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A variable selection approach to multiple
change-points detection with ordinal data
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Change-point detection has been studied extensively with
continuous data, while much less research has been carried
out for categorical data. Focusing on ordinal data, we re-
frame the change-point detection problem in a Bayesian
variable selection context. We propose a latent probit model
in conjunction with reversible jump Markov chain Monte
Carlo to estimate both the number and locations of change-
points with ordinal data. We conduct extensive simulation
studies to assess the performance of our method. As an il-
lustration, we apply the new method to detect changes in
the ordinal data from the north Atlantic tropical cyclone
record, which has an indication of global warming in the
past decades.
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1. INTRODUCTION

Change-point detection for binary data was first con-
sidered in the seminal work of Hinkley and Hinkley [20],
paving the way for categorical data analysis with poten-
tial change-points to emerge as an active research area. Cu-
mulative sum-type methods for a sequence of binary re-
sponses first appeared in Pettitt [34], and were applied
to multinomial responses in Wolfe and Chen [39]. Fu and
Curnow [11] proposed the maximum likelihood approach
for multiple change-points. As an alternative to frequentist
methods, Bayesian approaches have also been developed for
change-point problems. Chib [6] reformulated the change-
point model by introducing a latent discrete state variable
which indicates the regime that an observation is drawn
from, which was generalized to multinomial data in Park
[32]. A Bayesian hierarchical change-point model was de-
veloped by Carlin, Gelfand and Smith [4], where the Gibbs
sampler is utilized for obtaining marginal posterior densi-
ties. Fearnhead [8] and Fearnhead and Liu [9] described al-
gorithms that can simulate samples directly from the exact
posterior distribution of the number and positions of change-
points, thus avoiding the potential convergence problem in
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the commonly used Markov chain Monte Carlo (MCMC)
methods. Applications of Bayesian change-point approaches
to the study of ecology and literary style analysis can be
found in Qian, Pan and King [35] and Girón, Ginebra and
Riba [14], respectively.

With the growing interest in high-dimensional variable se-
lection problems, we reformulate the change-point detection
in the Bayesian variable selection framework [19]. Bayesian
variable selection in probit models often relies upon data
augmentation, where the probit regression is transformed
into linear regression using latent normal variables [1]. By
combining the stochastic search variable selection approach
[12] with data augmentation, Lee et al. [28] introduced a
method for selecting a suitable subset of regressors in the
binary regression. For multinomial data, Sha et al. [38]
developed a variable selection approach which utilizes the
Metropolis–Hastings algorithm. However, the selection of
the tuning parameters in the algorithm is often challeng-
ing. Significant progress in this direction was achieved by
Holmes and Held [21], in which they presented an automated
method without tuning. The data-augmentation based ap-
proaches tend to mix poorly due to correlation between
the auxiliary variables and the regression coefficients. To
circumvent such issues, Lamnisos, Griffin and Steel [27]
extended the automatic generic sampler [15] to a binary
regression model, in which no auxiliary variable is intro-
duced.

Our research is motivated by analyzing north Atlantic
tropical cyclone data between years 1851 and 2015, which
may provide scientific evidence for climate changes in the
past over 160 years [2, 7, 26, 37]. Global warming causes
the sea surface temperature to rise [29], and storms tend to
be more intense over warm water while losing their intensi-
ties as they veer over cool water or land [31]. Mann et al.
[30] discovered that the annual storm counts had reached
anomalous levels over the past two decades, and Knutson et
al. [24] predicted that tropical cyclones would be stronger
with higher wind speeds and heavier rains. Robbins et al.
[36] investigated whether there exists any discontinuity (i.e.,
change-points) in the north Atlantic tropical cyclone record
under the change-point detection framework.

We base our analysis of change-points on the data set
HURDAT2 that can be directly downloaded from the Na-
tional Oceanic Atmospheric Administration website. The
top panel of Figure 1 shows the sequence of all recorded
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wind speed scales. With the advancement in measurement
techniques [25], as well as the dramatic regime shift in the
shelf ecosystems in the north Atlantic [17], it is believed that
there exist inconsistencies (i.e., sudden changes) in the data.
Robbins et al. [36] developed a test statistic for detecting a
single change-point in a categorical data sequence and il-
lustrated that there are two change-points corresponding to
years 1930 and 1995.

Figure 1. A sequence of the wind speed scales of the 1739
cyclones recorded in years 1851–2015 (top panel), the cyclone
count (middle panel) and the posterior probabilities of the
locations of the change-points in the HURDAT2 data

(bottom panel).

The rest of the article is organized as follows. In Section
2, we describe the probit change-point models for binary
and ordinal responses and reparameterize the original mod-
els such that the multiple change-point estimation is trans-
formed into a Bayesian variable selection problem. Section 3
provides an introduction of the extended automatic generic
sampler, and Section 4 presents simulation studies to illus-
trate the empirical behavior of the proposed approach. In
Section 5, we apply our change-point detection method to
the north Atlantic basin cyclone record data, and Section 6
concludes with some remarks.

2. METHODOLOGY

2.1 Probit model

We consider the problem of detecting multiple change-
points in ordinal data using a probit model. Suppose that
y = (y1, . . . , yn)

T is a data series in which each response
yi depends on a mean parameter βi. Here, the value of βi

remains constant for i ∈ [ik−1, ik − 1], and only changes at
K unknown locations {i1, . . . , iK}, i.e., βi = μk for ik−1 ≤
i ≤ ik−1, k = 1, . . . ,K+1, where i0 = 1 and iK+1 = n+1.

Suppose the response yi takes a value of 0 or 1. Under
the probit model, we assume the probability of yi = 1 to be

(1) Pr(yi = 1) = 1− Pr(yi = 0) = Φ(βi), i = 1, . . . , n,

where Φ(·) is the cumulative distribution function for the
standard normal distribution. If the responses are ordinal,
i.e., if each yi can take a value from the discrete choices
{1, . . . , C}, we assume that each yi is generated from an
ordinal probit model,

Pr(yi = c) = Φ(τc − βi)− Φ(τc−1 − βi),

i = 1, . . . , n; c = 1, . . . , C,

where τc is the upper cutoff for yi = c, and −∞ = τ0 <
τ1 < · · · < τC−1 < τC = ∞. For identification, we fix the
first cutpoint τ1 = 0. Our goal is to detect the locations of
the change-points {i1, . . . , iK} as well as estimating the true
number of change-points K and the μk’s.

2.2 From change-point detection to variable
selection

We first reparameterize our change-point model as fol-
lows. Denote δ1 = β1 and δi = βi − βi−1 for i = 2, . . . , n, so
that

βi =

i∑
j=1

δj , i = 1, . . . , n.

For k = 0, . . . ,K, we have

δi =

{
μk+1 − μk, if i = ik,

0, otherwise,

where μ0 = 0, i.e., if ik is the location of a change-
point, then δik �= 0. In addition, let β = (β1, . . . , βn)

T,
δ = (δ1, , . . . , δn)

T, and

(2) X =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎦
n×n

,

so that β = Xδ. With such reparametrization, we can trans-
form the change-point detection problem into a variable se-
lection one by identifying the nonzero regression coefficients

252 C. K. Lam et al.



δi �= 0. In the probit regression framework, the matrix X
can be viewed as a design matrix, and the parameter δ can
be interpreted as a vector of regression coefficients with the
first element δ1 representing the intercept. We also intro-
duce a latent indicator vector γ = (γ1, . . . , γn)

T such that
γi = I(δi �= 0) where I(·) is an indicator function. Equiva-
lently, if there is an i′ > 1 such that γi′ = 1, this indicates
that i′ is one of the change-points. Note that an intercept is
included, and thus the value of γ1 is fixed to be 1. For an
indicator vector γ, we denote the corresponding model as
Mγ .

Under model Mγ , let pγ =
∑n

i=2 γi, i.e., the number of
regressors contained in this model. Let {1, h1, . . ., hpγ} be
the subindices corresponding to the nonzero elements in the
vector γ; for example, suppose that γ = (γ1, γ2, γ3, γ4)

T =
(1, 1, 0, 1)T, then pγ = 2, h1 = 2, and h2 = 4. Define
δγ = (δ1, δh1 , . . . , δhpγ

)T, i.e., the vector of regression coef-
ficients for those selected active covariates. In the Bayesian
paradigm, we assign a multivariate normal prior distribution
to δγ ,

δγ ∼ Npγ+1(0, c
2
0Ipγ+1),

where c20 is a large number and Ij is a j× j identity matrix.
If y is an ordinal sequence, we adopt the transformation
κc = log(τc − τc−1), c = 2, . . . , C − 1, and denote κ =
(κ2, . . . , κC−1)

T. We then assign a normal prior distribution
N(0, 102) to each κc, c = 2, . . . , C − 1. Finally, we assign a
Bernoulli prior distribution to each element of γ,

π(γi) = πγi

0 (1− π0)
1−γi , i = 2, . . . , n,

so that each regressor is included in a model independently
with a prespecified common probability π0.

3. AUTOMATIC GENERIC SAMPLER

3.1 Reversible jump Markov chain Monte
Carlo

Our goal is to select a suitable model Mγ and estimate
the corresponding parameter vector ζγ , where ζγ = δγ for

binary responses and ζγ = (τ2, . . . , τC−1, δ
T
γ)

T for ordinal
responses. We conduct the model searching using the auto-
matic generic (AG) sampler, which can simultaneously ex-
plore both the model and parameter spaces.

It takes two stages to propose a new model Mγ′ from
the current one Mγ . At each iteration g, we first draw a
sample m(g) from a binomial distribution with the parame-
ters M−1 and ω0 ∈ (0, 1), i.e., m(g) ∼ Binomial(M−1, ω0),
where M ∈ N

+ is a prespecified number indicating the max-
imum number of variables to be potentially changed from
the current model, N+ refers to the set of all positive inte-
gers, and ω0 is the probability that each variable is selected
among the M − 1 variables. At the second stage, we ran-
domly select one move from the three possible ones: Add,
Delete and Swap. If Add is selected, then a new model Mγ′

is constructed by adding m(g) + 1 new variables to the cur-
rent model Mγ ; if Delete is selected, we remove m(g) + 1
randomly selected regressors from the current model Mγ

and construct a new model Mγ′ with the pγ −m(g) − 1 re-
maining regressors in Mγ ; if Swap is selected, we randomly
select m(g) + 1 regressors from those in Mγ and replace
them with another m(g) + 1 regressors from those excluded
from Mγ . The number of regressors pγ′ in Mγ′ using these
three moves are pγ +m(g)+1, pγ −m(g)−1 and pγ , respec-
tively. According to this scheme, the probability q(γ′|γ) of
proposing to move from Mγ to Mγ′ is

q(γ′|γ) =
(
M − 1

m(g)

)
ωm(g)

0 (1− ω0)
M−1−m(g)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1( pγ

m(g)+1

) , if pγ > pγ′ and

n− 1− pγ < m(g) + 1 ≤ pγ ,

1(n−1−pγ

m(g)+1

) , if pγ < pγ′ and

pγ < m(g) + 1 ≤ n− 1− pγ ,

1

3
( pγ

m(g)+1

) if pγ > pγ′ and

m(g) + 1 ≤ min(pγ , n− 1− pγ),

1

3
(n−1−pγ

m(g)+1

) , if pγ < pγ′ and

m(g) + 1 ≤ min(pγ , n− 1− pγ),( pγ

m(g)+1

)−1

3
(n−1−pγ

m(g)+1

) , if pγ = pγ′ and

m(g) + 1 ≤ min(pγ , n− 1− pγ).

The probability q(γ|γ′) of proposing to move from Mγ′ to
Mγ can be obtained by exchanging γ and γ′ accordingly.

Once a new model Mγ′ is selected, we propose a new
parameter ζγ′ based on the current parameter ζγ . When
pγ′ > pγ , a new random vector uγ of length pγ′ − pγ is
generated from a multivariate distribution with probability
density function qγ(uγ). We sample uγ from a multivariate

normal distribution Npγ′−pγ (0, Ipγ′−pγ ). Let ζ̂γ and Σ̂γ de-
note the maximum likelihood estimators of the parameter
vector ζγ and the covariance matrix respectively [22, 23].

Let Σ̂
1/2

γ be the lower triangular matrix of the Cholesky

decomposition of Σ̂γ , so that Σ̂γ = Σ̂
1/2

γ

(
Σ̂

1/2

γ

)T
. Denote

νγ =
(
Σ̂

1/2

γ

)−1
(ζγ − ζ̂γ). Under the new model Mγ′ , we

set the parameter vector ζγ′ to be

ζγ′ =

⎧⎪⎪⎨⎪⎪⎩
ζ̂γ′ + Σ̂

1/2

γ′ (νγ)
pγ′+1

1 , if pγ′ < pγ ,

ζ̂γ′ + Σ̂
1/2

γ′ νγ , if pγ′ = pγ ,

ζ̂γ′ + Σ̂
1/2

γ′ (νT
γ ,u

T
γ)

T, if pγ′ > pγ ,

where (·)m1 denotes the first m components of a vector.
The acceptance probability of moving to model γ′ is then
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Figure 2. Simulation results under scenario 1 (binary data
with one change-point) with sample size n = 500 (left) and
n = 1000 (right). For each sample size, we present the fitted
curve in comparison with the true curve (top panel), the

posterior histogram of the number of change-points (middle
panel) and the posterior probability of the location of the

change-point (bottom panel).

min(1, Aγ→γ′), where

Aγ→γ′ =
π(ζγ′ ,γ′|y)q(γ|γ′)|Σ̂

1/2

γ′ |

π(ζγ ,γ|y)q(γ′|γ)|Σ̂
1/2

γ |

×

⎧⎪⎨⎪⎩
qγ′(uγ′), if pγ′ < pγ ,

1, if pγ′ = pγ ,

qγ(uγ)
−1, if pγ′ > pγ .

3.2 Posterior inference

After the iterations are completed using the AG sam-
pler, N posterior samples are collected, which form the ba-
sis for inference. Denote the jth posterior indicator vec-
tor and posterior sample from the AG sampler for the
parameters β as γ(j) and β(j) respectively, with β(j) =

(β
(j)
(1), . . . , β

(j)
(n))

�. We first compute the posterior inclusion

probabilities, (ppost1 , . . . , ppostn )�, for each point, and then
obtain the estimated change-points via the non-maximum
suppression (NMS) procedure described as follows.

• Determine a window size h and a threshold probability
p.

• For j = h, h + 1, . . . , n − h, if ppostj = max{ppostl , l ∈
(j − h, j + h]} ≥ p, then j is selected as an estimated
change-point.

Figure 3. Simulation results under scenario 2 (binary data
with four change-points) with sample size n = 500 (left) and
n = 1000 (right). For each sample size, we present the fitted
curve in comparison with the true curve (top panel), the

posterior histogram of the number of change-points (middle
panel) and the posterior probabilities of the locations of four

change-points (bottom panel).

In our simulations and real data application, it is found
that our method is not sensitive to the choices of h and
p. For simplicity, we choose h = 30 and p = 0.1 as
default. After implementation of the NMS step, an es-
timated model Mγ̂ is obtained. Let {̂i0, î1, . . . , îK̂ , îK̂+1}
be the set of estimated change-points, where î0 = 1 and
îK̂+1 = n+1. We estimate the parameters μk for segment k
as the posterior median of the corresponding samples, i.e.,

μ̂k = Median
(
{β(j)

(s)}
j=1,...,N
s=ik−1,...,ik−1

)
, and the 95% highest

posterior density (HPD) interval can be obtained accord-
ingly. The cutoff points {τ2, . . . , τC−1} can be estimated sim-
ply based on the posterior samples, as the number of cutoff
points remains the same under difference models.

4. SIMULATION STUDY

To investigate the performance of the proposed approach,
we conduct simulation studies for both binary and ordinal
data. The parameters used in Sections 4 and 5 are c0 = 5,
M = 3, ω0 = 0.25, and π0 is chosen such that the mean
model size is 5, which are the default parameter values of
the MATLAB codes in the supplemental materials of Lam-
nisos, Griffin and Steel [27]. More detailed discussion on π0

and c0 is given in Section 5. For each scenario, we run the
AG sampler for 43000 iterations with the first 13000 draws
discarded.
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Figure 4. Simulation results under scenario 3 (ordinal data
with four categories and one change-point) with sample size
n = 500 (left) and n = 1000 (right). For each sample size, we
present the fitted curve in comparison with the true curve
(top panel), the posterior histogram of the number of

change-points (middle panel) and the posterior probability of
the location of the change-point (bottom panel).

We first consider a sequence of binary observations {yi}
where yi ∼ Bernoulli{Φ(βi)} as in (1), and

βi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μ1, 1 ≤ i ≤ 0.2n,

μ2, 0.2n < i ≤ 0.4n,

μ3, 0.4n < i ≤ 0.6n,

μ4, 0.6n < i ≤ 0.8n,

μ5, 0.8n < i ≤ n.

In scenario 1, the parameter vector is (μ1, μ2, μ3, μ4, μ5) =
(−0.52,−0.52,−0.52, 1.28, 1.28), which contains a
single change-point at i = 0.6n + 1. In scenario
2, the parameter vector is (μ1, μ2, μ3, μ4, μ5) =
(1.28,−0.52, 0.52,−1.28, 0.00), which contains four change-
points at i = 0.2n+1, 0.4n+1, 0.6n+1, 0.8n+1 respectively.
Under each scenario, sample sizes n = 500 and n = 1000 are
considered. Figures 2 and 3 present the posterior median
estimates of βi, i = 1, . . . , n, which match well with their
true values. The histograms show that the distributions
of the number of change-points are centered around the
true values 1 and 4, respectively. The posterior inclusion
probabilities of each regressor xi, where xi is the ith
column of X in (2), are also presented in Figures 2 and 3.
Under these two scenarios, we can see that the regressors
at the locations of change-points have significantly higher

Figure 5. Simulation results under scenario 4 (ordinal data
with four categories and four change-points) with sample size
n = 500 (left) and n = 1000 (right). For each sample size, we
present the fitted curve in comparison with the true curve
(top panel), the posterior histogram of the number of

change-points (middle panel) and the posterior probabilities
of the locations of four change-points (bottom panel).

inclusion probabilities than the others. With the increase
of sample size from n = 500 to n = 1000, the posterior
inclusion probabilities tend to be more concentrated on
these regressors.

In scenarios 3 and 4, we consider that each yi is an ordinal
response. We simulate yi with probabilities

Pr(yi = c) = Φ(τc − βi)− Φ(τc−1 − βi),

i = 1, . . . , n; c = 1, . . . , C,

where C = 4, τ2 = 0.25 and τ3 = 0.75. The values of β
and the sample sizes n in scenarios 3 and 4 are the same as
those in scenarios 1 and 2. Compared with scenarios 1 and 2,
these two scenarios are more challenging due to the increase
of response categories. Figures 4 and 5 show the estimation
results by the proposed method, which illustrate that even
though two additional cutpoint parameters are involved in
the iteration procedure, it can still provide reliable inference
on the true values of β as well as the number and locations
of change-points.

For each scenario, we adopt the AG sampler to obtain
N posterior samples, and then carry out the posterior in-
ference according to the methods described in Section 3.2.
We calculate the bias and the posterior standard deviation
as well as the 95% HPD interval. Table 1 presents the nu-
merical results under the four scenarios with sample sizes
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Table 1. The biases, standard deviations (SD), 95% highest posterior density (HPD) intervals of the model parameters and
the deviations of the estimated locations of the change-points from the truth under each scenario with sample size n = 500

and n = 1000

n Scenario Parameter Bias SD 95% HPD Deviation

500 1 μ1 −0.07 0.20 (−0.77,−0.42) –
μ2 −0.04 0.48 (1.00, 1.60) 0

2 μ1 −0.16 0.33 (0.77, 1.51) –
μ2 0.13 0.23 (−0.73,−0.08) −1
μ3 0.15 0.29 (0.22, 1.21) 0
μ4 0.08 0.46 (−1.74,−0.74) 0
μ5 0.00 0.25 (−0.28, 0.28) 2

3 μ1 0.03 0.17 (−0.66,−0.31) –
μ2 −0.04 0.13 (1.04, 1.46) 0
τ2 −0.01 0.04 (0.16, 0.32) –
τ3 −0.04 0.07 (0.59, 0.85) –

4 μ1 −0.09 0.26 (0.85, 1.53) –
μ2 0.03 0.22 (−0.83,−0.16) 0
μ3 0.13 0.37 (0.34, 1.11) −8
μ4 −0.11 0.63 (−1.79,−0.87) 0
μ5 0.05 0.23 (−0.20, 0.30) 0
τ2 0.04 0.04 (0.21, 0.38) –
τ3 −0.02 0.06 (0.62, 0.86) –

1000 1 μ1 −0.01 0.10 (−0.67,−0.39) –
μ2 −0.04 0.17 (0.99, 1.47) −3

2 μ1 −0.10 0.29 (0.69, 1.67) –
μ2 0.04 0.23 (−0.68,−0.28) 0
μ3 0.15 0.24 (0.46, 0.87) −2
μ4 0.17 0.18 (−1.36,−0.85) 0
μ5 0.07 0.16 (−0.13, 0.31) −6

3 μ1 0.03 0.08 (−0.59,−0.38) –
μ2 0.04 0.15 (1.17, 1.47) 0
τ2 0.01 0.03 (0.21, 0.32) –
τ3 0.00 0.05 (0.66, 0.84) –

4 μ1 −0.17 0.13 (0.91, 1.30) –
μ2 0.07 0.15 (−0.65,−0.27) 1
μ3 0.02 0.12 (0.36, 0.72) 0
μ4 −0.06 0.23 (−1.62,−1.08) −7
μ5 −0.12 0.11 (−0.29, 0.06) −1
τ2 −0.01 0.03 (0.19, 0.30) –
τ3 −0.01 0.05 (0.66, 0.83) –

n = 500 and n = 1000. We can conclude that the estima-
tion of the parameters and locations of the change-points is
satisfactory. In addition, both the standard deviation and
the length of the 95% HPD interval of each parameter de-
crease with the increase of sample size n. The convergence
of the Markov chain appears to be satisfactory based on
Geweke’s statistics [13].

5. ATLANTIC BASIN CYCLONE DATA

We apply the proposed change-point detection method
to the HURDAT2 data set, which is available from the Na-
tional Oceanic Atmospheric Administration’s website. The
data set is composed of information on 1739 Atlantic basin
cyclones between years 1851 and 2015. We classify each

storm according to the Saffir–Simpson scale, which is a
common practice for meteorologists. The storms with wind
speeds of 40–73 mph, 74–95 mph, 96–110 mph, 111–130
mph, 131–156 mph, and above 156 mph are categorized as
the Saffir–Simpson categories 0, 1, 2, 3, 4, and 5, respec-
tively. A plot of the categorical scales of the storms is pro-
vided in the top panel of Figure 1. We also show a time
series plot of cyclone count per year from 1851 to 2015 in
the middle panel of Figure 1, which indicates an obvious
increasing trend of the cyclone count per year. However, as
we focus on the categories of the cyclones, we do not take
the number of cyclones of each year into consideration.

In all the experiments, we draw 43000 posterior samples
using the AG sampler with the first 13000 iterations dis-
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Figure 6. Inclusion probability of each point under different
values of π0 and c0.

carded as burn-ins, which takes about two and half hours
using our Matlab code on a computer with Intel Core i7-
4770 CPU and 8GB RAM. By default, we choose c0 = 5
and nπ0 = 5, while four other configurations are also ex-
plored: small or large model sizes with nπ0 = 1 or 50, and
informative or non-informative priors with c0 = 1 or 50.
Figure 6 shows that under all the five hyper-parameters set-
tings the inclusion probabilities achieve peaks at around the
1000th and the 1400th observations. However, if the prior
expected model size deviates far from the truth (e.g., under
nπ0 = 50 and c0 = 5), or the prior of δγ is informative
(e.g., under nπ0 = 5 and c0 = 1), the peaks are more dis-
persive and relatively lower, and the 95% HPD intervals for
parameters become wider compared with the other three
settings. Under a suitable expected model size and a non-
informative prior for δγ , the results are very similar. In prac-
tice, we may choose a large c0 to induce a non-informative
prior, and nπ0 in the same scale of the true model size
which can be experimented through preliminary data anal-
ysis.

To evaluate the convergence of the posterior samples,
we use the method of Geweke [13] which is based on a
test for equality of the means of the first and last por-
tions of a Markov chain. If the samples are drawn from
the stationary distribution of the chain, the two means
are equal and Geweke’s statistic asymptotically follows the
standard normal distribution. Since the number of param-
eters μi’s changes under different models, in our diagnostic
test we mainly focus on the number of change-points K
and the parameters of cutoff points {τc}C−1

c=2 . We compute
Geweke’s statistics of {τc}C−1

c=2 and K based on 30000 pos-
terior samples and the resultant p-values are all larger than
0.1, demonstrating that the Markov chain achieves station-
arity as expected.

Table 2. The posterior medians, standard errors (SE) and
95% highest posterior density (HPD) intervals of the model

parameters in the analysis of the HURDAT2 data set

Parameter Median SE 95% HPD

μ1 1.44 0.05 (1.32, 1.53)
μ2 0.65 0.08 (0.52, 0.77)
μ3 1.23 0.08 (1.09, 1.36)
τ2 1.51 0.05 (1.42, 1.57)
τ3 2.19 0.06 (2.08, 2.27)
τ4 2.64 0.06 (2.54, 2.75)
τ5 3.28 0.08 (3.11, 3.44)

Among a total of 30000 posterior samples, 96.8% of
them indicate existence of two change-points, 3.0% indi-
cate three change-points, and the remaining indicate four
change-points. The marginal inclusion probabilities of the
regressors in the bottom panel of Figure 1 demonstrate that
one change-point is at the 1006th observation (year 1967)
and the other is at the 1404th observation (year 1995). The
estimates of the parameters are presented in Table 2.

As shown in Figure 7, we further calculate the proba-
bility of a storm being classified into each category in the
three detected segments. Figure 8 exhibits the time series
plots of posterior medians of Pr(yi = c) for each class, for
which the computation is based on a full posterior man-
ner that accounts for the uncertainty in the total number
of change-points. From these figures, we can see that the
estimated probability of a storm to belong to category 0
in 1967–1995 is substantially larger than those in the other
two segments. This is due to an unphysical increase of the
record of these storms, which may be the consequence of the
progressive technology and analysis protocols in the meteo-
rological satellite era beginning in the 1960s [25]. Prior to the
1960s, a tropical cyclone could only be detected when it was
physically encountered by humans either at sea or on land.

We proceed to compare the estimation results in the
1967–1995 and 1995–2015 segments. We can deduce from
Figures 7 and 8 that the estimated probabilities of the
storms with categories higher than 1 in the recent two
decades have increased significantly. The top panel and the
middle panel of Figure 1 demonstrate that the number of
the storms increased between 1995 and 2015, while the num-
ber of category 0 storms has declined significantly compared
with the counterpart in the 1967–1995 segment. A possi-
ble explanation for this phenomenon is the dramatic regime
shift in the shelf ecosystems of the northwest Atlantic, per-
haps due to natural environmental variability and human
activities, e.g., rampant overfishing in this region [10, 16, 17].

6. CONCLUDING REMARKS

To detect potential changes in the Atlantic basin cyclone
record, we have developed a Bayesian approach for the anal-
ysis of probit models with multiple change-points. By in-
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Figure 7. Estimated probabilities of the six wind speed
categories in the three detected segments.

troducing a virtual regressor on each observation, we re-
formulate the original change-point detection problem into
a Bayesian variable selection one and tackle it by using a
reversible-jump Markov chain Monte Carlo algorithm. The
objective is to simultaneously obtain a sparse vector with the
nonzero components matching the locations of the change-
points and make inference in each of the detected segments.
With the algorithm developed in this paper, we identify two
change-points in Atlantic basin hurricane record circa 1967
and 1995, which is consistent with the findings in Robbins
et al. [36] based on the frequentist cumulative sum-type
method. We thus offer evidence in support of the recent
increase in the frequency of intense storms from a Bayesian
perspective.

There are several possible future directions for this work.
Along with the probit model, the approach proposed in this
paper can be easily applied to the change-point analysis in
other types of generalized linear models mutatis mutandis,
for which the logit model for multinomial data and the
Poisson log-linear model for count data are natural can-
didates. With the approach proposed by Bartolucci, Scac-
cia and Mira [3], we may compare alternative change-point

Figure 8. Time series plots of the posterior probability
Pr(yi = c) for each class.

models by calculating the corresponding Bayes factors with
the output of the reversible-jump algorithm. Instead of the
Gaussian priors, we may also employ Laplace priors for the
regression coefficients in our proposed approach, leading to
a fully Bayesian Lasso framework [5, 18, 33].

ACKNOWLEDGEMENT

We thank the associate editor, the two referees, and the
Editor-in-Chief Professor Yuedong Wang for their many
constructive and insightful comments that have led to sig-
nificant improvements in the article. The research was sup-
ported in part by a grant (grant number 17307218) from the
Research Grants Council of Hong Kong.

Received 14 May 2019

REFERENCES
[1] Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary

and polychotomous response data. Journal of the American Sta-
tistical Association 88, 669–679. MR1224394

[2] Allison, I., Bindoff, N. L., Bindschadler, R. A., Cox, P. M.,
de Noblet, N., England, M. H., Francis, J. E., Gruber, N.,

258 C. K. Lam et al.

http://www.ams.org/mathscinet-getitem?mr=1224394


Haywood, A. M., Karoly, D. J., and Kaser, G. (2011). The
Copenhagen Diagnosis: Updating the World on the Latest Cli-
mate Science. Elsevier.

[3] Bartolucci, F., Scaccia, L., and Mira, A. (2006). Effi-
cient Bayes factor estimation from the reversible jump output.
Biometrika 93, 41–52. MR2277738

[4] Carlin, B. P., Gelfand, A. E., and Smith, A. F. (1992). Hierar-
chical Bayesian analysis of changepoint problems. Applied Statis-
tics 41, 389–405.

[5] Chen, X., Wang, Z. J., and McKeown, M. J. (2011). A Bayesian
Lasso via reversible-jump MCMC. Signal Processing 91, 1920–
1932. MR2858445

[6] Chib, S. (1998). Estimation and comparison of multiple change-
point models. Journal of Econometrics 86, 221–241. MR1649222

[7] Derksen, C. and Brown, R. (2012). Spring snow cover extent
reductions in the 2008–2012 period exceeding climate model pro-
jections. Geophysical Research Letters 39, L19504.

[8] Fearnhead, P. (2006). Exact and efficient Bayesian inference
for multiple changepoint problems. Statistics and Computing 16,
203–213. MR2227396

[9] Fearnhead, P., and Liu, Z. (2007). On-line inference for multiple
changepoint problems. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 69, 589–605. MR2370070

[10] Frank, K. T., Petrie, B., Choi, J. S., and Leggett, W. C.

(2005). Trophic cascades in a formerly cod-dominated ecosystem.
Science 308, 1621–1623.

[11] Fu, Y. X. and Curnow, R. N. (1990). Maximum likelihood
estimation of multiple change-points. Biometrika 77, 563–573.
MR1087847

[12] George, E. I. and McCulloch, R. E. (1993). Variable selection
via Gibbs sampling. Journal of the American Statistical Associ-
ation 88, 881–889.

[13] Geweke, J. (1991). Evaluating the accuracy of sampling-based
approaches to the calculation of posterior moments (Vol. 196).
Minneapolis, MN: Federal Reserve Bank of Minneapolis, Research
Department. MR1380276

[14] Girón, J., Ginebra, J., and Riba, A. (2005). Bayesian analysis
of a multinomial sequence and homogeneity of literary style. The
American Statistician 59, 19–30. MR2109428

[15] Green, P. J. (2003). Trans-dimensional Markov chain Monte
Carlo. Oxford Statistical Science Series, 179–198. MR2082410

[16] Greene, C. H. and Pershing, A. J. (2007). Climate drives sea
change. Science 315, 1084–1085.

[17] Greene, C. H., Pershing, A. J., Cronin, T. M., and Ceci, N.

(2008). Arctic climate change and its impacts on the ecology of
the North Atlantic. Ecology 89, S24–S38.

[18] Hans, C. (2009). Bayesian Lasso regression. Biometrika 96, 835–
845. MR2564494
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