314 1.915 0.779
(SD) (0.095) (0.029) (0.172) (0.213) (0.146) (0.165) (0.114) (0.070) (0.066)
Skew normal 2.471 0.705 1.871 1.384 -2.463 1.983 -1.337 1.919 0.781 1.770 2.199
(SD) (0.094) (0.029) (0.173) (0.212) (0.145) (0.166) (0.101) (0.072) (0.064) (0.830) (0.836)
6
TRUE 3.390 0.800 1.670 0.910 -1.640 3.140 -1.690 1.780 1.650 -2.380 1.630 2.310 1.500 1.600
Semiparametric 3.320 0.999 1.668 0.942 -1.659 3.143 -1.703 1.794 1.639 -2.367 1.624 2.312
(SD) (0.344) (0.001) (0.213) (0.162) (0.199) (0.201) (0.079) (0.081) (0.104) (0.108) (0.066) (0.040)
Skew normal 3.321 0.792 1.668 0.941 -1.657 3.143 -1.702 1.792 1.637 -2.366 1.625 2.311 1.709 2.232
(SD) (0.345) (0.043) (0.213) (0.160) (0.198) (0.200) (0.080) (0.082) (0.104) (0.107) (0.065) (0.040) (0.740) (1.375)
7
TRUE 2.570 0.600 2.330 1.780 -2.880 0.730 -1.240 2.140 1.570 -1.260 2.160 1.390 1.700 1.800
Semiparametric 2.528 0.999 2.297 1.826 -2.928 0.766 -1.240 2.124 1.575 -1.262 2.159 1.390
(SD) (0.314) (0.002) (0.201) (0.159) (0.193) (0.197) (0.092) (0.084) (0.098) (0.099) (0.069) (0.041)
Skew normal 2.535 0.605 2.295 1.824 -2.927 0.768 -1.238 2.122 1.576 -1.264 2.160 1.391 2.718 2.007
(SD) (0.314) (0.092) (0.203) (0.157) (0.191) (0.196) (0.087) (0.081) (0.098) (0.098) (0.068) (0.040) (1.627) (1.002)

Table 5. Classification error (n = 500).

Data set Exact Semiparametric Mixture normal Skew normal K-means SVM

1 0.028 0.016 0.024 0.012 0.512 0.056
2 0.028 0.016 0.052 0.018 0.488 0.064
3 0.288 0.164 0.194 0.138 0.492 0.176
4 0.006 0.012 0.040 0.006 0.538 0.184
5 0.122 0.118 0.158 0.116 0.530 0.326
6 0.068 0.480 0.064 0.020 0.522 0.216
7 0.178 0.398 0.210 0.318 0.548 0.370
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Figure 1. Left panel: True density (4-dimensional covariates, Skew normal with skewness parameter 2.5, lambda=0.8, solid
black line), estimated density (solid blue line) and normal density (dotted line). Middle panel: True density (4-dimensional
covariates, Skew normal with skewness parameter 1.5, lambda=0.6, solid black line), estimated density (solid blue line) and
normal density (dotted line). Right panel: True density (7-dimensional covariates, Skew normal with skewness parameter 2.5,

lambda=0.8, solid black line), estimated density (solid blue line) and normal density (dotted line).

Figure 2. Left panel: True density (7-dimensional covariates, Skew normal with skewness parameter 1.5, lambda=0.7, solid
black line), estimated density (solid blue line) and normal density (dotted line). Right panel: True density (10-dimensional
covariates, Skew normal with skewness parameter 2.5, lambda=0.8, solid black line), estimated density (solid blue line) and

normal density (dotted line).

this observation and therefore we considered 799 patients at
last.

Table 6 shows the results from the semiparametric model,
mixture normal model, skew normal mixture and SVM. We
see that with the semiparametric model, about 38.9% pa-
tients were classified into group 1, while with the mixture
normal model and the skew normal mixture model, nearly
all of the patients were classified into group 1. The regression
coefficients estimates β and the estimated treatment effect
α are similar for the three models. The SVM method does
not have regression coefficient estimates, so only its MSEs
are reported. The k-means does not provide predicted value
and is not show here. As for real data the true distribution
is unknown, different methods cannot be assessed according
to their estimates. We used 10-fold cross validation method
to compare their mean square error (MSE) for the response
data. And the MSEs for the semiparametric model and skew
normal mixture model are apparently smaller.

Concluding remarks. In this study, we proposed a
semiparametric mixture model, in which the regression re-
lationship between the response and covariates are speci-
fied parametric, and the group density function is specified

nonparametric, only assume to be unimodal. The Bayesian
classification rule is used to classify the subjects according
to this semiparametric model. The parameters are estimated
via semiparametric MLE. Nonparametric methods like SVM
and k-means clustering are robust, but they do not consider
the relationship between response and covariates, which is
important in some applications. With the semiparametric
model, the model parameters are estimated and the relation-
ship between response and covariates are also characterized
by the regression coefficients. Based on our simulation stud-
ies, for data with low or moderate dimensions, the proposed
model works better than the commonly used normal mixture
model, but it does not work well for data with covariates di-
mension greater than 10. This phenomenon is quite common
for most models. For data with high dimensional covariates,
dimension reduction method such as LASSO can be used to
select the significant components. Based on our simulation
studies, the semiparametric model estimates the residual er-
ror density much better than the normal mixture model, this
makes better classification as the commonly used Bayesian
classification is based on density ratio.
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Table 6. Parameter estimation and classification results (real data).

α λ β1 β2 β3 β4 β5 β6 β7 Prop. MSE

Semiparametric 4.145 0.394 0.045 -0.343 -0.165 0.090 -0.031 1.990 1.234 0.389 2.960
Normal mixture 4.998 1.000 0.034 -0.228 -0.063 0.083 -0.058 1.883 1.236 1.000 6.524

Skew normal mixture 3.273 0.475 0.044 -0.308 -0.172 0.108 -0.032 1.898 1.253 0.999 2.819
SVM – – – – – – – – – – 8.989

*Prop.: classification proportion of group 1 according to different models

As pointed by the Associate Editor, generally the regres-
sion coefficients in the two subgroups can be different, with
β1 and β2, or even the sub-densities in the two groups can
be different with g1(·) and g2(·). But this will double the
number of regression parameters to be estimated and re-
duce the efficiency. In fact, in most investigations in sub-
group analysis, common regression coefficients are assumed,
such as in [58, 24, 69]. According to our limited simulation
studies, incorporating different regression parameters for the
two groups does not improve the results. The main reason
may be due to the double of regression parameters requires
much larger data sample size. However, investigating this
more general setup can be our future stuty topic.

APPENDIX

Computation of (5). We have

δ
(r)
i := P (δi = 1|yn,xn, g(r), θ(r))

= 1− P (δi = 0|yn,xn, g(r), θ(r)) = P (δi = 1|yi,xi, g
(r), θ(r))

=
λ(r)g(r)(yi − β

′(r)xi − α(r))

λ(r)g(r)(yi − β
′(r)xi − α(r)) + (1− λ(r))g(r)(yi − β

′(r)xi)
.

Then get

Qn

(
θ, g

∣∣θ(r), g(r)
)
=

n∑
i=1

[
δ
(r)
i log g(yi − β′xi − α)

(7)

+ (1− δ
(r)
i ) log g(yi − β′xi) + δ

(r)
i log γ

+ (1− δ
(r)
i ) log(1− γ)

]
.

Proof of the Lemma. Without loss of generality we assume
the ε̂i’s are arranged in increasing order. Let ci = ε̂i − ε̂i−1,
r be the integer such that ε̂r < 0 < ε̂r+1. Denote gi = g(ε̂i).
Since ĝn(·) is a step function, and takes zero on (−∞, ε̂1] ∪
[ε̂n,∞), the constraint

∫
g(t)dt = 1 in is written as

r−1∑
j=1

gj(ε̂j − ε̂j−1) + gr(0− ε̂r) + gr+1(ε̂r+1 − 0)(8)

+
n∑

j=r+2

gj(ε̂j − ε̂j−1) = 1.

See the estimation of unimodal density in Section 7.3 in [56],
pp. 332–334.

By Example 1.5.7 in [56], pp. 38–39, the ĝn in the maxi-
mization in (7) is

ĝ(·) = argmax
g∈G

n∑
i=1

hiwi log(gi),

where hi = λ̂i)/[Nci] and wi = Nci. The above is the same
as (7), however, written in this form will lead to simplifica-
tion using results in isotonic regression.

Let Φ(u) = u log u u ∈ R+ and ΔΦ(u, v) = Φ(u)−Φ(v)−
(u−v)Φ(v) = u log u−u log v− (u−v). Then Φ(·) is convex
on R+. Note that the right hand side of (7) is the same as

= argmin
g∈G

N∑
i=1

(
λ̂i log(λ̂i)− λ̂i log gi −

(
λ̂i)(−gi

))
ci,

subject to (8)

= argmin
g∈G

N∑
i=1

ΔΦ

(
λ̂i, gi

)
ci, subject to (8)

= argmax
g∈G

N∑
i=1

ΔΦ

(
hi, gi

)
wi.

By Theorem 1.5.1 in [56], p. 31, the above minimization is
the same as the following isotonic regression solution

argmin
g∈G

N∑
i=1

wi

(
hi − gi

)2
.

Let Wi =
∑i

j=1 wj = Nε̂i and Gi =
∑i

j=1 wjhj =∑i
j=1 λ̂i. By Theorem 1.2.1 in [56], pp. 7–8, and the de-

scription of estimation of unimodal density in Section 7.3
in [56], pp. 332–334, on R−, ĝn(·) is the right derivative
(slope) of the greatest convex minorant of the sum diagram
of {(Wi, Gi) : i = 1, ..., n}, and on R+, ĝn(·) is the left
derivative (slope) of the least concave majorant of the sum
diagram. Note that in terms of slopes of the greatest convex
minorant (the least concave majorant), the sum diagram of
{(Wi, Gi) : i = 1, ..., n} and that of {(ε̂i, Gi/N) : i = 1, ..., n}
are the same. So, let I(·) be the indicator function,

Gn(t) =

n∑
i=1

λ̂i

N
I(ε̂i ≤ t)
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be the weighted empirical function of the ε̂i’s, H
−
n (·) be the

greatest convex minorant of Gn(·) on R−, and G+
n (·) be

its least concave majorant on R+, then on R−, ĝn(·) is the
right derivative (slope) of G−

n (·); and on R+, ĝn(·) is the left
derivative (slope) of G+

n (·).

Proofs of Theorems 1–3 are similar to those in [71], are
omitted, and will be provided upon request.

Received 31 May 2019

REFERENCES

[1] Bartlett, P. L., Jordan, M. I., McAuliffe, J. D. (2006). Con-
vexity, Classification, and Risk Bounds. Journal of the American
Statistical Association 101 (473) 138–156. MR2268032

[2] Begun, J. M., Hall, W. J., Huang, W., Weller, J. A.

(1983). Information and asymptotic efficiency in parametric-
nonparametric models. Annals of Statistics 11 432–452.
MR0696057

[3] Bertsekas, D. P. (2016). Nonlinear Programming, 3rd edition.
Athena Scientific. MR3587371

[4] Best, M. J., Chakravarti, N. (1990). Active set algorithms for
isotonic regression; a unifying framework. Mathematical Program-
ming 47 425–439. MR1068274

[5] Bickel, P. J., Klaassen, C. A., Ritov, Y., Wellner, J. A.

(1993). Efficient and Adaptive Estimation for Semiparametric
Models. Johns Hopkins University Press, Baltimore, Maryland.
MR1245941

[6] Bordes, L., Mottelet, S., Vandekerkhove, P. (2006a). Semi-
parametric estimation of a two-component mixure model. Annals
of Statistics 34 (3) 1204–1232. MR2278356

[7] Bordes, L., Delmas, C., Vandekerkhove, P. (2006b). Semi-
parametric estimation of a two-component mixture model where
one component is known. Scandinavian Journal of Statistics 33
733–752. MR2300913

[8] Bordes, L., Chauveau, D., Vandekerknove, P. (2007). A
stochastic EM algorithm for a semiparametric mixture model.
Computational Statistics & Data Analysis 51 5429–5443.
MR2370882

[9] Boser, B. E., Guyon, I. M., Vapnik, V. N. (1992). A training
algorithm for optimal margin classifiers. Proceedings of the 5th
Annual ACM Worshop on Computational Learning Theory, San
Mateo, CA.

[10] Boucheron, S., Bousquet, O., Lugosi, G. (2005). Theory of
classification: A survey of some recent advances. ESAIM Probab.
Stat. 9 323–375. MR2182250

[11] Breiman, L. (2001). Random forests. Machine Learning 45 (1)
5–32. MR3874153

[12] Campbell, G. (1981). Nonparametric bivariate estimation with
ranodmly censored data. Biometrica 68 417–422. MR0626401

[13] Campbell, J. G., Fraley, C., Murtagh, F., Raftery, A. E.

(1997). Linear flaw detection in woven textiles using model-based
clustering. Pattern Recognition Letters 18 1539–1548.

[14] Carreira-Perpinan, M. A. (2006). Fast nonparametric cluster-
ing with Gaussian blurring mean-shift. Proceedings of the 23rd
International Conference on Machine Learning, Pittsburgh, PA.

[15] Celeux, G., Govaert, G. (1992). A classification EM algorithm
for clustering and two stochastic versions. Computational Statis-
tics & Data Analysis 14 315–332. MR1192205

[16] Chen, J., Zhang, D., Davidian, M. (2002). A Monte Carlo EM
algorithm for generalized linear mixed models with flexible ran-
dom effects distribution. Biometrics 3 (3) 347–360. MR2703312

[17] Chen, Y.-C., Genovese, C. R., Tibshirani, R. J., Wasserman,

L. (2016). Nonparametric modal regression. Annals of Statistics
44 489–514. MR3476607

[18] Cheng, Y. (1995). Mean shift, mode seeking and clustering. IEEE
Trans. PAMI 17 790–799.

[19] Cortes, C., Vapnik, V. (1995). Support-vector networks. Ma-
chine Learning 20 273–297.

[20] Cruz-Medina, I. R., Hettmansperger, T. P. (2004). Nonpara-
metric estimation in semiparametric univariate mixture models.
Journal of Statistical Computation and Simulation 74 513–524.
MR2073229

[21] Dasgupta, A., Raftery, A. E. (1998). Detecting features in spa-
tial point processes with clutter via model-based clustering. Jour-
nal of the American Statistical Association 441 294–302.

[22] Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum
likelihood from incomplete data via the EM algorithm. Journal
of the Royal Statistical Society, Ser. B, 39 1–38. MR0501537

[23] Diao, G., Yuan, A. (2018). A class of semiparametric cure models
with current Status data. Life Time Data Analysis 25 (1) 26–51.
MR3896658

[24] Fan, A., Song, R., Lu, W. (2017). Change-plane analysis for
subgroup detection and sample size calculation. Journal of the
American Statistical Association 112 769–778. MR3671769

[25] Fraley, C., Raftery, A. E. (2002). Model-based clustering, dis-
criminant analysis, and density estimation. Journal of the Amer-
ican Statistical Association 97 611–631. MR1951635

[26] Fukunaga, K., Hostetler, L. D. (1975). The estimation of the
gradient of a density function, with application in pattern recog-
nition. IEEE Trans. PAMI 25 1499–1504. MR0388638

[27] Fung, G. (2004). A comprehensive overview of basic clustering
algorithms, manuscript.

[28] Genest, C., Ghoudi, K., Rivest, L. P. (1995). semiparametric
estimation procedure of dependence parameters in a multivariate
families of distributions. Biometrika 82 543–552. MR1366280

[29] Groeneboom, P. (1988). Brownian motion with a parabolic drift
and Airy functions. Probability Theory and Related Fields 81 79–
109. MR0981568

[30] Groeneboom, P., Wellner, J. (1992). Information Bounds and
Nonparametric Maximum Likelihood Estimation, Birkháuser Ver-
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