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Model misspecification can compromise valid inference
in conventional quantile regression models. To address this
issue, we consider two flexible model extensions for high-
dimensional data. The first is a Bayesian quantile regres-
sion approach with variable selection, which uses a sparse
signal shrinkage prior on the high-dimensional regression
coefficients. The second extension robustifies conventional
parametric quantile regression methods by including obser-
vation specific mean shift terms. Since the number of out-
liers is assumed to be small, the vector of mean shifts is
sparse, which again motivates the use of a sparse signal
shrinkage prior. Specifically, we exploit the horseshoe+ prior
distribution for variable selection and outlier detection in
the high-dimensional quantile regression models. Computa-
tional complexity is alleviated using fast mean field varia-
tional Bayes methods, and we compare results obtained by
variational methods with those obtained using Markov chain
Monte Carlo (MCMC).
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1. INTRODUCTION

Regression modeling of high-dimensional data, where the
number of covariates p is much larger than the number of
observations n, is increasingly common in modern statisti-
cal applications. Fitting realistic models to such data can in-
volve considerable statistical and computational complexity.
Furthermore, many of the covariates are often uninforma-
tive, and this may adversely affect the parameter estimation
with error accumulation known as the “curse of dimensional-
ity” [17]. In view of this, the development of a methodology
for detecting insignificant variables and outliers has become
more important. This paper explores the performance of
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shrinkage priors in high-dimensional Bayesian linear quan-
tile regression models, with applications to outlier detection
and variable selection, all implemented using fast variational
Bayes algorithms. We show that the methodology works well
in a variety of examples, from both a statistical and a com-
putational point of view.

First proposed by [57], Bayesian quantile regression
adopts the asymmetric Laplace distribution as the addi-
tive error distribution, that is, y = μ(x) + ε, ε ∼ ALτ (σ)
where μ(x) denotes the conditional mean of y given the
vector of covariate x, τ denotes the desired quantile level,
and ALτ (σ) is the asymmetric Laplace (AL) distribution
with scale parameter σ and τ ∈ (0, 1) a prespecified quan-
tile level. Quantile regression is somewhat more robust to
outliers than conventional mean regression models, and it
also provides a richer way to describe the relationship be-
tween the response y and covariates x. Bayesian quantile
regression has thus become increasingly popular. Some re-
cent contributions include [26], who proposed an efficient
Gibbs sampler based on an analytically tractable location-
scale mixture representation of the AL distribution, and [22]
who implemented Bayesian quantile regression for a semi-
parametric model with a Dirichlet process mixture error dis-
tribution similar to that of [25]. Although the AL distribu-
tion is used only to obtain a log-likelihood function equiv-
alent to the check loss function ρτ (u) = u(τ − I(u < 0))
(where I denotes the indicator function), it has been proven
empirically and theoretically that the model produces cor-
rect estimates [41].

Variable selection in Bayesian quantile regression is a
field with a growing literature. [56] rely on point mass
spike and slab priors to probabilistically remove noise vari-
ables. [1] adopts the adaptive LASSO penalty, which is
then translated to the normal-exponential-gamma hierar-
chical prior, except that the gamma distribution is replaced
with the inverse gamma distribution. [28] give a unified
treatment of some common penalties, including the LASSO,
group LASSO and elastic net. A wide variety of other con-
tinuous shrinkage priors have been suggested in the lit-
erature to select significant variables and improve predic-
tive performance in high-dimensional regression problems
[35, 20, 7, 2, 3, 18, 11].
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Methods for model and variable selection are potentially
a useful tool for outlier detection. It is a common practice to
detect suspected outliers in post-analysis diagnostics using
studentized residuals or generalized Cook’s distances [14]
in a leave-one-out approach [51]. However, model-based ap-
proaches adopting mean shift parameters for every obser-
vation have also been used by [30] and [40], among others.
Motivated by the penalized regression approach of [40], [54]
recently proposed a sparse signal regression and outlier de-
tection method using the horseshoe+ prior [5] in Bayesian
linear regression. A Bayesian approach to outlier detection
in Bayesian quantile regression was considered in [39], mak-
ing use of the latent variables in the scale mixture represen-
tation of the AL distribution. Here we generalize the work of
[54] using mean shift terms with sparsity priors for quantile
regression, and this provides a widely applicable strategy for
outlier detection in a range of models.

The sparse signal shrinkage priors we consider are the
horseshoe [11] and horseshoe+ [5] priors. The horseshoe
prior has recently gained popularity because of its good com-
putational and statistical performance, and the horseshoe+
prior is an extension involving an additional hierarchical
layer. The extra layer of mixing variables makes local shrink-
age effects marginally dependent after integrating out the
additional hierarchical layer, which is helpful in the case of
ultra-sparse effects. Computations with these models can
be carried out conveniently using a Gibbs sampler in con-
ditional conjugate models with a hierarchical representa-
tion of the half-Cauchy distribution as a mixture of inverse-
gamma distributions ([47] and [31]). However, the location-
scale mixture representation of the AL distribution involves
an additional parameter for each observation, which renders
the Markov chain Monte Carlo (MCMC) algorithm infeasi-
ble for massive datasets or data with the number of covari-
ates much larger than the number of observations (p > n).
Thus, we instead consider a faster approximate estimation
method, namely variational Bayes (VB).

There are many uses of the horseshoe prior applied to
variable selection in linear regression [37, 19, 36] but none
in quantile regression or the approaches considered here, as
far as we know. Formally, extending linear regression meth-
ods to linear quantile regression is not difficult. However,
the augmented model we consider in this paper for outlier
detection in quantile regression results in a p > n problem,
and an alternative model variant we consider with distinct
shrinkage parameters for outlier terms and coefficients also
requires a fine-tuned initialization to effectively capture the
signals from the high dimensional covariates.

The rest of this paper is organized as follows. Section 2
describes Bayesian quantile regression models for variable
selection and outlier detection. In Section 3, we briefly re-
view VB and its implementation for the proposed models.
Section 4 applies the methods to synthetic and real data,
comparing them with MCMC methods in terms of CPU
time, and with existing methods in terms of accuracy, sen-
sitivity, and specificity. All MCMC samplers are based on

the same likelihood and prior distributions as those of VB.
Finally, we discuss possible extensions and the limitations
of our approach in Section 6.

2. MODELS

2.1 Linear quantile regression model

Given a set of n observations consisting of the response
variable yi and p dimensional covariates xi, i = 1, . . . , n, the
linear quantile regression model is

yi = β0,τ + xT
i βτ + εi, εi

iid∼ ALτ (σ) i = 1, . . . , n(1)

where β0,τ is the intercept and βτ = (β1,τ , . . . , βp,τ )
T ∈ R

p

is a vector of regression coefficients. The assumed model (1)
implies that the τth conditional quantile of yi given xi is
Qτ (yi | xi) = β0,τ + xT

i βτ . The subscript τ indicates that
β0,τ and βτ depend on the quantile level τ ; however, we
omit the subscript for notational convenience hereafter.

The location-scale reparameterization of the AL distribu-
tion [26] allows convenient hierarchical modeling

ALτ (ε |σ)=
∫ ∞

0

1

κ2

√
2πσz

exp

(
− 1

2κ2
2σz

(ε− κ1z)
2

)
π(z) dz

(2)

where κ1 = (1 − 2τ)/(τ(1 − τ)), κ2
2 = 2/(τ(1 − τ)), and

π(z) is an exponential mixing density with mean σ. The
hierarchical model becomes

yi | β0,β, σ, z
ind∼ N(β0 + xT

i β + κ1zi, κ
2
2σzi)

zi | σ iid∼ Exp

(
1

σ

)
σ ∼ InvGam

(r0
2
,
s0
2

)
We place a normal prior on the intercept β0 ∼ N

(
0, σ2

0

)
and place an ultra-sparse horseshoe+ prior [5] on the regres-
sion coefficients β for high-dimensional variable selection.
The horseshoe+ prior on β1, . . . , βp is

(βj |λj , ηj , Aβ) ∼ N
(
0, λ2

j

)
(3)

(λj | ηj , Aβ) ∼ C+ (0, Aβηj)

ηj ∼ C+(0, 1)

where C+ is a half-Cauchy distribution whose density is

p (λj |Aβ) =
2

πAβ

(
1 + (λj/Aβ)

2
) , λj > 0.

In the original horseshoe prior λj |Aβ ∼ C+ (0, Aβ), and the
horseshoe+ modification adds an extra hierarchical layer so
that the local shrinkage effects are not independent after
integrating out η = (η1, . . . , ηp)

T .
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To allow for conditional conjugacy in models with half-
Cauchy prior components, [31] introduced a hierarchical rep-
resentation of the half-Cauchy (3) as a mixture of inverse-
gamma distributions. Applying this here gives

(βj |λj) ∼ N
(
0, λ2

j

)
(4) (

λ2
j | ζj

)
∼ InvGam

(
1

2
,
1

ζj

)
(ζj | ηj) ∼ InvGam

(
1

2
,

1

(Aβηj)
2

)
(
η2j | ζη

)
∼ InvGam

(
1

2
,
1

ζη

)
ζη ∼ InvGam

(
1

2
, 1

)
Thus, the horseshoe+ prior reduces to a conditionally mul-
tivariate normal prior for β, with multiple layers of inverse-
gamma mixing variables.

2.2 Outlier detection in linear quantile
regression models

As discussed in the introduction, we extend the mean-
shift normal model for outlier detection ([40] and [54]) to
Bayesian sparse signal quantile regression by including the
shift parameter in Equation (1). This extension adds robust-
ness against the distributional assumptions for normality.
Specifically, the model is

(5) yi = β0 + xT
i β + γi + εi, εi

iid∼ ALτ (σ), i = 1, · · · , n

where γi indicates the quantile shift parameter and γ =
(γ1, . . . , γn)

T is assumed to be sparse. Since γ is sparse, a
small number of outliers can be accommodated in the model
through the mean-shift parameters. Sparsity also motivates
the use of a horseshoe+ prior on γ. That is,

(γi |λγi , ηγi , Aγ) ∼ N
(
0, λ2

γi

)
(λγi | ηγi , Aγ) ∼ C+ (0, Aγηγi)

ηγi ∼ C+(0, 1),

which is equivalent to

(γi |λγi) ∼ N
(
0, λ2

γi

)
(
λ2
γi
| ζγi

)
∼ InvGam

(
1

2
,
1

ζγi

)
(ζγi | ηγi) ∼ InvGam

(
1

2
,

1

(Aγηγi)
2

)
(
η2γi

| ζη,γ
)

∼ InvGam

(
1

2
,

1

ζη,γ

)
ζη,γ ∼ InvGam

(
1

2
, 1

)
.

We call the above model the full horseshoe+ quantile OD
(outlier detection) model. This model can be represented as
in (1) by augmenting the design matrix and concatenat-
ing the parameters, i.e., X̃ = (X, In), β̃ = (β,γ), where
γ = (γ1, . . . , γn). The augmented model is more restrictive
compared to the full horseshoe+ quantile OD model, in that
the former utilizes a single shrinkage parameter Aβ , whereas
the latter implements the separate shrinkage parameters Aβ

and Aγ on β and γ, respectively.

3. ESTIMATION

3.1 An overview of variational Bayes

Bayesian computations are most often carried out using
MCMC methods. However, here we use VB as a fast al-
ternative, since the primary focus of our paper is a setting
where the dimension is high and MCMC is computationally
burdensome. For a further background, see [34], [9] and [46].

VB considers a family of variational distributions F and
minimizes within the family the Kullback-Leibler (KL) di-
vergence to the true posterior. If we write q to denote the
variational density function over the parameters, then

log p (y) =

∫
log

π (Θ) p (y |Θ)

q (Θ)
q (Θ) dΘ(6)

+

∫
log

q (Θ)

π (Θ |y)q (Θ) dΘ,

where the first integral is the so-called variational lower
bound, and the second integral is the KL divergence be-
tween the true posterior π(Θ |y) and the variational poste-
rior q(Θ). Note that log p (y) does not depend on the choice
of q and thus minimizing the KL divergence in Equation (6)
over q ∈ F is equivalent to maximizing the lower bound over
the variational family. Thus a best approximation q ∈ F to
the posterior is found as

q̂(Θ) = argmax
q(Θ)∈F

[
Eq(Θ) {log p(y,Θ)} − Eq(Θ) {log q(Θ)}

]
,

(7)

where we have written p(y,Θ) = π (Θ) p (y |Θ).
With conditionally conjugate priors and factorizing as-

sumptions for the variational family F , the optimal form of
the variational posterior distribution can be derived analyt-
ically and the estimation can be done using a coordinate-
ascent optimization [15]. This corresponds to so-called
mean-field VB. Suppose the family F consists of densi-
ties of the form q̂(Θ) =

∏B
j=1 qj(θj) for some partition

θ = (θT1 , . . . , θ
T
B)

T of θ. Let θj |Θ−j ,y be the full condi-
tional of θj . Fixing qk(θk), k �= j, it can be shown that the
optimal qj(θj) is

q�j (θj) ∝ exp
(
EΘ\θj log p(θj |Θ−j ,y)

)
Variational message passing [53, 46] is a general algorithm

used to implement mean-field VB in conjugate-exponential
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family models. In non-conjugate models, an extension called
non-conjugate variational message passing (NCVMP) is
very useful [23, 45]. Assume qj(θj) takes the exponential
family form

qj(θ) = exp
{
λT
j Sj(θj)− Zj(λ)

}
where λj is the vector of natural parameters, Sj(θj) is the
vector of sufficient statistics and Zj(λj) is the log normaliz-
ing constant. Then the NCVMP update is

λj ←
(
covq(θ) {Sj(θj)}

)−1
(

∂

∂λj
Eq(θ) {log p(y, θ)}

)
.

See [23] and [45] for further details.

In general, the posterior independence assumption in the
VB approximation can bias the point estimates and under-
estimate variability compared with the MCMC algorithm in
which the true posterior is approximated with arbitrary pre-
cision. Our empirical findings in Section 4 also confirm that
the MCMC results are consistently less biased than those ob-
tained using VB. These drawbacks are not only confined to
our application but also apply to VB approaches more gener-
ally (e.g., [48] and [43]). The error in the VB approximation
depends on how well the assumed posterior distribution re-
flects reality. We refer interested readers to [44, 16, 8, 29]
for technical details and further discussions.

3.2 Linear quantile model

For the case of Bayesian linear quantile regression, [31]
considered the implementation of mean-field VB methods.
However, the use of the horseshoe-type priors or outlier de-
tections in combination with quantile regression was not
considered. Mean-field methods for the horseshoe and other
sparse signal shrinkage priors for mean regression were con-
sidered by [31] and [32]. Both the linear quantile regres-
sion model and the full horseshoe+ quantile OD model
we have described allow efficient mean-field variational up-
dates for all factors thanks to conditional conjugacy. In
particular, consider the linear quantile regression model in
Section 2.1 with the set of parameters denoted by Θ1 =(
β0,β, σ, {zi}ni=1 ,

{
λ2
j , ζj , η

2
j

}p

j=1
, ζη

)
where the subscript

in Θ1 indicates that these parameters belong to the first
model, namely the linear quantile model in Section 2.1, as
opposed to the full horseshoe+ quantile OD model in Sec-
tion 2.2.

Writing
.
= to denote equality up to an additive constant,

the log-posterior is given by

�(Θ1 | y) + log π(Θ1)
.
= −n

2
log σ − 1

2

n∑
i=1

log zi

− 1

2κ2
2σ

n∑
i=1

(yi − β0 − xT
i β − κ1zi)

2

zi

− n log σ − 1

σ

n∑
i=1

zi −
(
r0σ
2

+ 1

)
log σ

− s0σ
2σ

− 1

2

p∑
j=1

β2
j

λ2
j

− 1

2
log λ2

j −
(β0 − μβ0)

2

2σ2
β0

+

p∑
j=1

−3

2
log λ2

j −
1

2ζjλ2
j

+

p∑
j=1

−3

2
log ζj −

1

2(Aβηj)2ζj

+

p∑
j=1

−3

2
log η2j −

1

ζηη2j
− 3

2
log ζη −

1

2ζη

We decompose the variational posterior into

q(Θ1) = q1(β0)q2(β)q3(σ)

[
n∏

i=1

q4(zi)

]
(8)

×

⎡⎣ p∏
j=1

q5(λ
2
j )q6(ζj)q7(η

2
j )

⎤⎦ q8(ζη).

The optimal variational distributions based on mean-field
VB are given as follows: q1(β0) is a univariate normal distri-
bution, parameterized as N(μq

β0
, σ2q

β0
); q2(β) is a multivari-

ate normal distribution denoted as Np(μ
q
β ,Σ

q
β); q3(σ) is an

inverse gamma distribution denoted as InvGam(rqσ/2, s
q
σ/2);

and q4(zi) is a generalized inverse Gaussian (GIG) distri-
bution parameterized as GIG

(
1
2 , χ

q
zi , ψ

q
z

)
. Here, the super-

script q is used for the variational parameters to avoid
notational confusion with the parameters for their prior
distributions given in Section 2. The remaining optimal
variational distributions q5(λ

2
j ), q6(ζj), q7(η

2
j ), q8(ζη) are

inverse gamma distributions denoted as InvGam (1, �1j),
InvGam (1, �2j), InvGam (1, �3j), and InvGam

(
p+1
2 , �4

)
,

respectively. �1j , . . . , �3j , j = 1, . . . , p, and �4 denote the
variational parameters to be updated in the VB algorithms.
Specifically, Algorithm 1 provides a full description of the
derived updates.

The variational lower bound consists of three compo-
nents: the expectation of the log-likelihood, log-prior dis-
tributions, and variational entropies.

E(�(Θ1 | y) + π(Θ))
.
=

(
3n+ r0 + 2

2

)(
ψ
(rq
2

)
− log

(sq
2

))
− 1

2κ2
2

rqσ
sqσ

[
n∑

i=1

κ2
1 E (zi)− 2κ1

(
yi − μq

β0
− xT

i μ
q
β

)
+ E

(
1

zi

)((
yi − μq

β0
− xT

i β
)2

+ xT
i Σ

q
βxi + σ2q

β0

)]

− rqσ
sqσ

n∑
i=1

E (zi)−
sqσr

q
σ

2sqσ
−

p∑
j=1

[
μq
β,j +Σq

β,jj

2�1j
+

1

2
log�1j

]
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Algorithm 1 VB algorithm for linear quantile regression
1: procedure VBLinMod(y,X, τ)
2: Initialize variational parameters.
3: LB = −∞
4: dif = 1
5: for i in 1 : maxIter do

6: σ2q
β0

←
(

rqσ
κ2
2s

q
σ

∑n
i=1 μ 1

zi

+ 1
σ2
0

)−1

7: μq
β0

← σ2q
β0

(
rqσ

κ2
2s

q
σ

(∑n
i=1 μ 1

zi

(
yi − xT

i μq
β

)
− κ1

)
+ μ0

σ2
0

)
8: Σq

β ←
(

rqσ
κ2
2s

q
σ

∑n
i=1 μ 1

zi

+ diag
(

1
�i1

, . . . , 1
�1p

))−1

9: μq
β ← Σq

β

(
rqσ

κ2
2s

q
σ

∑n
i=1 xi

(
μ 1

zi

(
yi − μq

β0

)
− κ1

))
10: rqσ ← r0σ + 3n

11: sqσ ← 1
κ2
2

[∑n
i=1 κ

2
1 E(zi)− 2κ1

(
yi − μq

β0
− xT

i μq
β

)
12: +μ 1

zi

((
yi − μ̂β0

− xT
i μq

β

)2
+ σ̂2

β0
+ xT

i Σq
βxi

)]
13: +2

∑n
i=1 E(zi) + s0σ

14: χq
zi ← rqσ

κ2
2s

q
σ

[(
yi − μ̂β0

− xT
i μq

β

)2
+ σ̂2

β0
+ xT

i Σq
βxi

]
15: for i = 1, . . . , n

16: ψq
z ← rqσ

s
q
σ

(
2 +

κ2
1

κ2
2

)
17: �1j ←

μ
p
β,j

2+Σβ,jj

2
+ 1

�2j
for j = 1, . . . , p

18: �2j ← 1
�1j

+ 1
A2

β
�3j

for j = 1, . . . , p

19: �3j ← 1
A2

β
�2j

+ p+1
2�4

for j = 1, . . . , p

20: �4 ←
∑p

j=1
1

�3j
+ 1

21: Compute LBnew.
22: Compute dif = LB−LBnew

23: if dif < TOL then
24: break
25: else
26: LB ← LBnew

27: return (σ2q
β0

, μq
β0

,Σq
β , μ

q
β , r

q
σ , s

q
σ , ψ

q
z ,
{
χq
zi

}n

i=1
,

28: {�1j , �2j , �3j}pj=1 , �4)

− 3

2

p∑
j=1

log(�1j�2j�3j)− log�4 −
p+ 1

2�4

The variational entropies are summed to be

H(Θ1)
.
=

1

2
log detΣq

β +
rqσ
2

+ log

(
sqσ
2

)
+ log Γ

(
rqσ
2

)
−
(
1 +

rqσ
2

)
ψ

(
rqσ
2

)
+

1

2
log σ̂2

β0

+

n∑
i=1

[
− 1

4

(
log (ψq)− log

(
χq
zi

))
+ log

(
2K1/2

(√
ψq
zχ

q
zi

))
+
1

2

(
χi E

(
1

zi

)
+ ψq E (zi)

)]

+
1

2

p∑
j=1

log(�1j�2j�3j) + log�4

where Kν(x) is the modified Bessel function of the second

kind. Then, the lower bound becomes

LB = E (�(Θ1 | y) + log π(Θ1)) + H(Θ1)

3.3 Full horseshoe+ quantile OD model

In the full horseshoe+ quantile OD model, let the set of

parameters be denoted by Θ2 =
(
Θ1,

{
γi, λ

2
γi
, ζγi , η

2
γi

}n

i=1

)
.

We decompose the variational posterior into

(9) q(Θ2) = q(Θ1)q9(γ)

[
n∏

i=1

q10(λ
2
γi
)q11(ζγi)q12(η

2
γi
)

]

with q(Θ1) defined as in (8). The optimal form of the ad-
ditional factors in (9) are: q9(γ) is multivariate normal,
Nn(μ

q
γ ,Σ

q
γ); q10(λ

2
γi
), q11(ζγi), q12(η

2
γi
), q13(ζη,γ) are inverse

gamma, InvGam (1, �γ
1i), InvGam (1, �γ

2i), InvGam (1, �γ
3i),

InvGam

(
n+ 1

2
, �γ

4

)
, respectively. Algorithm 2 describes

the coordinate-ascent algorithm on the updates of all the
variational parameters Θ2. Algorithm 2 describes the de-
rived updates.

4. EMPIRICAL STUDY

4.1 High-dimensional linear quantile
regression

In this section, we examine the performance of VB in
linear quantile regression for different quantile levels. We
generate data (yi,xi), i = 1, . . . , n, where n = 100 and

p = 300 by xij
iid∼ Unif(0, 1) and β = (5110,0p−10)

T . The
response variables are obtained through yi = xT

i β + εi.
Since quantile regression does not reflect the true data

generating process but rather attempts to capture quantile
information using the check loss function, we assess the per-
formance under various error distributions. We refer to the
simulation setting of [12] for the error distribution, which
varies from a single component normal distribution to non-
normal multimodal distributions, yet has at least close-to-
zero or exactly zero medians.

• Normal: εi
iid∼ N (0, 1)

• Skewed: εi
iid∼ 0.2N (−0.88, 1) + 0.2N

(
−0.392, 1.52

)
+

0.6N
(
0.196, 59

2
)

• Kurtotic: εi
iid∼ 2

3N (0, 1) + 1
3N

(
0, 0.12

)
• Bimodal: εi

iid∼ 0.5N
(
−1, 2

3

2
)
+ 0.5N

(
1, 2

3

2
)

• Bimodal with separate modes: εi
iid∼ 0.5N

(
−1.5, 0.52

)
+

0.5N
(
1.5, 0.52

)
• Skewed bimodal: εi

iid∼ 0.75N (−0.43, 1) +

0.25N
(
1.07, 1

3

2
)

• Trimodal: εi
iid∼ 0.45N

(
−1.2, 0.62

)
+0.45N

(
1.2, 0.62

)
+

0.1N
(
0, 0.252

)
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Algorithm 2 VB algorithm for the full quantile OD model
1: procedure VBFull(y,X, τ)
2: Initialize variational parameters.
3: LB = −∞
4: dif = 1
5: for iter in 1 : maxIter do

6: σ2q
β0

←
(

rqσ
κ2
2s

q
σ

∑n
i=1 μ 1

zi

+ 1
σ2
0

)−1

7: μq
β0

← σ̂2
β0

(
rqσ

κ2
2s

q
σ

(∑n
i=1 μ 1

zi

(
yi − xT

i μβ − μγi

)
− κ1

)
8: +μ0

σ2
0

)
9: Σq

β ←
(

rqσ
κ2
2s

q
σ

∑n
i=1 μ 1

zi

+ diag
(

1
�i1

, . . . , 1
�1p

))−1

10: μq
β ← Σq

β

(
rqσ

κ2
2s

q
σ

∑n
i=1 xi

(
μ 1

zi

(
yi − μq

β0
− μγi

)
− κ1

))
11: rqσ ← r0σ + 3n

12: sqσ ← 1
κ2
2

[∑n
i=1 κ

2
1 E(zi)− 2κ1

(
yi − μq

β0
− xT

i μq
β − μq

γi

)
13: +μ 1

zi

((
yi − μq

β0
− xT

i μq
β − μq

γi

)2
+ σ2q

β0
+ xT

i Σq
βxi

14: +Σq
γ,ii

)]
+ 2

∑n
i=1 E(zi) + s0σ

15: χq
zi ← rqσ

κ2
2s

q
σ

[ (
yi − μq

β0
− xT

i μq
β − μq

γi

)2
+ σ2q

β0

16: +xT
i Σq

βxi +Σq
γ,ii

]
for i = 1, . . . , n

17: ψq
z ← rqσ

s
q
σ

(
2 +

κ2
1

κ2
2

)
18: Σq

γ ←
(

rqσ
κ2
2s

q
σ
diag

({
μ 1

zi

}n

i=1

)
+ diag

({
1

�
γ
1i

}n

i=1

))−1

19: μq
γ ← Σq

γ

(
diag

({
μ 1

zi

}n

i=1

) (
y− μq

β0
1n −Xμq

β

)
− κ1

)
20: �γ

1i ←
μ
q
γ,i+Σ

q
γ,ii

2
+ 1

�1i
for i = 1, . . . , n

21: �γ
2i ←

1
�

γ
1i

+ 1
A2

γ�3i
for i = 1, . . . , n

22: �γ
3i ←

1
A2

γ�
γ
2i

+ n+1
2�

γ
4

for i = 1, . . . , n

23: �γ
4 ←

∑n
i=1

1
�

γ
3i

+ 1

24: �1j ←
μ
p
β,j

2+Σβ,jj

2
+ 1

�2j
for j = 1, . . . , p

25: �2j ← 1
�1j

+ 1
A2

β
�3j

for j = 1, . . . , p

26: �3j ← 1
A2

β
�2j

+ p+1
2�4

for j = 1, . . . , p

27: �4 ←
∑p

j=1
1

�3j
+ 1

28: Compute LBnew.
29: Compute dif = LB−LBnew

30: if dif < TOL then
31: break
32: else
33: LB ← LBnew

34: return (σ2q
β0

, μq
β0

,Σq
β , μ

q
β , r

q
σ , s

q
σ ,Σ

q
γ , μ

q
γ , ψ

q
z ,
{
χq
zi

}n

i=1
,

35:
{
�γ

1i, �
γ
2i, �

γ
3i

}n

i=1
, �γ

4 , {�1j , �2j , �3j}pj=1 , �4)

• Cauchy: εi
iid∼ C (0, 1)

We measure the accuracy of the estimation using absolute
deviation error (AD) and average check loss (ACL), which
are defined by

AD =
1

n

n∑
i=1

∣∣∣xT
i β − xT

i β̂
∣∣∣ ,

ACLτ =
1

n

n∑
i=1

ρτ (x
T
i β − xT

i β̂), ρτ (x) = x(τ − I(x < 0)).

Further, we measure the shrinkage effects using two vari-
able selection metrics, the true positive rate (TPR) and false
positive rate (FPR). Although these variable selection mea-
sures are not directly applicable to our methods for the
shrinkage priors, we provide them to illustrate the high-
dimensional variable selection with horseshoe+ priors that
shrink the coefficients to near zero. Since our shrinkage pri-
ors do not force the coefficient to zero, we instead check if
the true value is included in the 95% credible interval(CI)
for each coefficient.

Our numerical implementation of all the proposed meth-
ods using horseshoe+priors with both VB (VBQR-HS) and
MCMC (MCQR-HS) is written in R, and the MCMC algo-
rithms for MCQR-HS and the one with outlier detection are
given in the Appendix. All the simulations presented in Sec-
tion 4 are performed on a PC with an Intel i5-3470 CPU. In
the implementation of VBQR-HS, we set the tolerance level
to 10−5 and the hyperparameters for the priors are set as
σ2
0 = 10, Aβ = 10−2, r0σ = 4, and s0σ = 1. The convergence

of the VB algorithm is monitored by the relative increase in
the lower bound in each iteration. For MCQR-HS, we dis-
card the initial 5000 iterations and collect 10000 posterior
samples without thinning.

Table 1 shows the performance measures for VBQR-HS
and MCQR-HS and various error distributions for the 500
simulation iterations. VBQR-HS yields valid estimates com-
parable to those of MCQR-HS on a reasonable quantile in-
terval from 0.3 to 0.7 but with some instability at extreme
quantile levels τ = 0.1 and 0.9. However, such instabilities
at extreme quantile levels are expected, as the number of ob-
servations in the tails is small (e.g., [38, 49, 13]) and the AL
distribution does not impose certain structures on tail fat-
ness by construction (e.g, [52, 4]). Aside from accuracy, VB
is shown to be numerically stable and its statistical perfor-
mance is robust to the assumption of different error distri-
butions. One notable exception is the Cauchy error distribu-
tion whose expected value is infinity, and the heavy tailed
behavior can lead to an erratic estimation and low accu-
racy, which is observed in both MCQR-HS and VBQR-HS.
This requires an additional exploration beyond the scope of
the current paper. As a caveat, the CI method for check-
ing variable selection is penalized for VBQR-HS since the
uncertainty of the VB approximation is known to be un-
derestimated, resulting in narrower intervals. The averaged
elapsed time of VBQR-HS was an order of magnitude faster
than that of MCQR-HS, (e.g., 6.40 seconds for VBQR-HS
and 72.51 seconds for MCQR-HS with 100 simulation itera-
tions), even though the MCMC algorithm was implemented
in such a way that the time complexity of sampling β is
reduced from O(p3) to O(np2) when p � n [6]. This finding
also validates the proposed VB approximation as an attrac-
tive alternative to the MCMC approach in high-dimensional
applications where computation time is critical.
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Table 1. The performance measures of VBQR-HS and MCQR-HS (in parentheses) averaged over the 500 simulation iterations
under various error distributions

τ AD ACL TPR FPR

Normal

0.1 1.71(0.96) 0.18(0.10) 0.37(0.88) 0.00(0.00)
0.3 0.61(0.55) 0.20(0.18) 0.57(0.91) 0.00(0.00)
0.5 0.38(0.34) 0.19(0.17) 0.60(0.93) 0.01(0.00)
0.7 0.60(0.55) 0.19(0.18) 0.58(0.92) 0.00(0.00)
0.9 1.56(0.96) 0.16(0.10) 0.37(0.87) 0.00(0.00)

Skewed

0.1 1.98(1.10) 0.21(0.12) 0.32(0.85) 0.00(0.00)
0.3 0.63(0.61) 0.20(0.19) 0.57(0.91) 0.00(0.00)
0.5 0.32(0.29) 0.16(0.14) 0.66(0.94) 0.01(0.00)
0.7 0.46(0.41) 0.15(0.13) 0.66(0.94) 0.00(0.00)
0.9 1.28(0.79) 0.14(0.09) 0.41(0.89) 0.00(0.00)

Kurtotic

0.1 1.50(0.76) 0.16(0.08) 0.33(0.87) 0.00(0.00)
0.3 0.40(0.39) 0.13(0.13) 0.64(0.93) 0.00(0.00)
0.5 0.19(0.20) 0.10(0.10) 0.77(0.96) 0.00(0.00)
0.7 0.41(0.40) 0.13(0.13) 0.63(0.93) 0.00(0.00)
0.9 1.37(0.76) 0.15(0.08) 0.33(0.87) 0.00(0.00)

Bimodal

0.1 2.00(1.23) 0.21(0.13) 0.40(0.88) 0.00(0.00)
0.3 0.83(0.73) 0.27(0.23) 0.54(0.90) 0.00(0.00)
0.5 0.60(0.48) 0.30(0.24) 0.53(0.90) 0.01(0.00)
0.7 0.82(0.72) 0.27(0.24) 0.55(0.91) 0.00(0.00)
0.9 1.79(1.22) 0.19(0.13) 0.44(0.89) 0.00(0.00)

τ AD ACL TPR FPR

Bimod
SepMod

0.1 2.62(1.75) 0.28(0.18) 0.44(0.92) 0.00(0.00)
0.3 1.23(1.04) 0.41(0.34) 0.54(0.90) 0.01(0.00)
0.5 0.96(0.72) 0.48(0.36) 0.47(0.89) 0.02(0.00)
0.7 1.22(1.04) 0.41(0.34) 0.54(0.90) 0.01(0.00)
0.9 2.32(1.74) 0.25(0.18) 0.51(0.92) 0.00(0.00)

Skewed
Bimodal

0.1 1.99(1.14) 0.21(0.12) 0.36(0.85) 0.00(0.00)
0.3 0.75(0.67) 0.25(0.22) 0.53(0.89) 0.00(0.00)
0.5 0.51(0.42) 0.25(0.21) 0.56(0.91) 0.01(0.00)
0.7 0.69(0.61) 0.22(0.20) 0.59(0.92) 0.00(0.00)
0.9 1.56(1.04) 0.17(0.11) 0.47(0.91) 0.00(0.00)

Trimodal

0.1 2.22(1.32) 0.24(0.14) 0.40(0.89) 0.00(0.00)
0.3 0.89(0.79) 0.29(0.26) 0.51(0.90) 0.01(0.00)
0.5 0.67(0.52) 0.33(0.26) 0.50(0.90) 0.01(0.00)
0.7 0.90(0.78) 0.30(0.25) 0.53(0.90) 0.01(0.00)
0.9 1.96(1.31) 0.21(0.14) 0.42(0.88) 0.00(0.00)

Cauchy

0.1 11.44(8.25) 1.33(0.85) 0.03(0.22) 0.02(0.00)
0.3 5.37(3.83) 1.82(1.26) 0.15(0.49) 0.02(0.00)
0.5 4.47(2.44) 2.24(1.22) 0.16(0.62) 0.02(0.00)
0.7 4.87(2.93) 1.90(1.06) 0.15(0.61) 0.01(0.00)
0.9 11.47(7.76) 1.46(0.82) 0.04(0.31) 0.02(0.00)

Table 2. The average number of outliers found after 10
iterations for each true number of outliers O ∈ {5, 10, 20}
and quantile level τ = {0.1, 0.3, 0.5, 0.7, 0.9} when p > n

Number of Outliers
τ 5 10 20

0.1 0 0 0
0.3 5.0 9.7 3.6
0.5 5.0 10.0 7.6
0.7 5.0 8.8 5.8
0.9 4.7 7.9 3.1

(a) p = 100, n = 50

Number of Outliers
τ 5 10 20

0.1 0 0 0.1
0.3 4.6 10.0 2.4
0.5 4.9 10.0 6.2
0.7 5.0 8.6 6.6
0.9 2.5 7.2 2.5

(b) p = 200, n = 50

4.2 Outlier detection in linear quantile
regression

In this section, we evaluate the outlier detection perfor-
mance of the proposed horseshoe+ quantile OD model in
comparison with the model studied by [54]. For clarity, we
denote the model of [54] as the mean OD model. The simu-
lated data was generated by

yi = xT
i β + γi + εi, εi ∼ N(0, 1.12)(10)

where xij
iid∼ Unif(0, 1), βj

iid∼ Unif(0, 1), γi = 10 for O (the
given number of outliers) randomly selected observations
and γi = 0 otherwise.

We consider n = 50 with p = 100 and p = 200.
Simulations are conducted with every combination of the
true number of outliers O ∈ {5, 10, 20} and quantile levels
τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The initialization mechanism is
modified accordingly to robustly single out the signals in
incorporating the ultra-sparsity [27, 54].

Table 2 describes the simulation results under high-
dimensional circumstances. It is observed that, aside from

the extreme quantiles, the performance of the quantile out-
lier detection model is very stable even in high-dimensional
regression. The low detection rate for O = 20 is not due
to the vulnerability of the model itself but rather stems
from the low signal-to-noise ratio. Since outliers account for
nearly half the data, the fixed component of the conditional
regression function, xTβ, shifts accordingly to accommo-
date the variation.

The performance of the quantile OD model stands out
for non-normal error distributions. Specifically, we generate
the simulated data with an ALτ (1) error distribution:

(11) yi = xT
i β + γi + εi, εi ∼ ALτ (1)

where τ now affects the data generation and the other true
parameters are equal to that of the normal error model. The
dimension for the data set is set to n = 1000 and p = 15
following [54]. Table 3 demonstrates that the quantile OD
model uniformly outperforms the mean OD model for quan-
tile levels 0.3 ∼ 0.9. Moreover, the quantile OD model per-
forms worse for the extreme quantile level 0.1. In general,
this result implies that the quantile OD model captures out-
liers in a more robust fashion compared to the mean OD
model.

Table 3. Average number of outliers detected with the
quantile OD model and mean OD model (in parentheses)

under ALτ (1) data

Number of Outliers
τ 10 20 50 100

0.1 0.3 (0.0) 0 (1.0) 0 (2.3) 0 (12.0)
0.3 10 (0.3) 20.0 (0.0) 50.0 (2.7) 100 (13.7)
0.5 10 (0.0) 19.7 (0.0) 49.7 (1.3) 99.7 (7.70)
0.7 9.7 (0.0) 20.0 (1.3) 49.3 (1.3) 98 (9.70)
0.9 8.3 (0.7) 17.3 (1.3) 40.0 (0.7) 80 (9.70)
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5. REAL DATA APPLICATIONS

5.1 Boston housing data

The Boston housing data have been used as a bench-
mark real data application for variable selection in quantile
regression [21, 56]. We use the dataset available from the
R package mlbench, of which the corrected median value
of owner-occupied homes in USD 1000s (cmedv) is the re-
sponse variable and the remaining 15 variables are included
as covariates after standardization.

We evaluate the performance of VBQR-HS together with
MCQR-HS and adopt the mean-weighted absolute residu-
als considered in [56] in comparison with the QR-SSVS al-
gorithm of [56]. Here, the mean-weighted absolute residual
corresponds to the ACL between the observed yi and esti-
mated ŷi, i.e.,

1
sk

∑sk
i=1 ρτ (yi− ŷi), where sk is the size of the

kth validation set for the 10-fold cross validation. Table 4
reports these estimates. The QR-SSVS based on MCMC is
reported to have taken approximately 17 seconds for each
quantile level with the whole Boston housing data whereas
our VBQR-HS is completed in a mere 4.2 seconds. In terms
of the predictive accuracy, the VB approach makes a small
sacrifice for a tremendous gain in computation time. Note
that the estimates of QR-SSVS M.A.(model averaged) in
Table 4 are those given in Table 7 of [56].

Table 4. Mean weighted absolute deviations for 10-fold cross
validation

τ VBQR-HS MCQR-HS QR-SSVS M.A.

0.05 0.351 0.309 0.306
0.1 0.561 0.560 0.550
0.25 1.094 1.103 1.087
0.5 1.631 1.654 1.576
0.75 1.556 1.590 1.521
0.9 1.043 1.084 1.026
0.95 0.712 0.693 0.670

Table 5 shows the estimated regression coefficients of the
VBQR-HS with three quantile levels in comparison with the
other two MCMC methods. The values in parentheses in
Table 5 are the 95% CI for each parameter. MCQR-HS in-
dicates the posterior mean and corresponding 95% CI of the
variable written above, based on the same model as VBQR-
HS but estimated via MCMC, whereas QR-SSVS indicates
those from the stochastic search variable selection algorithm
of [56] using the R function ssvsquantreg available in the
R package MCMCpack. We set Aβ = 0.005, while all else re-
mains identical to the setting in the simulation study. The
results are, to a large degree, consistent in terms of model
selection with those of MCQR-HS and QR-SSVS, which in-
dicates that the proposed VBQR-HS mimics the behavior
of the MCMC algorithms well, as expected.

Table 5. Regression coefficients of VBQR-HS.

Quantile level (τ)
0.05 0.5 0.95

lon −0.595(−0.597,−0.591) −0.619(−0.640,−0.597) 0.000(−0.000, 0.000)
(MCQR-HS) −0.792(−1.037,−0.565) −0.589(−1.064, 0.001) −0.002(−0.167, 0.156)
(QR-SSVS) −0.712(−1.305,−0.063) −0.565(−0.953,−0.170) −0.034(−0.798, 0.643)

lat 0.242(0.239, 0.244) 0.003(0.002, 0.004) 0.000(−0.000, 0.001)
(MCQR-HS) 0.119(−0.022, 0.377) 0.030(−0.045, 0.258) 0.003(−0.138, 0.168)
(QR-SSVS) 0.152(−0.218, 0.638) 0.195(−0.058, 0.515) 0.329(−0.485, 1.308)

crim −0.617(−0.627,−0.608) −0.357(−0.389,−0.314) −0.000(−0.001,−0.000)
(MCQR-HS) −0.716(−1.273,−0.368) −0.264(−1.168,−0.044) −0.427(−2.336, 0.083)
(QR-SSVS) −0.993(−2.317,−0.22) −0.906(−1.391,−0.271) −0.817(−2.730, 0.994)

zn −0.002(−0.002,−0.001) 0.664(0.630, 0.696) 0.001(0.001, 0.001)
(MCQR-HS) 0.021(−0.070, 0.276) 0.265(−0.039, 0.997) 0.109(−0.063, 0.960)
(QR-SSVS) 0.032(−0.742, 0.764) 0.721(0.197, 1.207) 0.820(−0.083, 1.967)

indus 0.003(0.002, 0.003) −0.001(−0.001,−0.000) 0.000(−0.000, 0.001)
(MCQR-HS) 0.032(−0.080, 0.322) −0.042(−0.519, 0.089) −0.002(−0.063, 0.960)
(QR-SSVS) 0.058(−0.846, 0.952) −0.068(−0.569, 0.348) 0.009(−1.345, 1.627)

chas 0.000(0.000, 0.001) −0.001(−0.001,−0.000) −0.000(−0.001,−0.000)
(MCQR-HS) 0.100(−0.121, 0.862) −0.029(−0.590, 0.214) −0.246(−1.712, 0.071)
(QR-SSVS) 0.049(−2.113, 2.403) −1.044(−2.228, 0.025) −3.540(−9.071, 0.000)

nox −0.001(−0.001, 0.000) −0.698(−0.750,−0.639) −2.626(−2.684,−2.562)
(MCQR-HS) −0.259(−0.862, 0.032) −0.310(−1.415, 0.050) −2.635(−3.604,−1.588)
(QR-SSVS) −0.461(−1.665, 0.462) −0.654(−1.322, 0.000) −1.791(−3.856, 0.000)

rm 1.713(1.704, 1.723) 3.373(3.328, 3.423) 3.421(3.402, 3.453)
(MCQR-HS) 1.793(1.344, 2.218) 3.736(3.023, 4.441) 3.517(2.875, 4.220)
(QR-SSVS) 1.801(0.875, 2.787) 3.541(2.901, 4.197) 3.694(2.664, 4.750)

age −0.003(−0.003,−0.002) −0.002(−0.003, 0.002) 0.000(−0.000, 0.001)
(MCQR-HS) −0.492(−1.015, 0.005) −0.276(−1.103, 0.039) −0.002(−0.167, 0.155)
(QR-SSVS) −0.463(−1.382, 0.257) −0.606(−1.166,−0.007) −0.058(−1.343, 1.241)

dis −0.006(−0.007,−0.006) −1.442(−1.491,−1.389) −2.563(−2.599,−2.527)
(MCQR-HS) −0.985(−1.548,−0.447) −1.156(−1.880,−0.354) −2.674(−3.599,−1.892)
(QR-SSVS) −1.019(−2.214, 0.002) −1.788(−2.415,−1.151) −2.985(−4.548,−1.505)

rad 0.000(0.000, 0.001) 1.243(1.144, 1.334) 5.328(5.279, 5.376)
(MCQR-HS) 0.141(−0.073, 1.063) 0.358(−0.063, 1.723) 5.481(4.121, 7.347)
(QR-SSVS) 0.480(−0.658, 1.965) 1.494(0.589, 2.362) 5.793(3.187, 8.263)

tax −1.619(−1.631,−1.606) −1.977(−2.069,−1.885) −0.000(−0.001, 0.000)
(MCQR-HS) −2.260(−2.896,−1.723) −1.171(−2.452, 0.003) −0.095(−1.291, 0.129)
(QR-SSVS) −2.153(−3.618,−0.739) −1.912(−2.728,−0.985) −1.187(−3.481, 0.674)

ptratio −0.499(−0.504,−0.494) −1.478(−1.501,−1.452) −3.415(−3.438,−3.383)
(MCQR-HS) −0.559(−0.928,−0.197) −1.444(−2.032,−0.955) −3.424(−4.168,−2.517)
(QR-SSVS) −0.615(−1.327, 0.045) −1.433(−1.838,−1.022) −2.503(−3.985,−0.978)

b 0.451(0.447, 0.455) 1.120(1.100, 1.140) 1.359(1.308, 1.399)
(MCQR-HS) 0.573(0.322, 0.832) 1.185(0.812, 1.559) 0.725(−0.028, 1.962)
(QR-SSVS) 0.572(0.000, 1.198) 1.107(0.757, 1.468) 0.737(−0.564, 2.449)

lstat −3.209(−3.223,−3.195) −2.695(−2.749,−2.647) −4.169(−4.194,−4.135)
(MCQR-HS) −2.571(−3.182,−1.974) −2.612(−3.384,−1.842) −4.011(−4.688,−3.218)
(QR-SSVS) −2.705(−3.900,−1.545) −2.283(−2.971,−1.605) −3.728(−4.893,−2.538)

Table 6. TPRs for identifying noise variables with the
VBQR-HS, MCQR-HS, and QR-SSVS methods

VBQR-HS MCQR-HS QR-SSVS
τ = 0.05

Uncorrelated 0.990 0.632 0.917
Correlated 0.972 0.947 1.000

τ = 0.5

Uncorrelated 0.989 0.719 0.804
Correlated 0.993 0.997 0.999

τ = 0.95

Uncorrelated 0.996 0.544 0.536
Correlated 0.942 0.609 0.998

Further, we consider a high-dimensional analysis for the
performance of the proposed VBQR-HS algorithm using a
dataset obtained from the Boston housing data by augment-
ing the original 15 predictors with some noise predictors.
Cases with a large number of noise predictors are considered,
resulting in a genuinely high-dimensional setting. Then, we
explore the assumed model to examine whether the pro-
posed VBQR-HS successfully filters out the randomly gen-
erated predictors in comparison with MCQR-HS and QR-

244 D. Lim et al.



SSVS. For each number of noise predictors, we consider both
scenarios where the noises are correlated and uncorrelated.
The uncorrelated noises are generated from N(0, 1), whereas
the correlated ones are generated from a multivariate nor-
mal distribution with zero mean and a covariance matrix
sampled from the Wishart distribution with the degrees of
freedom as the number of noise predictors plus one and the
scale matrix as a Gram matrix XTX, where Xij ∼ N(0, 1).
Specifically, we include 1000 additional noise variables, and
thus the estimation problem becomes the so called “large p,
small n” (p = 1015 > n = 506) situation. The non-zero coef-
ficient estimates of the original 15 variables turn out to have
little difference from those in Table 5, with the vast majority
of the coefficient estimates for the noise predictors having
magnitudes of or below 10−4. Table 6 provides the TPRs for

their coefficient estimates assuming that the true values are
zero based on both the uncorrelated and the correlated noise
variables, and Figure 1 shows the posterior mean estimates
for all the coefficients with their 95% CIs based on the uncor-
related noise variables for τ = 0.5 by way of an illustration.
As shown in Table 6 and Figure 1, the proposed VBQR-HS
also works well for variable selection with the noise variables
in terms of its accuracy with the TPR. Specifically, by forc-
ing the regression coefficients to zero if their magnitudes are
smaller than 0.001 adjusted with Aβ = 0.0001 for strong
sparsity, 99% of the noise variables are correctly identified
by VBQR-HS for the uncorrelated noise variables, consid-
erably better than MCQR-HS and QR-SSVS, whereas the
variable selection accuracy of VBQR-HS is comparable to
or slightly worse than that of QR-SSVS.

Figure 1. Regression coefficients of the augmented Boston housing data with 1000 uncorrelated noise predictors for τ = 0.5.

Figure 2. The estimated coefficients and quantile shifts of the sugar data. Left: Coefficients of the quantile, Middle: Quantile
shift obtained from the VB full model, and Right: Quantile shift obtained from MCMC.
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5.2 Sugar data for outlier detection

We next analyzed the sugar data in [10] using the VB full
horseshoe+ quantile OD model. The data consist of infrared
spectrograph data of three types of sugar: sucrose, glucose,
and fructose whose absorbances in aqueous solutions with
differing levels of concentration are of interest. The train-
ing set involves 125 observations on 700 wavelengths rang-
ing from 1100 to 2498 nanometers. Instead of performing
the mean regression to detect outliers, we adopt the median
regression, τ = 0.5. We follow the settings of [54] which
utilized a history matching process [50] for prior elicitation
where Aβ = 0.000013 and Aγ = 0.000045. As has been ex-
plained in the full model, we use the robust initialization
with rlm in the R package MASS. For the quantile model
parameters such as σ, their hyperparameters were selected
following [22].

[54] reported the 74th and 99th observations to be out-
liers in this example using the mean OD model. The VB full
model identified 3 outliers, namely the 70th, 74th, and 99th
observations from the quantile shift parameters, whereas
only the 74th and 99th observations are considered to be
outliers in the case of MCMC which coincides with the re-
sults of [54].

6. DISCUSSION

In this paper, we proposed two flexible Bayesian quan-
tile regression models that can address model misspecifi-
cation in particular for high-dimensional data. The first is
a Bayesian quantile regression approach with variable se-
lection using the horseshoe+ prior on the high-dimensional
regression coefficients. The second is a robust quantile re-
gression model incorporating outlier detection. For the im-
plementation, we have developed computationally efficient
methodology in terms of variational Bayes approximation as
a faster alternative to conventional Bayesian methods with
a substantially reduced computation time.

The proposed models have limitations and can potentially
be improved. For both models, we observed poor perfor-
mance at extreme quantile levels. To alleviate the worse tail
behavior for the AL distribution, alternative distributions
have recently been proposed for quantile regression mod-
els, such as the skew-normal distribution, skew-exponential
power distribution [4], generalized AL distribution [55], and
power-exponential distribution [24]. Our models may adopt
these alternative distributions to improve the tail behav-
ior. For more flexible modeling, it is natural to consider the
semiparametric counterparts of the proposed model, but we
need to deal with the complicated geometry of the parame-
ter space, requiring further regularization on nonparametric
components, in particular for outlier detection. Following
[33], the method may be extended to various shape restric-
tions including monotone and convex/concave restrictions,
with the computations in these cases performed using the

non-conjugate variational message passing algorithm. In ad-

dition, it would be interesting to see how well our method-

ology scales up to real applications involving ultra-high di-

mensional and large sample sizes. For example, variational

approaches with stochastic gradient algorithms and subsam-

pling can be considered for large datasets [42]. A more de-

tailed discussion of these topics will be left for future work.

APPENDIX A. MCMC ALGORITHM FOR
LINEAR QUANTILE

REGRESSION

• (β0 | −) ∼ N(μβ0 , σ
2
β0
) where

σ2
β0

=

(
1

k22σ

n∑
i=1

1

zi
+

1

σ2
0

)−1

μβ0 = σ2
β0

(
1

k22σ

n∑
i=1

yi − xT
i β − k1zi
zi

+
μ0

σ2
0

)

• (β | −) ∼ N(μb,Σb) where

Σb =

(
1

k22σ

n∑
i=1

xix
T
i

zi
+ diag(λ−1

1 , . . . , λ−1
p )

)−1

μb = Σb

(
1

k22σ
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xT
i (yi − β0 − k1zi)

zi

)

• (zi | −)∼ GIG

(
0.5,

(yi − β0 − xT
i β)

2

k22σ
, (
k21
k22

+ 2)/(2σ)

)
for i = 1, . . . , n

• (σ | −) ∼ InvGam

(
r0σ + 3n

2
, snσ

)
where

snσ = s0σ +

n∑
i=1

(yi − β0 − xT
i β − k1zi)

2

k22zi
+ 2

n∑
i=1

zi

• For j = 1, . . . , p

(λ2
j | −) ∼ InvGam

(
1,

β2
j

2
+

1

ζj

)

(ζj | −) ∼ InvGam

(
1,

1

λ2
j

+
1

(Aβηj)2

)

(η2j | −) ∼ InvGam

(
1,

1
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βζj

+
1
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)

• (ζη | −) ∼ InvGam((p+ 1)/2,
∑p

j=1 η
−2
j + 1).
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APPENDIX B. MCMC ALGORITHM FOR
FULL QUANTILE OD

MODEL

• (β0 | −) ∼ N(μβ0 , σ
2
β0
) where

σ2
β0

=

(
1

k22σ

n∑
i=1

1

zi
+

1

σ2
0

)−1

μβ0 = σ2
β0

(
1

k22σ

n∑
i=1

yi − xT
i β − γi − k1zi

zi
+

μ0

σ2
0

)

• (β | −) ∼ N(μb,Σb) where

Σb =

(
1

k22σ

n∑
i=1

xix
T
i

zi
+ diag(λ−1

1 , . . . , λ−1
p )

)−1

μb = Σb

(
n∑

i=1

xT
i (yi − β0 − γi − k1zi)

k22σzi

)

• For i = 1, . . . , n, (zi | −) ∼ GIG(0.5, χi, (
k21
k22

+ 2)/(2σ))

where

χi =
(yi − β0 − γi − xT

i β)
2

k22σ

• (σ | −) ∼ InvGam

(
r0σ + 3n

2
, snσ

)
where

snσ = s0σ +

n∑
i=1

(yi − β0 − xT
i β − γi − k1zi)

2

k22zi
+ 2

n∑
i=1

zi

• The Gibbs samplers for (λ2
j , ζj , η

2
j , ζη) are the same as

in Section A.
• Let γ = (γ1, . . . , γn)

T . We can sample γ in one sampler
with (γ | −) ∼ N(μg,Σg) where

Σg=

(
1

k22σ
diag(z−1

1 , . . . , z−1
n ) + diag(λ−2

γ1
, . . . , λ−2

γn
)

)−1

μg = Σbb

bi =
yi − β0 − xT

i β − k1zi
k22σzi

, for i = 1, . . . , n

• (λ2
γi

| −) ∼ InvGam(1, γ2
i /2 + 1/ζγi).

• (ζγi | −) ∼ InvGam(1, 1/λ2
γi

+ 1/(Aγηγi)
2).

• (η2γi
| −) ∼ InvGam(1, 1/(A2

γζγi) + 1/ζη,γ).
• (ζη,γ | −) ∼ InvGam((n+ 1)/2,

∑n
i=1 η

−2
γi

+ 1).
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