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This article proposes a spatial autoregression (SAR)
model with time-varying coefficients. The model incorpo-
rates both spatial dependence and the impacts of explana-
tory variables, and all the coefficients are allowed to flex-
ibly vary according to time. This article further develops
a kernel-smoothed estimator (KSE) to estimate the time-
varying coefficients. Compared with the maximum likeli-
hood estimator (MLE) obtained at discrete time points, the
KSE utilizes the potentially useful information from time
neighborhoods. We have theoretically proved the consis-
tency of the proposed KSE. A number of simulation studies
show that the KSE is more accurate and performs substan-
tially better than the MLE. Moreover, a real data analy-
sis for a ride-hailing platform in China also shows that the
KSE is more stable and interpretable. The proposed model
as well as the KSE can be widely applied to data with a
large number of cross-sectional units and regularly spaced
time points.

Keywords and phrases: Time-varying coefficients, Spa-
tial autoregression model, Kernel-smoothed estimator, Max-
imum likelihood estimator.

1. INTRODUCTION

Online ride-hailing has become a multi-billion business
in the U.S. as well as China. Well-known ride-hailing ser-
vice providers include Lyft (www.lyft.com) and Uber (www.
uber.com) in the U.S., and Didi Chuxing (www.didichuxing.
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com) and Yidao (www.yongche.com) in China. The ride-
hailing service provider serves as a matchmaker between
passengers and drivers. It profits mainly by charging a com-
mission on the transactions made on its application-based
ride-hailing platform. As a result, it is highly important for
ride-hailing platforms to optimize their matchmaking ser-
vice and raise the number of rides. To this end, ride-hailing
platforms need to forecast and monitor the number of rides
in different locations across the city in real time. Therefore,
they have opportunities to efficiently allocate drivers (i.e.,
supply) to satisfy more rides (i.e., demand). This research
intends to model the number of rides in different locations
across time and provides guidance for ride-hailing platforms
to improve their business.

However, modeling the number of rides in a particular
location at a particular time point can be challenging be-
cause the influential factors could be multifold. The number
of rides at particular time may be affected by both the ob-
served cross-sectional variables and the unobserved spatial
dependence. First, at a given time point, the number of rides
might depend on the nearby ride-hailing supply and demand
intensities, the economic incentives provided, and the geo-
graphic distance of the ride-hailing requests (i.e., observed
cross-sectional variables). For example, a relatively low sup-
ply may lead to a small number of rides. Locations that
have more requests with higher economic incentives (e.g., a
20 RMB bonus) may be associated with a larger number of
rides. With regard to geographical distance, the number of
rides is typically larger for requests with a larger distance
(e.g., drivers may prefer a 10 km ride rather than a 2 km
ride). Second, there may exist spatial dependence between
adjacent regions. If the number of rides is relatively small
in one region, the nearby regions are less likely to have a
very large number of rides. Moreover, the number of rides
changes dynamically over time as the drivers move around
to look for potential passengers. This adds another layer of
complexity.

To quantify the factors that influence the number of rides
in a particular location at particular time, several classical
models could be considered. First, a linear regression model
can be readily employed to examine the impacts of the ob-
served explanatory variables on the number of rides [8, 17].
But it cannot deal with the potentially important spatial de-
pendence. Second, to capture the spatial dependence from
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adjacent regions, a standard spatial autoregression (pure
SAR) model can be adopted [1, 3]. However, this model
only deals with spatial dependence and does not take the
explanatory variables into consideration. In order to capture
spatial correlation and the impacts of explanatory variables
(e.g., the characteristics of rides) simultaneously, a mixed re-
gressive SAR model could be used [2, 16]. One drawback of
this model, however, is that it does not allow the coefficients
to vary according to time. Consider the empirical context of
the ride-hailing service. The impact of some variables (e.g.,
the economic incentive) on the number of rides may change
over time. In addition, the extent of spatial dependence in
the number of rides might also vary at different time points.
Therefore, allowing the coefficients to be time-varying would
make the SAR model more flexible. Unfortunately, the es-
timation of time-varying coefficients in the SAR model is
technically difficult [14].

In this research, we introduce a SAR model with time-
varying coefficients. The model allows the coefficients of
both spatial dependence and explanatory variables to vary
according to time. Moreover, we propose an estimation
method to estimate the time-varying coefficients. The pro-
posed method is applicable for data with a particular struc-
ture. First, the data should be collected at a large number
of sequential time points on a regular basis. Second, the
observations collected at each particular time point can be
spatially allocated into different regions. Third, the spatial
correlation between adjacent regions is important and has to
be taken into account. Finally, the dependent variable of in-
terest, as well as the explanatory variables, can be recorded
at regional level. To estimate the coefficients, we first obtain
a maximum likelihood estimator (MLE) for each time point
using the cross-sectional data. Next, for each coefficient we
further smooth its MLE estimators over time. This leads to
a kernel-smoothed estimator (KSE) with fairly good finite
sample performance.

The rest of the article is organized as follows. Section 2
introduces the SAR model with time-varying coefficients.
Then, the KSE is proposed and its asymptotic properties are
studied. Section 3 reports the numerical studies, including
a number of simulation studies and a real data analysis. All
technical details are provided in the appendices.

2. METHODOLOGY

2.1 Model and notations

We consider an area with N regions indexed by i =
1, · · · , N . The spatial structure of the regions is captured by
an adjacency matrix A = (ai1i2) ∈ RN×N , where ai1i2 = 1
if regions i1 and i2 are spatially adjacent to each other,
and ai1i2 = 0 otherwise. Note that the spatial structure is
symmetric by nature. As a result, ai1i2 = ai2i1 . Further-
more, we follow the convention to define aii = 0 for any
1 ≤ i ≤ N . In this work, we assume that A is non-stochastic
and time-invariant. For region i, there exists a random

process of the response variable {Yi(t) ∈ R1, t ∈ [0, 1]}
and a random process of explanatory variables {Xi(t) =
(Xi1(t), · · · , Xip(t))

� ∈ Rp, t ∈ [0, 1]}. Note that the ex-
planatory variables Xi(t) are not allowed to be endogenous.

To model the regression relationship between Yi(t) and
Xi(t) with spatial dependence, we propose the following
SAR model with time-varying coefficients

Yi1(t) =ρ(t)n−1
i1

N∑
i2=1

ai1i2Yi2(t)+

X�
i1 (t)β(t) + εi1(t),

(1)

where 1 ≤ i1 ≤ N and εi1(t) ∈ R1 is the error term.
We assume that E(εi1(t)) = 0 and var(εi1(t)) = σ2(t).
Here, β(t) = (β1(t), · · · , βp(t))

� ∈ Rp includes the pa-
rameters associated with the explanatory variables. In the
meanwhile, ρ(t) ∈ R1 is the time-varying spatial effect [21].
Assume that there exists a positive constant λ ∈ (0, 1)
such that ρ(t) ∈ [−λ, λ] for any t ∈ [0, 1]. Note that

ni1 =
∑N

i2=1 ai1i2 is region i1’s total number of spatial

neighbors, and n−1
i1

∑N
i2=1 ai1i2Yi2(t) is the average response

of region i1’s spatial neighbors. For convenience, we define
θ(t) = (ρ(t), β�(t), σ2(t))� ∈ Rp+2. Assume that θ(t) is
bounded and twice continuously differentiable over t ∈ [0, 1].
Further define Y(t) = (Y1(t), Y2(t), · · · , YN (t))� ∈ RN ,
X(t) = (X1(t), X2(t), · · · , XN (t))� ∈ RN×p, and E(t) =
(ε1(t), ε2(t), · · · , εN (t))� ∈ RN . Model (1) can be rewrit-
ten in a vector form as

(2) Y(t) = ρ(t)WY(t) + X(t)β(t) + E(t),

where W = (wi1i2) = diag{n−1
1 , · · · , n−1

N }A ∈ RN×N with
wi1i2 = n−1

i1
ai1i2 . Hence, W is the row-normalized spatial

weight matrix [15]. In real practice, there might be different
choices of W . In this research, we choose W in a similar
fashion with prior literature [4, 5, 11]. Given model (2), we
then discuss the estimation methods in the following section.

2.2 The estimation methods

Inspired by the empirical scenario, we assume the data
are collected at a large number of time points between 0
and 1. These discrete time points are uniformly distributed
over [0, 1] and indexed by T = {tk ∈ [0, 1] : 1 ≤ k ≤ T}. At
any time point tk, we observe both Y(tk) and X(tk). This
leads to

(3) Y(tk) = ρ(tk)WY(tk) + X(tk)β(tk) + E(tk).

As one can see, model (3) is a standard SAR model with ex-
planatory variables [11]. By temporarily assuming that the
error term E(tk) follows a multivariate normal distribution,
θ(tk) can be estimated by the standard method of maximum
likelihood estimation. This leads to the MLE at time point
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tk. Specifically, we write the log-likelihood function of model
(3) at time point tk as

�
{
θ(tk)

}
= log

∣∣Sk∣∣− N

2
log σ2(tk)−

1

2σ2(tk)∥∥∥SkY(tk)− X(tk)β(tk)
∥∥∥2,

(4)

where Sk = I − ρ(tk)W , |Sk| denotes the determinant of

matrix Sk, and ‖v‖ =
√
v�v for an arbitrary vector v. Note

that we omit the constants in (4) and those in the following
log-likelihood functions for convenience. To optimize (4), we
first fix ρ(tk) and β(tk), and then maximize (4) with respect
to σ2(tk). This leads to the following estimator

(5) σ̃2(tk) =
1

N

∥∥SkY(tk)− X(tk)β(tk)
∥∥2.

Next, apply (5) back to (4), and we obtain the profiled log-
likelihood function as

�
{
ρ(tk), β(tk)

}
= log

∣∣Sk∣∣−
N

2
log

∥∥∥SkY(tk)− X(tk)β(tk)
∥∥∥2.(6)

Given ρ(tk), we further maximize (6) with respect to β(tk).
This leads to

(7) β̃(tk) =
{
X�(tk)X(tk)

}−1{
X�(tk)SkY(tk)

}
.

Lastly, apply (7) back to (6), and we get the final profiled
log-likelihood function

(8) �
{
ρ(tk)

}
= log

∣∣Sk∣∣− N

2
log

∥∥∥Q(tk)SkY(tk)
∥∥∥2,

where Q(tk) = I − X(tk){X�(tk)X(tk)}−1X�(tk). We then
maximize (8) by the Newton-Raphson method. This leads
to ρ̂MLE(tk) = argmaxρ(tk)�{ρ(tk)}. The computational de-
tails are provided in Appendix A. Lastly, replacing ρ(tk)

with ρ̂MLE(tk) in (7) allows us to get β̂MLE(tk). Further ap-

ply ρ̂MLE(tk) and β̂MLE(tk) to (5), and we obtain σ̂2
MLE

(tk).

Thus, we have θ̂MLE(tk) = (ρ̂MLE(tk), β̂
�
MLE

(tk), σ̂
2
MLE

(tk))
�.

Theoretically, θ̂MLE(tk) can be proved to be consistent
and asymptotically normal under certain conditions [11, 19].

However, θ̂MLE(tk) only utilizes the information at the given
time point tk. The potentially useful information from the
time neighborhoods of tk has been ignored. In addition,
θ̂MLE(tk) can only be obtained for discrete time points
T = {tk ∈ [0, 1] : 1 ≤ k ≤ T}. Thus, we further smooth the
MLE over time by the method of kernel smoothing. This
leads to the KSE for any continuous time point t ∈ [0, 1],

which is denoted as θ̂KSE(t) = (ρ̂KSE(t), β̂
�
KSE

(t), σ̂2
KSE

(t))�.
Specifically,

θ̂KSE(t) =
{ T∑

k=1

Kh(tk − t)
}−1{ T∑

k=1

θ̂MLE(tk)Kh(tk − t)
}
,

where Kh(·) = K(·/h)/h, h is the bandwidth, and K(·) is
the kernel function, i.e., a symmetric and bounded proba-
bility density function. Throughout this article, we assume
that K(·) satisfies the Lipschitz condition and has a com-
pact support. We next investigate the asymptotic theory of
the proposed estimator (i.e., KSE).

2.3 Asymptotic theory

To study the asymptotic properties of the proposed es-
timator, we call for a number of technical conditions. The
details are given below.

(C1) Assume that {εi(tk), i = 1, · · · , N, k = 1, · · · , T}
are independently and identically distributed
with mean 0 and variance σ2(t). In addi-
tion, there exists a positive constant α such
that supt∈[0,1] max1≤i≤N E(|εi(t)|4+α) < ∞ and

supt∈[0,1] max1≤i≤N E(‖Xi(t)‖4+α) < ∞. Meanwhile,

for 1 ≤ k ≤ T , assume that limN→∞ N−1X(tk)
�X(tk)

exists and is nonsingular.
(C2) For the spatial weight matrix W = (wi1i2), there

exists a constant C such that, for any N > 0,
maxi2

∑N
i1=1 wi1i2 +maxi1

∑N
i2=1 wi1i2 < C < ∞.

(C3) There exists a positive constant λ ∈ (0, 1) such that
ρ(t) ∈ [−λ, λ] for any t ∈ [0, 1]. In addition, β(t)
and σ2(t) are bounded and twice continuously differ-
entiable over t ∈ [0, 1].

(C4) Define M(t) = (X(t),WS−1X(t)β(t)). Assume that
limN→∞ N−1M(t)�M(t) exists and is positive definite
for any t ∈ [0, 1].

These conditions have been widely used in prior literature
[6, 7, 10, 11, 13, 19, 22, 23, 24]. Condition (C1) contains the
standard assumptions regarding the error term and explana-
tory variables. Condition (C2) is the technical assumption
about the spatial weight matrix W . Condition (C3) ensures
that the parameters are bounded and Condition (C4) is a
sufficient condition for identifying θ(t).

Assume conditions (C1)-(C4) hold. By Theorem 3.2 in
[11] and Theorem 4.3 in [19], we have

(9)
√
N
{
θ̂mle(tk)− θ(tk)

}
−→d N

(
0,Ξ(tk)

)
,

as N → ∞, where Ξ(tk) = Σ−1
θ(tk)

Ωθ(tk)Σ
−1
θ(tk)

,

Σθ(tk) = − limN→∞ E{N−1�̈(θ(tk))}, and Ωθ(tk) =

limN→∞ E{N−1�̇(θ(tk))�̇(θ(tk))
�}. Here �̇(θ(tk)) ∈ Rp+2

and �̈(θ(tk)) ∈ R(p+2)×(p+2) are the first and second order
derivatives of �(θ(tk)) with respect to θ(tk), respectively.
The detailed analytical derivations of �̇(θ(tk)) and �̈(θ(tk))
are given in Appendix B. We next investigate the asymp-
totic properties of θ̂KSE(t) in the following theorem.

Theorem 1. Assume conditions (C1)-(C4) hold. Then, for
any t ∈ (0, 1), we have

θ̂KSE(t)− θ(t) −→p 0,

as min{N,T} → ∞, h → 0, and NTh → ∞.
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The proof of Theorem 1 is given in Appendix C. Theo-
rem 1 suggests that the resulting estimator is consistent. As
both N and T go to infinity, their relative divergence rate
is unknown. This makes it very difficult to bound the or-
der of the residual term in the Taylor expansion argument
while examining the asymptotic distribution. Therefore, in
this paper we focus only on the consistency of the proposed
estimator.

3. NUMERICAL STUDIES

3.1 Simulation models

In this subsection, we demonstrate the finite sample per-
formance of the proposed estimator with simulations. First,
we generate a spatial adjacency matrix A as follows. We di-
vide a squared area [0, 1]× [0, 1] into N = m1 ×m2 equally
sized rectangle regions. Then we index these regions colum-
nwise from 1 to N . The left panel of Figure 1 presents an
illustrating example with N = 3 × 3. We define ai1i2 = 1
if regions i1 and i2 share one common edge, and ai1i2 = 0
otherwise. For example, we have a12 = 1 and a13 = a15 = 0
for the example in Figure 1.

Figure 1. An illustration of how we get the adjacency matrix.
In the left panel, the area [0, 1]× [0, 1] is divided into

3× 3 = 9 equally sized rectangle regions. The right panel
shows the corresponding adjacency matrix for these nine

regions. We define two regions to be adjacent to each other if
they share one common edge.

Next, we assume that the process is observed at a set
of regularly spaced time points T = {tk = k/T : k =
1, 2, · · · , T}. For any t ∈ T and region i, the explanatory
variables Xi(t) ∈ R4 are independently generated accord-
ing to a multivariate normal distribution N(0,Σ), where
Σ = (σi1i2) with σi1i2 = 0.5|i1−i2|. The random noise
εi(t) = σ2(t)E, where E is independently sampled from a
standardized exponential distribution and σ2(t) is one of
the parameters that will be specified below. Note that the
random noise is temporarily assumed to follow a normal
distribution in prior sections. Our simulation results, how-
ever, are not sensitive to the distribution of the random
noise. In the following simulation study, we only show the
results obtained with the random noise following the expo-
nential distribution. Specifically, we consider the following
three examples.

Example 1 (Time-Varying Coefficients). We first consider
a case where all the parameters are time-varying, as in our
model (2). Specifically, we follow the simulation setting of
[20] to set ρ(t) = 0.3 sin(tπ), σ2(t) = sin{π(2t + 1)/4} + 1,
β1(t) = sin(tπ), β2(t) = cos(tπ), β3(t) = et, and β4(t) =
et(1 + et)−1.

Example 2 (Time-Invariant Coefficients). Next, we con-
sider a case that all the parameters are constants [14].
Specifically, we fix ρ(t) = 0.3, σ2(t) = 1, and β1(t) = β2(t) =
β3(t) = β4(t) = 1.

Example 3 (A Standard SAR model). Lastly, we consider
a standard SAR model with no explanatory variables [11].
In the meanwhile, all the other parameters are left to be
time-varying as in Example 1. Specifically, the parameters
are given by ρ(t) = 0.3 sin(tπ), σ2(t) = sin{π(2t+1)/4}+1,
and β1(t) = β2(t) = β3(t) = β4(t) = 0.

Given the adjacency matrix, explanatory variables, ran-
dom noise, and parameter specification, we can generate the
response variable according to model (2).

3.2 Performance measurements and
simulation results

For each simulation example, we consider different
(N,T ) combinations, where N ∈ {50, 100, 400} and T ∈
{100, 200, 400, 1000, 2000}. Moreover, for each (N,T ) com-
bination, we randomly replicate the experiment for a total

of R = 500 times. Let ρ̂
(r)
d (tk), β̂

(r)
d (tk), and σ̂

2(r)
d (tk) be

the estimators obtained in the r-th replication, where d ∈
{MLE,KSE} and 1 ≤ r ≤ R. To obtain the KSE, we use
a Epanechnikov kernel with bandwidth h = 2.34(NT )−1/5

[18]. To gauge the finite sample performance of the estima-
tors, we define the root mean squared error (RMSE) for
different parameters as

RMSEρ =
[
(RT )−1

R∑
r=1

T∑
k=1

{
ρ̂(r)(tk)− ρ(tk)

}2
]1/2

,

RMSEβj =
[
(RT )−1

R∑
r=1

T∑
k=1

{
β̂
(r)
j (tk)− βj(tk)

}2
]1/2

,

RMSEσ2 =
[
(RT )−1

R∑
r=1

T∑
k=1

{
σ̂2(r)(tk)− σ2(tk)

}2
]1/2

,

where j = 1, · · · , 4. It is worth noting that the performance
of MLE is also evaluated. The MLE and KSE may not be di-
rectly comparable since KSE utilizes more information than
MLE. Thus, it is not surprising that the KSE may perform
better than the MLE. But what remains unclear is that how
much advantage the KSE can obtain by utilizing additional
information. The detailed simulation results are given in Ta-
bles 1–3.

Consider the performance of KSE and MLE for Exam-
ple 1; see Table 1. Take ρ as an example. First, we study the
case that T is fixed and N goes to infinity. Let T = 400 and
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Table 1. Simulation results for the parameters specified in Example 1. For each parameter, we report the RMSE of both KSE
and MLE for different (N,T ) combinations. When T is fixed and N goes to infinity, the RMSE of both MLE and KSE
declines. When N is fixed and T goes to infinity, however, only the RMSE of KSE declines and that of MLE remains

unchanged. Moreover, the RMSE of KSE is much smaller than that of MLE for each (N,T ) combination

N T
ρ β1 β2 β3 β4 σ2

MLE KSE MLE KSE MLE KSE MLE KSE MLE KSE MLE KSE

50 100 0.1129 0.0320 0.2367 0.0702 0.2671 0.0802 0.2665 0.0789 0.2370 0.0679 0.7133 0.2707

200 0.1164 0.0261 0.2349 0.0541 0.2665 0.0569 0.2678 0.0588 0.2389 0.0521 0.7137 0.2387

400 0.1154 0.0201 0.2339 0.0401 0.2640 0.0450 0.2647 0.0431 0.2363 0.0385 0.7173 0.2269

1000 0.1164 0.0145 0.2371 0.0282 0.2659 0.0307 0.2677 0.0317 0.2381 0.0263 0.7356 0.2048

2000 0.1168 0.0117 0.2379 0.0220 0.2654 0.0224 0.2663 0.0240 0.2374 0.0205 0.7333 0.2017

100 100 0.0798 0.0276 0.1619 0.0559 0.1815 0.0623 0.1767 0.0626 0.1595 0.0538 0.5169 0.2045

200 0.0810 0.0210 0.1620 0.0432 0.1798 0.0470 0.1820 0.0464 0.1630 0.0428 0.5203 0.1593

400 0.0807 0.0159 0.1626 0.0313 0.1829 0.0353 0.1824 0.0365 0.1628 0.0333 0.5246 0.1371

1000 0.0806 0.0113 0.1633 0.0220 0.1826 0.0240 0.1833 0.0248 0.1628 0.0221 0.5172 0.1189

2000 0.0805 0.0088 0.1634 0.0172 0.1821 0.0190 0.1832 0.0189 0.1631 0.0167 0.5176 0.1116

400 100 0.0413 0.0198 0.0794 0.0375 0.0894 0.0412 0.0900 0.0433 0.0793 0.0383 0.2640 0.1281

200 0.0416 0.0151 0.0791 0.0292 0.0889 0.0320 0.0895 0.0339 0.0800 0.0296 0.2666 0.0989

400 0.0416 0.0114 0.0798 0.0221 0.0891 0.0244 0.0890 0.0247 0.0796 0.0223 0.2646 0.0765

1000 0.0414 0.0079 0.0800 0.0152 0.0891 0.0173 0.0891 0.0169 0.0802 0.0153 0.2663 0.0551

2000 0.0411 0.0059 0.0800 0.0115 0.0889 0.0126 0.0888 0.0128 0.0795 0.0116 0.2652 0.0455

Table 2. Simulation results for the parameters specified in Example 2. When T is fixed and N goes to infinity, the RMSE of
both MLE and KSE decreases. When N is fixed and T goes to infinity, only the RMSE of KSE declines while that of MLE
remains almost the same. Moreover, the RMSE of KSE is much smaller than that of MLE for all (N,T ) combinations

N T
ρ β1 β2 β3 β4 σ2

MLE KSE MLE KSE MLE KSE MLE KSE MLE KSE MLE KSE

50 100 0.2021 0.0616 0.1888 0.0544 0.2117 0.0606 0.2123 0.0618 0.1883 0.0536 2.4260 0.8428

200 0.2114 0.0488 0.1911 0.0425 0.2139 0.0472 0.2128 0.0469 0.1907 0.0417 2.5679 0.6713

400 0.2125 0.0387 0.1921 0.0323 0.2109 0.0351 0.2143 0.0357 0.1921 0.0323 2.7144 0.5536

1000 0.2074 0.0270 0.1907 0.0217 0.2119 0.0243 0.2124 0.0243 0.1908 0.0224 2.5147 0.3632

2000 0.2122 0.0221 0.1914 0.0166 0.2132 0.0186 0.2124 0.0185 0.1912 0.0165 2.6159 0.2851

100 100 0.0630 0.0227 0.1188 0.0402 0.1333 0.0449 0.1337 0.0453 0.1201 0.0409 0.3819 0.1736

200 0.0669 0.0186 0.1200 0.0309 0.1349 0.0348 0.1338 0.0344 0.1201 0.0311 0.4495 0.1728

400 0.0633 0.0136 0.1197 0.0234 0.1336 0.0259 0.1330 0.0263 0.1194 0.0232 0.3924 0.1220

1000 0.0648 0.0096 0.1196 0.0162 0.1338 0.0180 0.1337 0.0180 0.1195 0.0163 0.4116 0.0953

2000 0.0661 0.0078 0.1197 0.0124 0.1339 0.0137 0.1338 0.0137 0.1198 0.0122 0.4415 0.0862

400 100 0.0284 0.0134 0.0581 0.0275 0.0649 0.0305 0.0652 0.0310 0.0582 0.0274 0.1406 0.0678

200 0.0283 0.0102 0.0583 0.0210 0.0651 0.0235 0.0648 0.0234 0.0582 0.0209 0.1403 0.0522

400 0.0284 0.0078 0.0581 0.0160 0.0648 0.0178 0.0649 0.0178 0.0580 0.0159 0.1404 0.0405

1000 0.0284 0.0054 0.0582 0.0110 0.0649 0.0123 0.0651 0.0124 0.0583 0.0111 0.1404 0.0294

2000 0.0283 0.0041 0.0582 0.0083 0.0650 0.0093 0.0650 0.0093 0.0581 0.0083 0.1405 0.0238

N increase from 50 to 400. We find that the RMSE of the
MLE decreases from 0.1154 to 0.0416. In the meanwhile, the
RMSE of the KSE drops from 0.0201 to 0.0114. This sug-
gests that both estimators are consistent as N goes to infin-
ity. Next, we consider the case that N is fixed and T goes to
infinity. Let N = 400 and T increase from 100 to 2000. We
find that the RMSE of the MLE fluctuates between 0.0411
and 0.0416. This is expected because the consistency of the
MLE is only driven by N , and thus the RMSE of the MLE
cannot converge to 0 with a fixed N . The RMSE of the KSE,
however, declines from 0.0198 to 0.0059, suggesting that the
KSE is still consistent as T goes to infinity.

Moreover, for each (N,T ) combination in Example 1, the
RMSE of KSE is much smaller than that of MLE. For ex-
ample, the RMSE of KSE for (N,T ) = (50, 2000) is 0.0117,
which is much smaller than that of MLE (i.e., 0.1168). We
observe similar patterns for the estimation results of the
other parameters. As a result, the overall performance of
the KSE is substantially better than that of the MLE for
Example 1. Qualitatively similar findings are observed for
Examples 2–Examples 3 (see Tables 2–3), which will not be
discussed in detail.

To get a more intuitive understanding, we fix (N,T ) =
(400, 1000) for Example 1. Next, we plot the MLE and KSE
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Table 3. Simulation results for the parameters specified in Example 3. When T is fixed and N goes to infinity, the RMSE of
both MLE and KSE decreases. When N is fixed and T goes to infinity, only the RMSE of KSE declines while that of MLE

remains almost at the same level. Moreover, the RMSE of KSE is much smaller than that of MLE for all (N,T ) combinations

N T
ρ β1 β2 β3 β4 σ2

MLE KSE MLE KSE MLE KSE MLE KSE MLE KSE MLE KSE

50 100 0.1746 0.0525 0.2354 0.0685 0.2646 0.0785 0.2630 0.0764 0.2355 0.0677 0.7181 0.2758

200 0.1766 0.0398 0.2326 0.0514 0.2638 0.0561 0.2633 0.0567 0.2365 0.0511 0.7159 0.2430

400 0.1737 0.0282 0.2315 0.0383 0.2615 0.0443 0.2615 0.0422 0.2344 0.0384 0.7083 0.2298

1000 0.1769 0.0209 0.2346 0.0272 0.2632 0.0299 0.2636 0.0298 0.2355 0.0260 0.7162 0.2081

2000 0.1767 0.0165 0.2354 0.0209 0.2629 0.0218 0.2624 0.0226 0.2350 0.0200 0.7160 0.2081

100 100 0.1250 0.0423 0.1614 0.0551 0.1813 0.0622 0.1762 0.0624 0.1588 0.0536 0.5188 0.2059

200 0.1252 0.0330 0.1614 0.0428 0.1788 0.0467 0.1809 0.0459 0.1625 0.0425 0.5225 0.1617

400 0.1252 0.0242 0.1619 0.0305 0.1821 0.0350 0.1817 0.0360 0.1621 0.0331 0.5263 0.1391

1000 0.1254 0.0179 0.1625 0.0215 0.1819 0.0239 0.1819 0.0240 0.1622 0.0220 0.5193 0.1216

2000 0.1252 0.0138 0.1626 0.0166 0.1814 0.0188 0.1820 0.0184 0.1623 0.0166 0.5196 0.1142

400 100 0.0642 0.0308 0.0793 0.0372 0.0893 0.0411 0.0896 0.0431 0.0792 0.0383 0.2642 0.1281

200 0.0654 0.0237 0.0790 0.0290 0.0887 0.0320 0.0891 0.0337 0.0800 0.0296 0.2671 0.0994

400 0.0654 0.0180 0.0797 0.0220 0.0889 0.0243 0.0887 0.0246 0.0795 0.0223 0.2650 0.0770

1000 0.0654 0.0126 0.0800 0.0151 0.0890 0.0172 0.0888 0.0169 0.0801 0.0153 0.2666 0.0555

2000 0.0652 0.0096 0.0798 0.0114 0.0888 0.0126 0.0886 0.0127 0.0794 0.0116 0.2655 0.0462

from one arbitrarily selected random replication in Figure 2.
Take ρ(t) as an example; see Figure 2(a). We find that the
KSE of ρ(t) matches the true parameter very well over time.
However, the MLE is highly unstable. This further confirms
that the KSE is much more accurate than the MLE. We
find qualitatively similar results for other parameters; see
Figures 2(b)–2(f).

3.3 Real data analysis

In this subsection, we apply our model to a real dataset
provided by a ride-hailing service provider in Beijing. For
illustration purpose, we divide the Beijing urban area into
8×8 = 64 equally sized regions in the same way as Figure 1.
The regions are indexed by i = 1, · · · , 64. Then, the adja-
cency matrix A ∈ R64×64 and the row-normalized spatial
weight matrix W = (wi1i2) = diag{n−1

1 , · · · , n−1
N }A can be

readily obtained.

We collected region-level data every five minutes from
6:00 to 24:00 of the day. So each time point corresponds to
a five-minute time interval. This leads to a total of T = 216
discrete time points. Here we choose T subjectively and how
to select the optimal T by data-driven methods would be an
interesting question for future study.

For each region i at time point tk, we recorded the number
of rides achieved. Note that the number of rides can only
be nonnegative integers and its distribution can be heavily
skewed; see Figure 3(a). Therefore, we transform the number
of rides with log(1 + x) and standardization, which leads to
our response variable Yi(tk). The distribution of Yi(tk) is
shown in Figure 3(b), which is approximately symmetric.

For each ride, the platform automatically records its de-
parture and destination locations. Therefore, we can calcu-
late the geographical distance of each ride. The distance

can be averaged over all rides in region i at time point
tk. This leads to our first explanatory variable – Aver-

age Distance, denoted as Xi1(tk). For each ride, the plat-
form may offer a subsidy. It can be considered as an eco-
nomic incentive to solicit drivers to respond to the ride
request. Again, we calculate the average economic incen-
tive over all the rides in region i at time tk. This leads to
our second explanatory variable – Economic Incentive,
denoted as Xi2(tk). The number of rides in a region can
also be influenced by the local demand. It is measured by
the overall number of available passengers in region i at
time tk. This leads to our third explanatory variable – Lo-

cal Demand, denoted as Xi3(tk). Lastly, the number of
rides in a region is also influenced by the local supply. It is
measured by the overall number of available drivers in re-
gion i at tk. We use Xi4(tk) to represent Local Supply.
Together, these four explanatory variables are denoted as
Xi(tk) = (Xi1(tk), Xi2(tk), Xi3(tk), Xi4(tk))

�.
To obtain the KSE, we use a Epanechnikov kernel with

bandwidth h = 2.34(NT )−1/5. The estimation results are
shown in Figure 4. For comparison purpose, both the KSE
(i.e., the solid line) and the MLE (i.e., the dotted line) are
presented. Similar to our simulation results, we find that
the MLE is highly unstable and has many estimation re-
sults that can hardly be correct. For example, the MLE of
β2(t) (i.e., the effect of Economic Incentive) is negative
at some time points; see Figure 4(c). A negative estimate of
β2(t) implies a negative correlation between the Economic
Incentive and the number of rides in a particular region.
This is rather counterintuitive and can hardly be correct.
The KSE of β2(t), however, is fairly stable and is positive
over all the time periods, which is quite consistent with our
empirical experience. The findings of the other parameters
are similar; see Figures 4(a), 4(b), 4(d), 4(e), and 4(f). This
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Figure 2. The KSE and MLE of each parameter specified in
Example 1. Note that this figure shows the estimators from
an arbitrarily selected replication for (N,T ) = (400, 1000).

The dotted line represents the true parameter over time. The
solid line is the KSE, which is relatively stable and coincides
with the true parameter very well. The scattered points are
the MLEs at discrete time points. Compared with the KSE,
the MLE is less stable and may generate highly inaccurate

estimates for some parameters (e.g., β4(t)).

Figure 3. The histograms of the original number of rides and
the response variable Yi(tk). The left-hand panel shows the

histogram of the number of rides in different regions, which is
heavily right-skewed. The right-hand panel shows the
histogram of the response variable Yi(tk), which is

approximately symmetric.

Figure 4. The KSE and MLE of the parameters in real data
analysis. The dotted line represents the MLE at discrete time
points, while the solid line represents the KSE. Similar with
our simulation results, the KSE is more stable than the MLE.

Moreover, the KSE is much easier to interpret in the
empirical setting. By contrast, the MLE generates some
abnormal estimates for almost every parameter (e.g., the

negative estimate for β2(t)), which can hardly be explained
from a practical point of view.

implies that the KSE exhibits more consistent performance
and has much better interpretations than the MLE in the
empirical study.

With the estimated parameters, we can use the in-
formation of neighbouring regions to forecast the num-
ber of rides in any target region i1 at any partic-
ulate time point t (i.e., Ŷi1(t)). Define Y(−i1)(t) =
(Y1(t), · · · , Yi1−1(t), Yi1+1(t), · · · , YN (t)). Following similar
techniques used by [9], one can verify that the conditional
expectation of Yi1(t) is E

{
Yi1(t)|Y(−i1)(t),X(t)

}
= μi1(t) +∑

i3 �=i1
αi1i3(t){Yi3(t) − μ(−i1)(t)}. The definitions of the

notations in the conditional expectation are given in Ap-
pendix D. Replace ρ(t) and β(t) in E

{
Yi1(t)|Y(−i1)(t),X(t)

}
with ρ̂KSE(t) and β̂KSE(t), respectively, and then we can ob-

tain Ê
{
Yi1(t)|Y(−i1)(t),X(t)

}
. For convenience, we denote

Ŷi1(t) = Ê
{
Yi1(t)|Y(−i1)(t),X(t)

}
. Then, the predicted val-

ues at tk are Ŷ(tk) = (Ŷ1(tk), Ŷ2(tk), . . . , ŶN (tk))
� ∈ RN .
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Figure 5. The histogram and time series plot of R2
out(tk).

The left panel shows the histogram of R2
out(tk), which

suggests that R2
out(tk) is mostly between 60% and 75%. The

right panel shows the time series plot of R2
out(tk), which

indicates that the lowest R2
out(tk) occurred at around 06:50

am, 10:15 am, and 5:25 pm.

To examine the forecasting accuracy, we use the method
of Leave-One-Out cross-validation. To this end, we de-
fine out-sample R-square at time point tk as R2

out(tk) =

1 −
∑N

i=1(Ŷi(tk)− Yi(tk))
2/
∑N

i=1(Yi(tk)− Ȳ (tk))
2, where

Ȳ (tk) =
∑N

i=1 Yi(tk)/N . We summarize R2
out(tk) with a his-

togram (see Figure 5(a)) and a time series plot (see Fig-
ure 5(b)). Overall, the forecasting performance is fairly good
with most R2

out(tk) in the range between 60% and 75%.
However, there are three exceptions with R2

out(tk) smaller
than 40%. These exceptions occurred in business districts
at around 06:50 am, 10:15 am, and 5:25 pm.

To gain more insights, we can readily identify the regions
with poor forecasting accuracy at these three time points.
Remember that we divided the Beijing urban area into 64
regions. We index these regions columnwise, which is shown

Figure 6. The 64 regions of Beijing urban area.

in Figure 6. Then, for each region, we calculate the relative
difference between the true value Yi(tk) and the forecasted

value Ŷi(tk). Here, for region i, we define dfi(tk) = ‖{Ŷi(tk)−
Yi(tk)}/Yi(tk)‖. The result shows that No.21, No.39, and
No.24 regions have the lowest forecasting accuracy at 06:50
am, 10:15 am, and 5:25 pm, respectively. Though we don’t
know the specific reason behind the poor forecasting ac-
curacy (due to the limitations of the data), we do believe
that some unexpected events may have occurred in these re-
gions, which can provide meaningful information for the on-
line ride-hailing platform to adjust its strategies accordingly.

APPENDIX A. THE DERIVATIVES OF
�{ρ(TK)} WITH RESPECT

TO ρ(TK)

In this appendix, we provide the first and second order
derivatives of �{ρ(tk)} with respect to ρ(tk). They are the
keys to the Newton-Raphson method.

The first order derivative of �{ρ(tk)} with respect to ρ(tk)
is

�̇{ρ(tk)}=
N{Q(tk)SkY(tk)}�{Q(tk)WY(tk)}
{Q(tk)SkY(tk)}�{Q(tk)SkY(tk)}

−tr(Sk
−1W ).

The second order derivative of �{ρ(tk)} with respect to
ρ(tk) can be expressed as

�̈{ρ(tk)} =
2N [{Q(tk)SkY(tk)}�Q(tk)WY(tk)]

2

[{Q(tk)SkY(tk)}�Q(tk)SkY(tk)]2

− N{Q(tk)WY(tk)}�Q(tk)WY(tk)

{Q(tk)SkY(tk)}�Q(tk)SkY(tk)

− tr(Sk
−1WSk

−1W ).

(A.1)

APPENDIX B. THE DERIVATIVES OF
�{θ(TK)} WITH RESPECT

TO θ(TK)

In this appendix, we provide the first and second order
derivatives of �{θ(tk)} in (4) with respect to θ(tk).

The first-order derivative of �{θ(tk)} with respect to θ(tk)
is

l̇{θ(tk)} =
1

σ2(tk)
(B.1)
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⎛
⎝ A

X�(tk)E(tk)
{E�(tk)E(tk)−Nσ2(tk)}{2σ2(tk)}−1

⎞
⎠ ,

where A = {ZkX(tk)β(tk)}�E(tk) + E�(tk)ZkE(tk) −
σ2(tk)tr(Zk), Zk = WS−1

k .
The second-order derivative of �{θ(tk)} with respect to

θ(tk) is l̈{θ(tk)}

= − 1

σ2(tk)⎛
⎜⎝ B X�(tk)Mk

(tk)M�
k E(tk)

σ2

X�(tk)Mk X�(tk)X(tk) σ−2(tk)X
�(tk)E(tk)

(tk)M�
k E(tk)

σ2

(tk)X
�(tk)E(tk)
σ2 C

⎞
⎟⎠ ,

(B.2)

where B = σ2(tk)tr(Z
2
k)+M�

k Mk, C = E�(tk)E(tk)
σ4(tk)

− N
2σ2(tk)

,

and Mk = WY(tk).

APPENDIX C. PROOF OF THEOREM 1

Let θ(t) = (ρ(t), β�(t), σ2(t))� be the vector of true pa-
rameters at time t. To examine the asymptotic properties of
θ̂KSE(t), we rewrite θ̂KSE(t)− θ(t) as follows.

θ̂KSE(t)− θ(t) =
1

T

[ T∑
k=1

{
θ̂MLE(tk)− θ(t)

}

Kh(tk − t)
]{

T−1
T∑

k=1

Kh(tk − t)
}−1

=
1

T

[ T∑
k=1

{
θ̂MLE(tk)− θ(tk) + θ(tk)−

θ(t)
}
Kh(tk − t)

]{ 1

T

T∑
k=1

Kh(tk − t)
}−1

={m̂1(t) + m̂2(t)}/f̂(t),

where m̂1(t) = T−1
∑T

k=1{θ̂MLE(tk) − θ(tk)}Kh(tk −
t), m̂2(t) = T−1

∑T
k=1{θ(tk) − θ(t)}Kh(tk − t), and

f̂(t) = T−1
∑T

k=1 Kh(tk − t). We then study the orders of

m̂1(t), m̂2(t), and f̂(t), respectively.

First, we examine m̂1(t). Define uk = θ̂MLE(tk) − θ(tk),

then m̂1(t) =
∑T

k=1 ukKh(tk − t)/T , where uk can be de-

rived from the Taylor expansion of �̇{θ̂MLE(tk)} at θ(tk). For
convenience, we denote γk = N−1�̈{θ(tk)}, γ = E(γT ), and

ηk =
√
N

−1
�̇{θ(tk)}. Assume conditions (C1)-(C4) hold,

then we have (9). It leads to uk = −(Nγk)
−1

√
Nηk +

Op(N
−1), which can be verified to be equivalent to uk =

−γ−1N−1/2ηk + Rk, where Rk is the remainder term that
can be ignored. Therefore, we get

m̂1(t) =
−1√
NTh

1√
Th

T∑
k=1

γ−1ηkK(
tk − t

h
).(C.1)

According to [12], we can verify that√
Th

−1 ∑T
k=1 γ

−1ηkK((tk − t)/h) = Op(1). Then, (C.1) can

be finally expressed as m̂1(t) = Op(NTh− 1
2 ).

Second, we study m̂2(t). Using the Taylor expansion of
θ(tk) at t, we get θ(tk)−θ(t) = θ̇(t)(tk−t)+ θ̈(t)(tk−t)2/2+
o((tk − t)2). Therefore, m̂2(t) can be rewritten as

m̂2(t) =
1

Th

T∑
k=1

{
θ̇(t)(tk − t)

+
1

2
θ̈(t)(tk − t)2 + o((tk − t)2)

}
K(

tk − t

h
).

(C.2)

Assume tk − t = hu, and then as T → ∞, we have

1

Th

T∑
k=1

K(
tk − t

h
) →

∫
K(u)du = 1,

1

Th

T∑
k=1

(tk − t)K(
tk − t

h
) → h

∫
uK(u)du = 0,

1

Th

T∑
k=1

(tk − t)2K(
tk − t

h
) → h2

∫
u2K(u)du = h2μ2,

where μ2 is the second moment of the kernel K(·). Then
(C.2) can be written as m̂2(t) = θ̈(t)h2μ2/2 + op(h

2) =
Op(h

2).

Third, we study f̂(t). For any time t, according to [6], we

can easily know that f̂(t)− 1 = Op(h
2).

For any t ∈ (0, 1), we finally have θ̂KSE(t) − θ(t) =

{m̂1(x) + m̂2(t)}/f̂(t) −→p 0, as min{N,T} → ∞, h → 0,
and NTh → ∞. This completes the proof of Theorem 1.

APPENDIX D. DETAILS ABOUT THE
CONDITIONAL

EXPECTATION OF YI(T )

Define the distribution of Y(t) to be N(μ(t),Σ(t)), where
μ(t) ∈ RN and Σ(t) ∈ RN×N . Let Xi1,·(t) ∈ R1×p

be the i1th row of X(t) and X(−i1),·(t) ∈ R(N−1)×p be

X(t) without the i1th row. Define E[{Yi1(t), Y
�
(−i1)

(t)}�] =
[μi1(t), μ

�
(−i1)

(t)]� and var[{Yi1(t), Y
�
(−i1)

(t)}�] = Σi1 =

[Σi1,11(t),Σi1,12(t); Σi1,21(t),Σi1,22(t)], where μi1(t) ∈ R,
μ(−i1)(t) ∈ RN−1, Σi1,11(t) ∈ R, Σi1,12(t) ∈ R1×(N−1),

Σi1,21(t) ∈ R(N−1)×1, and Σi1,22(t) ∈ R(N−1)×(N−1). As-
sume Σi1,11(t) �= 0 and recall W = (wi1i2) ∈ RN×N .
We can derive that E

{
Yi1(t)|Y(−i1)(t),X(t)

}
= μi1(t) +∑

i3 �=i1
αi1i3(t){Yi3(t)− μ(−i1)(t)}, where

αi1i3(t) =
ρ(t)

{
wi1i3 + wi3i1 − ρ(t)

∑
i2
wi2i1wi2i3

}
1 + ρ2(t)

∑
i2
w2

i2,i1

,

[μi1(t);μ(−i1)(t)]=[{AXi1,·(t)+BX(−i1),·(t)}β(t);{CXi1,·(t)+
DX(−i1),·(t)}β(t)], and
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A = 1
1−ρ(t)wi1i1

− ρ(t)Wi1,(−i1)

1−ρ(t)wi1i1

{
IN−1 − ρW(−i1),(−i1) −

ρ2(t)
1−ρ(t)wi1i1

W(−i1),i1Wi1,(−i1)

}−1
,

B = ρ(t)
1−ρ(t)wi1i1

Wi1,(−i1)

{
IN−1 − ρ(t)W(−i1),(−i1) −

ρ2(t)
1−ρ(t)wi1i1

W(−i1),i1Wi1,(−i1)

}−1
,

C = ρ(t)
1−ρ(t)wi1i1

{
IN−1 − ρ(t)W(−i1),(−i1) − ρ2(t)

1−ρ(t)wi1i1
×

W(−i1),i1Wi1,(−i1)

}−1
W(−i1),i1 ,

D =
{
IN−1 − ρ(t)W(−i1),(−i1) − ρ2(t)

1−ρ(t)wi1i1
W(−i1),i1 ×

Wi1,(−i1)

}−1
.

In the above equations, IN−1 ∈ R(N−1)×(N−1) is the iden-
tity matrix, Wi1,(−i1) ∈ R1×(N−1) is the i1th row of W
(i.e., a vector) with the i1th element removed, W(−i1),i1 ∈
R(N−1)×1 is the i1th column of W (i.e., a vector) with the
i1th element removed, andW(−i1),(−i1) ∈ R(N−1)×(N−1) rep-
resents W with both the i1th column and the i1th row re-
moved.
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