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A composite nonparametric product limit
approach for estimating the distribution of
survival times under length-biased and
right-censored data∗
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This paper considers a composite nonparametric product
limit estimator for estimating the distribution of survival
times when the data are length-biased and right censored.
Our method takes into account auxiliary information that
frequently arises in survival analysis, and is easier to im-
plement than existing methods for estimating survival func-
tions. We derive a strong representation of the proposed es-
timator, establish its consistency and asymptotic normality,
and derive its convergence rate of approximation. As well,
we prove that auxiliary information improves the asymptotic
efficiency of the proposed estimator, and provide the values
of the composite weights that result in the largest efficiency
gain. Our proposed estimator fares well in comparison with
other more complex methods in finite samples and offers a
clear advantage with respect to computational time.
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1. INTRODUCTION

In survival analysis, it is common to use data from preva-
lent cohorts that exclude individuals who have experienced
the failure event before the recruitment time. This results
in left truncation of survival times. It is well-known that
under the stable disease condition (i.e., the incidence of
disease onset is constant over time), the incidence of dis-
ease onset follows a stationary Poisson process [20, 6], the
truncation time is uniformly distributed, and the sample is
length-biased, a term commonly used to refer to the situa-
tion where the probability of a survival time being sampled
is proportional to its length. The data are also subject to
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the usual right-censoring as some individuals in the sample
may not encounter the failure event before the study ends.

Studies on the estimation of the unbiased survival dis-
tribution of length-biased data that utilise the uniform dis-
tributional property of the truncation times include [18], [4]
and [5]. However, all these methods result in estimators that
are computationally intensive as they have no closed-form
expressions. [14] proposed an alternative maximum pseudo-
partial likelihood estimator (labelled as MPPLE hereafter)
that has a closed form expression but at the expense of a
slight efficiency loss compared to the established approaches.
Their approach is also computationally complex as it entails
estimating the distribution function of the censoring time.

[19] developed a truncation product limit estimator (la-
belled as PLE hereafter) [12] based on a maximisation of
the conditional likelihood function. Their approach results
in no information loss when the distribution of the trun-
cation time is unspecified, but is less efficient than the full
maximum likelihood approach when the parametric form of
the truncation time is known. [10] proposed a nonparamet-
ric estimator (labelled as HQE hereafter) that takes into
account the symmetry between the residual life time and
truncation time. Compared to [19]’s PLE, [10]’s method re-
sults in a more efficient estimator but has the drawback of
being highly complex and computationally challenging. Fo-
cusing on the Cox model, [11] developed a composite par-
tial likelihood-based semiparametric approach that yields
asymptotically efficient estimators. This approach provides
a simple method for estimating the parametric component
of the model but is highly complex when applied to the es-
timation of the baseline hazard function.

In this paper, under length-biased sampling, we develop
a simple nonparametric approach of estimating the survival
function that is computationally feasible. Our proposed es-
timator takes the form of the product limit estimator in the
spirits of [19], and may be viewed as a composite maximum
likelihood estimator within the framework of [11]. We call
our estimator the composite nonparametric product limit
estimator (CNPLE). We show that the CNPLE is asymp-
totically efficient. As well, it achieves a convergence approx-
imation rate of O(n−1 log log n), which is better than the
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approximation rate of [10]’s HQE [see 16] and identical to
that of the estimators of [17] and [21] for left-truncated and
right-censored data. We also prove that auxiliary informa-
tion improves the asymptotic efficiency of the CNPLE, and
the biggest efficiency gain is achieved by assigning the com-
posite weight to w1 = w2 = 1

2 . We consider the latter a
remarkable property of our approach, in addition to the ap-
pealing advantage of being simple. In a simulation study
based on the same setting as [10], we demonstrate the effi-
ciency gains and computational advantage of our proposed
approach over existing approaches in finite samples.

The remainder of the paper is organised as follows. Sec-
tion 2 discusses the proposed estimator, along with a deriva-
tion of its asymptotic properties. Section 3 reports results
of a simulation experiment that examines the performance
of the proposed estimator in finite samples. An illustration
based on data from the Canadian Study of Health and Ag-
ing is also presented in the same section. Proofs of theorems
are contained in the Appendix.

2. PROPOSED ESTIMATOR AND ITS
ASYMPTOTIC PROPERTIES

2.1 Notations and estimators

Let O0 be the calendar time of the disease onset, T 0

be the time from disease incidence to the event of failure,
and F (·) and f(·) be the distribution and density functions
of T 0 respectively. Our interest lies in the estimation of
S(·) = 1 − F (·), the survival distribution function of T 0,
and its corresponding cumulative hazard function Λ(·). Let
the maximum sampling time τ = inf{t : Pr(T 0 > t) = 0}
be independent of (O0, T 0). Denote A0 as the time between
disease onset and enrolment, and assume that A0 and T 0 are
independent. An individual can be included in the prevalent
cohort only if T 0 ≥ A0, meaning that T 0 is left truncated
by A0 with probability α = P (T 0 ≥ A0) > 0. Denote A as
the observed truncation time, V the residual survival time
from the time of enrolment to failure, and T = A + V the
failure time. Let the marginal density function of T , A and
V be fT (t), fA(t) and fV (t) respectively. It is readily seen
that

fT (t) =
tf(t)

μ
I(t > 0),(1)

where μ =
∫ ∞
0

sf(s)ds. From [20], the marginal distribution
of A and V are identical, i.e.,

fA(t) = fV (t) =
S(t)

μ
I(t > 0).(2)

Due to a lack of follow-up and the inevitability of some
subjects surviving to the end of the study, observations of
survival times in a prevalent cohort are subject to right
censoring. Let C be the censoring time with distribution

function G(·), and δ = I(T ≤ A + C) be the censor-
ing indicator. Instead of observing the failure time T , we
observe the censored failure time Y = min(T,A + C) =
min(V,C) + A = Ṽ + A, where Ṽ = min(V,C). The ob-
served data {Ai, Yi, δi}ni=1 are independent and identically
distributed (i.i.d.) copies of (A, Y, δ). Clearly, the failure
time T = A + V and the total censoring time A + C are
dependent, implying that the data are informatively cen-
sored.

The proportion of observed failures up to time period t
may be represented by the counting process

N̄(t) =
1

n

n∑
i=1

Ni(t) =
1

n

n∑
i=1

I(Yi ≤ t, δi = 1).

As well, the at-risk function K(t) = E[I(Y ≥ t ≥ A)] can
be estimated by

K̃(t) =
1

n

n∑
i=1

I(Yi ≥ t ≥ Ai).(3)

[19] proposed the following consistent truncation
product-limit estimator (PLE) of the cumulative hazard
function Λ(·):

Λ̃n(t) =

∫ t

0

dN̄(t)

K̃(t)
,(4)

which results in the consistent survival function estimator

S̃n(t) =
∏

u∈[0,t]

[
1− dΛ̃n(u)

]
.(5)

One disadvantage of [19]’s approach is that it ignores the
auxiliary information (2), the inclusion of which usually
leads to efficiency gains in estimation. [10] proposed the fol-
lowing empirical estimator:

K̃HQ(t)

=
1

n

n∑
i=1

I(Yi ≥ t)

−
∏

u∈[0,t]

{
1−

∑n
i=1 d[I(Ai ≥ u) + δiI(Ṽi ≥ u)]∑n

i=1[I(Ai ≥ u) + I(Ṽi ≥ u)]

}
,

which takes into account the auxiliary information of the
truncation time A and the residual survival time V having
the same distribution. This alternative estimator of K(t)
results in

Λ̃HQ(t) =

∫ t

0

dN̄(t)

K̃HQ(t)
and

S̃HQ(t) =
∏

u∈[0,t]

[1− dΛ̃HQ(t)],
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as estimators of the cumulative hazard and survival func-
tions respectively. Because an additional programming step
is required to ensure that K̃HQ(t) > 0, K̃HQ(t) is more diffi-

cult to compute than K̃(t), although it results in estimators
of Λ(t) and S(t) that are more efficient.

We propose a composite nonparametric product limit es-
timator (CNPLE) that extends the PLE of [19] to allow for
the auxiliary information embedded in (2). Our estimator
is not only simpler but also uses auxiliary information in a
more natural manner than the HQE of [10]. Now, given that
A and V have the same marginal distribution, we have

E[I(Y ≥ t ≥ A)] = E[δI(Y ≥ t ≥ Ṽ )] = μ−1S(t)ωC(t),

where ωC(t) =
∫ t

0
[1 − G(c)]dc. Hence we can replace K̃(t)

in (3) by the alternative risk process

K̂(t)

=
1

n

n∑
i=1

[
w1I(Yi ≥ t ≥ Ai) + w2δiI(Yi ≥ t ≥ Ṽi)

]
,(6)

that recognises the auxiliary information (2), where w1 and
w2 are composite weights that satisfy w1+w2 = 1. Note that
E[K̂(t)] = E[K̃(t)] = μ−1S(t)ωC(t). The following CNPLE
of Λ(·) is obtained by replacing K̃(t) by K̂(t) in (4):

Λ̂n(t) =

∫ t

0

dN̄(t)

K̂(t)
.(7)

From a computational point of view, our approach has a
clear advantage over the HQE of [10] because K̂(t) is, by
default, always positive and has a much simpler expression
than K̂HQ(t). The estimator of the survival function based
on our approach is given by

Ŝn(t) =
∏

u∈[0,t]

{
1−

n∑
i=1

dI(Yi ≤ u, δi = 1)

nK̂(Yi)

}
.(8)

We will show in the subsequent sections that the relatively
simplicity of our approach is not offset by any efficiency
loss compared to the approach of [10]. In fact, for the spe-
cial case of the Cox model, there is an equivalence be-
tween [11]’s composite maximum likelihood estimator under
length-biased and right censored data and the estimator of
(7) when w1 = w2 = 1

2 . Now, consider the Cox model,

λ(t) = λ0(t) exp{β′X},

where λ(t) is the derivative of Λ(t), λ0(t) is an unspecified
baseline hazard function, β is a p × 1 vector of regression
parameters, and X is a p× 1 vector of covariates. [11] pro-
posed a composite conditional likelihood equivalent to the
product of the truncation likelihood of T conditional on A
and the likelihood of T conditional on V , i.e.,

n∏
i=1

{λ(Yi) exp(β
′X)}2δi exp{−(1 + δi)Λ(Yi) exp(β

′X)}
exp[−{Λ(Ai) + δiλ(Ṽi) exp(β′X)}]

.(9)

For any fixed β, (9) attains a maximum at

Λ̂0n(t) =

n∑
i=1

2Ni(t)∑n
i=1 exp(β

′X)Ki(Yi)
,

whereKi(t) = I(Yi ≥ t ≥ Ai)+δiI(Yi ≥ t ≥ Ṽi). It is readily
seen that when β = 0, Λ̃0n(t) is the same as Λ̂(t) when w1 =
w2 = 1

2 . However, to obtain Λ̃0n(t), one has to compute the
composite conditional likelihood, which is intricate, whereas
the derivation of Λ̂(t) is direct and straightforward.

2.2 Asymptotic properties

The purpose of this section is two-fold. We first establish
the asymptotic properties of the estimators Λ̂n(t) and Ŝn(t).
We then obtain the strong representation and the rate of the
approximation of the CNPLE. Our proofs of results require
the following assumptions:

(A1) (A0, T 0) and the total censoring time A+ C are mu-
tually independent.

(A2) O0 has a constant density function, which guarantees
the length-biasedness of the data.

(A3) F ,G, FV and FA are continuous, where FV , FA andH
are distribution functions of V, A and Y respectively.

(A4) For any 0 < b < bH = sup{t : H(t) < 1},∫ b

0

dW1(t)

K3(t)
= μ2

∫ b

0

dF (t)

ω2
c (t)S(t)

3
< ∞.(10)

Assumptions (A1)-(A3) are regular conditions in survival
studies. Assumption (A4) is adopted from [21] and is needed
in order to obtain the approximation rate of the remainder
terms (see also Remark 1). For notational convenience, write

Ln(t) =

∫ t

0

dβn(u)

K(u)
−

∫ t

0

K̂(u)−K(u)

K2(u)
dW1(u),(11)

where βn(t) = N̄(t) −W1(t) and W1(t) = P (Y ≤ t, δ = 1).
Theorems 1 and 2 below provide the i.i.d. representations of
Λ̂n and Ŝn.

Theorem 1. Let Assumptions (A1)-(A4) hold. Then we
have, for 0 ≤ t ≤ b < bH ,

Λ̂n(t)− Λ(t) = Ln(t) +R0
n(t),

with

sup
0≤t≤b

|Λ̂n(t)− Λ(t)| = O(n−1/2(log log n)1/2), a.s.(12)

and

sup
0≤t≤b

|R0
n(t)| = O(n−1 log logn), a.s.(13)

where

R0
n(t) =

∫ t

0

K(u)− K̂(u)

K2(u)
dβn(u)
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+

∫ t

0

[K̂(u)−K(u)]2

K̂(u)K2(u)
dN̄(u)

=: R0
n1(t) +R0

n2(t).

Theorem 2. Let Assumptions (A1)-(A4) hold. Then for
0 ≤ t ≤ b < bH , there exist Rn(t) and R′

n(t) such that

Ŝn(t)− S(t) = −S(t)[Λ̂n(t)− Λ(t)] +Rn(t),(14)

Ŝn(t)− S(t) = −S(t)Ln(t) +R′
n(t),(15)

and

sup
0≤t≤b

|Rn(t)| = sup
0≤t≤b

|R′
n(t)| = O(n−1 log logn). a.s.(16)

Remark 1. Assumption (A4) is a weak integrability con-
dition that remains valid when one or both of C = ∞ and
A = 0 are satisfied, meaning that it continues to hold when
the data are only either length-biased or right-censored, or
even complete.

Remark 2. By Assumption (A4) and Theorem 2, ‖Ŝn−S‖
is bounded asymptotically by O(n−1/2(log logn)1/2).

It can be verified from (7) and (8) that the mappings
defined by Λ̂n and Ŝn are compactly differentiable with re-
spect to the supremum norm. Hence it makes sense to study
the large sample properties of Λ̂n and Ŝn by the functional
delta method [13, Theorem 2.8]. Let us define

φi(t)

=

∫ t

0

dI(Yi ≤ u, δi = 1)

K(u)

−
∫ t

0

w1I(Ai ≤ u ≤ Yi) + w2δiI(Ṽi ≤ u ≤ Yi)

K2(u)
dW1(u),

i = 1, . . . , n.

We can represent Ln(t) as the sum of i.i.d. φi(t), i =
1, . . . , n, i.e., Ln(t) =

∑n
i=1 φi(t). In Theorem 3 and Corol-

lary 1, for the purpose of developing the asymptotic proper-
ties of Ŝn(t), we use a Gaussian process B(u), 0 ≤ u < ∞,
with mean zero and covariance matrix ΣB(t1, t2). The proofs
are outlined in the Appendix.

Theorem 3. Let Assumptions (A1)-(A4) hold. Then for
0 < t1, t2 < bH ,

(i) there exists a Gaussian process B(u), 0 ≤ u < ∞,
with E[B(u)] = 0 and covariance function

ΣB(t1, t2) = E[B(t1)B(t2)](17)

=

∫ t1∧t2

0

dW1(u)

K2(u)
+

∫ t2

0

∫ t1

0

H(u, v)

K2(u)K2(v)
dW1(u)dW1(v),

where

H(u, v)

= (w2
1 − w1)μ

−1S(u ∨ v)[ωC(u ∨ v)− ωC(|u− v|)]
+(w2

2 − w2)μ
−1S(u ∨ v)ωC(u ∧ v)

+w1w2

∫ u+v

u∨v

f(t)

μ

[ωC(u) + ωC(v)− ωC(t− u)− ωC(t− v)]dt,

such that

sup
0<u≤b

|
√
n(Ŝn(u)− S(u))− S(u)B(u)|

= O(n−1/2 logn), a.s.

for b < bH ;
(ii) there exists a sequence of i.i.d. Gaussian processes

B1(u), B2(u), · · · , with EBi(u) = 0, i = 1, 2, · · · , and co-
variance function (18), such that

sup
0<u≤b

|
√
n(Ŝn(u)− S(u))− n−1/2S(u)

n∑
i=1

Bi(u))|

= O(n−1/2 log2 n), a.s.;

and
(iii) there exists a two-parameter Gaussian process
{G(z, u), 0 ≤ z < ∞, u ≥ 0} with mean zero and covari-
ance function

E[G(t1, u1)G(t2, u2)]

= u
−1/2
1 u

−1/2
2 (u1 ∧ u2)S(t1)S(t2)ΣB(t1, t2),

such that

sup
0<z≤b

|
√
n{Ŝn(z)− S(z)} −G(z, n)|

= O(n−1/2 log2 n). a.s.

Corollaries 1 to 3 stated below, whose proofs are given in
the Appendix, are direct consequences of Theorem 3.

Corollary 1. Let Assumption (A4) hold. Then we have,
uniformly in 0 ≤ t ≤ b < bH ,

(i) Ŝn(t) −→ S(t), and

(ii)
√
n(Ŝn(t)− S(t))

D−→ N(0,Σt),

where
D−→ denotes convergence in distribution, and

Σt = S2(t)

[ ∫ t

0

dW1(u)

K2(u)
(18)

+

∫ t

0

∫ t

0

H(u, v)

K2(u)K2(v)
dW1(u)dW1(v)

]
.

Remark 3. The strong approximation results for Λ̂n(t) can
be obtained in a similar way.
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Corollary 2. Denote S̃n(t) as the survival distribution es-
timated by Λ̃n(t) in (4). Then we have

√
n(S̃n(t)− S(t))

D−→ N(0, Σ̃t), and

Σt ≤ Σ̃t,

where Σ̃t = S2(t)
∫ t

0
dW1(u)
K2(u) .

Corollary 3. Let Assumption (A4) hold. Then Ŝn attains
maximum efficiency when w1 = w2 = 1

2 .

Remark 4. The assignment of w1 = w2 = 1
2 is equivalent

to assigning the same weight to A and V in the risk pro-
cess K̂(t) in (6). This is justifiable as there exists no prior
information to determine which component should be given
more weight. We adhere to the choice of w1 = w2 = 1

2 in
the simulation and real data studies.

3. SIMULATION AND REAL DATA
ANALYSIS

3.1 A simulation experiment

In this section we use a simulation experiment to iden-
tify and compare the finite sample properties of the CNPLE
with the PLE, HQE and MPPLE developed by [14]. Follow-
ing [10], we set ξ, the calendar time of enrolment, to 100, and
generated O0, the calendar onset time, from a uniform dis-
tribution over [1, 100]. Observations of the underlying failure
time T 0 are generated independently from a Weibull distri-
bution with the survival distribution S(t) = exp(−t2/4).
To obtain a prevalent cohort, we generate observation pairs
of (O0, T 0) repeatedly until there exist n observation pairs
that satisfy O0 + T 0 ≥ ξ. The censoring time is gener-
ated from a uniform distribution such that the censoring
rate is approximately 30%, 50%, 70% and 90%. We set
n = 200 and n = 800 and the number of replications to
1000. Our target is to estimate the survival probabilities
at various time points t. Based on the results of Corollary
3, we set w1 = w2 = 1

2 . We gauge the estimators’ sam-
pling performance in terms of the magnitude of empirical
bias (BIAS), empirical standard deviation (SE) and empir-
ical mean square error (MSE). In the case of the CNPLE,
we also compute the average standard error estimate (ASE),
which should be close to the corresponding SE if the pro-
posed method for calculating the standard error based on
equation (18). The time (in seconds) required for calculat-
ing the estimates is also reported.

Table 1 presents the results for n = 200 at the time points
t = 0.94, 1.43, 1.91, 2.54 that correspond to the survival
probabilities of S(t) = 0.8, 0.6, 0.4, 0.2 respectively. The rel-
atively small empirical bias obtained in all cases suggest that
all four estimators produce accurate estimates. For the CN-
PLE, the ASEs are all very close to their corresponding SEs,
indicating that our standard error estimator performs satis-
factorily. With few exceptions, other things being equal, the

BIAS, SE, ASE and MSE of estimators generally worsen as
the censoring rate increases. As expected, the PLE, which ig-
nores auxiliary information, invariably produces the least ef-
ficient estimates in terms of SE and MSE. The MPPLE dom-
inates the PLE in terms of SE and MSE, but it is inferior to
the HQE and the CNPLE by the same yardsticks in a large
region of the parameter space. Overall, the difference in sam-
pling performance between the HQE and CNPLE are small,
with the HQE being marginally better in terms of BIAS
and the CNPLE being slightly superior in terms of MSE;
in most cases, however, there is little to choose numerically
between the two estimators with respect to their sampling
performance. This similarity in performance of the HQE and
CNPLE is likely attributable to the fact that both estima-
tors incorporate the same auxiliary information, namely, the
distributions of truncation time A and the residual survival
time V being identical. Having said that, in terms of com-
puting time, the CNPLE is the superior alternative over its
more complex rival by a long shot. In most cases, the cal-
culation of the CNPLE requires less than half the time for
computing the HQE.

The general comments above also apply in broad terms
to the case where n = 800, the results for which are reported
in Table 2. While there are exceptions, the BIAS, SE, ASE
and MSE generally decrease as n increases. In summary, our
simulation results demonstrate that our proposed estimator
performs well, even under high censoring rates. It also fares
well in comparison with other more complex methods with
respect to estimator efficiency and computational time.

3.2 A case study

In this section, we apply the four methods considered
in Section 3.1 to data from the first wave of the Canadian
Study of Health and Aging (CSHA-1). The CSHA-1 is a
study on the prevalence of dementia among elderly Canadi-
ans conducted in 1991. The original sample contains 1132
elderly subjects (aged 65 or above) identified with dementia
by the Modified Mini-Mental State Examination in Canada.
Our analysis is based on a subsample of 807 subjects af-
ter excluding those with missing data on dementia type or
disease onset date, and those who survived more than 20
years after dementia onset due to their low likelihood of de-
veloping Alzheimer’s disease or vascular dementia [4]. The
purpose of our study is to estimate the survival probabil-
ities of subjects at various time points after disease onset.
The death rate of these subjects within a ten-year follow-up
period is 78% (or 627 deaths). Our observed survival times
are left truncated because the sample excludes subjects who
died before the study began, length-biased because those
who survived longer had a higher chance of being included,
and right-censored because some subjects were still alive at
the end of the study or lost to follow-up. We applied [1]’s
test of the stationarity assumption to the data. The test re-
sult confirmed that the incidence of dementia was constant
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Table 1. Simulation results of estimators for n = 200

PLE HQE
t S(t) Bias SE MSE Time Bias SE MSE Time

CensoringRate = 30%
0.94 0.8 3 513 26 0.8 18 486 24 2.9
1.43 0.6 1 506 26 0.8 18 486 22 2.9
1.91 0.4 5 450 20 0.8 7 399 16 2.9
2.54 0.2 10 336 11 0.8 7 297 9 2.9

Censoring Rate = 50%
0.94 0.8 25 580 34 0.8 39 540 29 2.8
1.43 0.6 15 596 36 0.8 29 528 28 2.8
1.91 0.4 13 536 29 0.8 21 462 21 2.8
2.54 0.2 2 416 17 0.8 0 356 13 2.8

Censoring Rate = 70%
0.94 0.8 10 560 31 0.9 −1 480 23 3.1
1.43 0.6 26 684 47 0.9 25 594 35 3.1
1.91 0.4 34 703 49 0.9 46 640 41 3.1
2.54 0.2 6 610 37 0.9 12 576 33 3.1

Censoring Rate = 90%
0.94 0.8 9 938 88 0.9 47 821 68 3.1
1.43 0.6 37 1051 111 0.9 58 959 92 3.1
1.91 0.4 88 1029 106 0.9 95 962 93 3.1
2.54 0.2 14 842 71 0.9 12 819 67 3.1

MPPLE CNPLE
t S(t) Bias SE MSE Time Bias SE MSE ASE Time

Censoring Rate = 30%
0.94 0.8 21 488 24 129.4 18 486 475 24 1.2
1.43 0.6 24 478 23 129.4 17 468 465 22 1.2
1.91 0.4 15 424 18 129.4 9 400 393 16 1.2
2.54 0.2 6 319 10 129.4 0 296 280 9 1.2

Censoring Rate = 50%
0.94 0.8 45 540 29 126.1 42 539 504 29 1.3
1.43 0.6 32 545 30 126.1 35 532 519 28 1.3
1.91 0.4 21 483 24 126.1 30 465 454 22 1.3
2.54 0.2 -6 368 14 126.1 17 352 331 12 1.3

Censoring Rate = 70%
0.94 0.8 47 514 27 130.2 48 475 432 23 1.5
1.43 0.6 67 631 40 130.2 69 604 578 37 1.5
1.91 0.4 67 659 44 130.2 67 651 619 43 1.5
2.54 0.2 16 584 34 130.2 18 576 558 33 1.5

Censoring Rate = 90%
0.94 0.8 92 880 78 130.8 82 730 611 54 1.5
1.43 0.6 45 994 99 130.8 57 904 836 82 1.5
1.91 0.4 15 990 98 130.8 9 930 891 86 1.5
2.54 0.2 19 808 65 130.8 36 781 749 61 1.5
1 PLE is the truncation product-limit estimator; HQE is the
nonparametric estimator proposed by Huang and Qin (2011);
MPPLE is the maximum pseudo-partial-likelihood estimator;
CNPLE is our proposed composite nonparametric estimator;

2 Bias and SE are the empirical bias (×104) and empirical stan-
dard deviation (×104) based on 1000 replications respectively;
ASE is the average of 1000 standard error estimates based on
(18); MSE is the mean square error (×104) based on 1000
replications; Time is the time (seconds) required for comput-
ing 1000 estimates by a Mac Pro i5 PC.

Table 2. Simulation results of estimators for n = 800

PLE HQE
t S(t) Bias SE MSE Time Bias SE MSE Time

Censoring Rate = 30%
0.94 0.8 5 277 8 87.7 10 276 8 374.5
1.43 0.6 10 265 7 87.7 18 253 6 374.5
1.91 0.4 15 230 5 87.7 22 210 5 374.5
2.54 0.2 7 159 2 87.7 11 142 2 374.5

Censoring Rate = 50%
0.94 0.8 7 290 8 96.7 11 274 8 411.4
1.43 0.6 9 293 9 96.7 11 266 7 411.4
1.91 0.4 12 262 7 96.7 12 231 5 411.4
2.54 0.2 3 193 4 96.7 1 166 3 411.4

Censoring Rate = 70%
0.94 0.8 3 269 7 105.4 8 233 5 450.9
1.43 0.6 13 341 12 105.4 22 301 9 450.9
1.91 0.4 7 352 12 105.4 17 322 10 450.9
2.54 0.2 10 323 10 105.4 17 313 10 450.9

Censoring Rate = 90%
0.94 0.8 18 436 19 113.9 12 370 14 487.6
1.43 0.6 30 517 27 113.9 30 448 20 487.6
1.91 0.4 5 526 28 113.9 8 480 23 487.6
2.54 0.2 3 436 19 113.9 7 416 17 487.6

MPPLE CNPLE
t S(t) Bias SE MSE Time Bias SE ASE MSE Time

Censoring Rate = 30%
0.94 0.8 11 270 7 63030.5 10 276 269 8 139.8
1.43 0.6 18 256 7 63030.5 18 253 240 6 139.8
1.91 0.4 21 223 5 63030.5 23 211 201 5 139.8
2.54 0.2 10 151 2 63030.5 11 142 141 2 139.8

Censoring Rate = 50%
0.94 0.8 12 273 8 64655.8 11 275 268 8 183.9
1.43 0.6 13 268 7 64655.8 12 269 268 7 183.9
1.91 0.4 16 239 6 64655.8 15 235 233 6 183.9
2.54 0.2 6 175 3 64655.8 5 169 169 3 183.9

Censoring Rate = 70%
0.94 0.8 11 249 6 66235.9 16 230 224 5 229.3
1.43 0.6 22 322 10 66235.9 29 311 297 10 229.3
1.91 0.4 17 335 11 66235.9 24 331 320 11 229.3
2.54 0.2 16 313 10 66235.9 20 317 294 10 229.3

Censoring Rate = 90%
0.94 0.8 44 421 18 67489.3 45 363 342 13 271.1
1.43 0.6 51 500 25 67489.3 55 456 452 21 271.1
1.91 0.4 22 510 26 67489.3 27 494 475 24 271.1
2.54 0.2 10 429 18 67489.3 16 423 406 18 271.1
1 PLE is the truncation product-limit estimator; HQE is the non-
parametric estimator proposed by Huang and Qin (2011); MP-
PLE is the maximum pseudo-partial-likelihood estimator; CN-
PLE is our proposed composite nonparametric estimator;

2 Bias and SE are the empirical bias (×104) and empirical stan-
dard deviation (×104) based on 1000 replications respectively;
ASE is the average of 1000 standard error estimates based on
(18); MSE is the mean square error (×104) based on 1000 repli-
cations; Time is the time (seconds) required for computing 1000
estimates by a Mac Pro i5 PC.
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over time. As in the simulation study, we choose the weight
w1 = w2 = 1

2 following the result given in Corollary 3.

Table 3 presents results on the estimated survival prob-
abilities and their standard errors by the PLE, HQE, MP-
PLE and CNPLE at time points ranging from 12 to 120
months after disease onset. At a given t, the PLE invariably
produces the lowest survival probabilities, while HQE gener-
ally yields the largest among the four estimators. Generally
speaking, the longer is the survival time, the smaller are
the standard errors of the probability estimates. Our pro-
posed CNPLE and the MPPLE deliver very similar results,
and both approaches yield smaller standard errors than the
PLE.

Table 3. Results of real data study: estimated survival
probabilities at selected time-points

PLE HQE
Month Est SE Est SE

12 0.889 0.054 0.927 0.033
24 0.722 0.051 0.781 0.035
36 0.573 0.045 0.633 0.033
48 0.437 0.037 0.495 0.028
72 0.247 0.024 0.297 0.019
96 0.136 0.016 0.174 0.014
120 0.065 0.010 0.095 0.021

MPPLE CNPLE
Month Est SE Est SE

12 0.935 0.028 0.922 0.035
24 0.780 0.034 0.765 0.038
36 0.616 0.033 0.608 0.035
48 0.468 0.029 0.465 0.030
72 0.258 0.020 0.266 0.019
96 0.137 0.014 0.151 0.014
120 0.065 0.009 0.082 0.009
1 PLE is the truncation product-limit estimator; HQE is the non-
parametric estimator proposed by Huang and Qin (2011); MPPLE
is the maximum pseudo-partial-likelihood estimator; CNPLE is
the proposed composite product-limit estimator; Est and SE are
the estimate and its standard error respectively.

APPENDIX A. OUTLINE OF PROOFS

Proof of Theorem 1. Note that

Λ̂n(t)− Λ(t)

=

∫ t

0

dN̄(u)− dW1(u)

K(u)
+

∫ t

0

dN̄(u)

K̂(u)
−

∫ t

0

dN̄(u)

K(u)

=

∫ t

0

dβn(u)

K(u)
−

∫ t

0

K̂(u)−K(u)

K2(u)

·[dW1(u)− dW1(u) +
K(u)

K̂(u)
dN̄(u)]

= Ln(t)−
∫ t

0

K(u)− K̂(u)

K2(u)
dW1(u)

−
∫ t

0

K̂(u)−K(u)

K2(u)

K(u)

K̂(u)
dN̄(u)

= Ln(t) +

∫ t

0

K(u)− K̂(u)

K2(u)
[dN̄(u)− dW1(u)]

−
∫ t

0

K̂(u)−K(u)

K2(u)

[
K(u)

K̂(u)
− 1

]
dN̄(u)

= Ln(t) +

∫ t

0

K(u)− K̂(u)

K2(u)
dβn(u)

+

∫ t

0

[K̂(u)−K(u)]2

K2(u)K̂(u)
dN̄(u)

= Ln(t) +R0
n1(t) +R0

n2(t).(19)

We divide the proof of Theorem 1 into three parts to focus
on the derivations of the supremum norms of R0

n1(t), R
0
n2(t)

and Λ̂n(t)− Λ(t) respectively.

Part 1: Note that

R0
n1(t)

= w1

∫ t

0

K(u)− K̃(u)

K2(u)
dβn(u)

+w2

∫ t

0

K(u)− K̂2(u)

K2(u)
dβn(u)

=: w1R
0
n11(t) + w2R

0
n12(t),

where K̂2(t) =
1
n

∑n
i=1 δiI(Ṽi ≤ t ≤ Yi). We apply the Ho-

effding Decomposition for U-statistic from [9] to obtain the
asymptotic properties of R0

n11 and R0
n12. Let T and S be

two independent failure time variables and A be a trunca-
tion variable. Given a subset Q ⊂ {1, . . . , n} with |Q| = 3,
let HQ denote the set of all square-integrable random vari-
ables of type gQ(Ai, Ti, Si : i ∈ Q), for measurable functions
gQ of |Q| argument such that

E(gQ(Ai, Ti, Si : i ∈ Q)|Aj , Tj , Sj , j ∈ B) = 0,

for any B : |B| < |Q|,

where | · | is the cardinality of the corresponding set. Let
πQf denote the projection of f onto HQ. Then by the or-
thogonality of the HQ, the Hájek projection is

πQf(H1, H2) = −f(H1, H2) + EH1 [f(H1, H2)]

+EH2 [f(H1, H2)]− E[f(H1, H2)],

where H1, H2 ∈ K
3. It is readily seen that

R0
n12(t) =

1

n2

n∑
i=1

n∑
i=1

πQf
(1)
t ((Ai, Ti, Si), (Aj , Tj , Sj)),(20)

where

f
(1)
t ((a1, t1, s1), (a2, t2, s2))
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= − 1

K2(t2)
I{a1 ≤ t2 ≤ (t1 ∧ s1), a2 ≤ t2 ≤ (s2 ∧ t)}.

The subset of K3×K
3 : {Dt = I{a1 ≤ t2 ≤ (t1∧s1), a2 ≤

t2 ≤ (s2 ∧ t)}, t ∈ K} is a measurable Vapnik-Červonenkis
(VC) class of sets, with each set being the intersection of
at most six half spaces of K6 [7]. By the definition of VC
subgraph, the class of functions { 1

K2(t)IDt : 0 ≤ t ≤ b} is a

measurable VC subgraph, and hence a measurable VC class
of functions from the definition of K(t) (by a simple mod-
ification of Lemma 2.5 II.5 in [15]). By the property of VC
class and Assumption (A4), it can be seen that the envelope
H(a1, t1, s1, a2, t2, s2) =

1
K2(t2)

ID∞ has a finite integral, i.e.,

EH2 =

∫ ∞

0

dW1(t)

K3(t)S2(t)
≤ 1

S2(b)

∫ ∞

0

dW1(t)

K3(t)
< ∞.

The Law of the Iterated Logarithm (LIL) according to [3]
implies that

sup
0≤t≤b

∣∣∣∣ 1

n2

n∑
i=1

∑
i �=j

πQf
(1)
t ((Ai, Ti, Si), (Aj , Tj , Sj))

∣∣∣∣
= O(n−1 log logn). a.s.

Now, the sum of the diagonal terms of the U-statistic in (20)
is

1

n2

n∑
i=1

[{
1

K2(Ti)
+

1

K(Ti)

}
I(Ai ≤ Ti ≤ Si ≤ t)(21)

+

∫ t

0

I(Ai ≤ u ≤ Ti ≤ Si)

K(u)S(u)
dN̄(u)− Λ(t)

]
,

which is a biased empirical process over a VC class of func-
tions. The Law of Large Numbers [see Theorem 8.3 of 8]
implies that the supremum norm of (21) is almost surely
O(n−1). Therefore, sup0≤t≤b |R0

n12(t)| = O(n−1 log logn).
Similarly, the supremum norm of R0

n11(t) has the same
order as O(n−1 log logn). Hence we have

sup
0≤t≤b

|R0
n1(t)| = O(n−1 log logn).(22)

Part 2: Write

sup
0<t≤b

|R0
n2(t)|(23)

= sup
0<t≤b

∣∣∣∣
∫ t

0

[K(u)− K̂(u)]2

K2(u)K̂(u)
dN̄(u)

∣∣∣∣
= sup

0<t≤b

∣∣∣∣
∫ t

0

{
[K(u)− K̂(u)]3

K3(u)K̂(u)

+
[K(u)− K̂(u)]2

K3(u)

}
dN̄(u)

∣∣∣∣
≤ sup

0<t≤b

∣∣∣∣
∫ t

0

[K(u)− K̂(u)]3

K3(u)K̂(u)
dN̄(u)

∣∣∣∣

+ sup
0<t≤b

∣∣∣∣
∫ t

0

[K(u)− K̂(u)]2

K3(u)
dN̄(u)

∣∣∣∣
=: J1 + J2.

For J1, we have

J1(24)

≤ sup
0<t≤b

∣∣∣∣K(t)− K̂(t)√
K(t)

∣∣∣∣
2

sup
0<t≤b

∫ t

0

|K(u)− K̂(u)|
K2(u)K̂(u)

dN̄(u)

≤ sup
0<t≤b

∣∣∣∣K(t)− K̂(t)√
K(t)

∣∣∣∣
2

sup
0<t≤b

|K(t)− K̂(t)|

· sup
i:Yi≤b

K(Yi)

K̂(Yi)

∫ b

0

dN̄(t)

K3(t)

For the purpose of obtaining the supremum norm of J1, we
first give the order of each term in (24).

(i) Write

K̂2(t) =
1

n

n∑
i=1

δiI(Ṽi ≤ t ≤ Yi).

By the definition of K̂(t),

sup
0<t≤b

∣∣∣∣K̂(t)−K(t)√
K(t)

∣∣∣∣(25)

≤ sup
0<t≤b

w1

∣∣∣∣K̃(t)−K(t)√
K(t)

∣∣∣∣ + sup
0<t≤b

w2

∣∣∣∣K̂2(t)−K(t)√
K(t)

∣∣∣∣
=: w1M1 + w2M2.

From Equation (2.12) of [21], for any ε > 0,

M1 = o(n−1/2(logn)(1+ε)/2). a.s.(26)

For M2, as

P (I(A ≤ t ≤ Y ) = 1) = E[I(A ≤ t ≤ Y )]

= μ−1S(t)ωC(t)

= E[δI(Ṽ ≤ t ≤ Y ))

= P (δI(Ṽ ≤ t ≤ Y ) = 1)

and

P (I(A ≤ t ≤ Y ) = 0) = 1− P (I(A ≤ t ≤ Y ) = 1)

= 1− P (δI(Ṽ ≤ t ≤ Y ))

= P (δI(Ṽ ≤ t ≤ Y ) = 0),

so I(A ≤ t ≤ Y ) and δI(Ṽ ≤ t ≤ Y ) are identically
distributed. Hence K̃(t) and K̂2(t) are also identically dis-
tributed. Based on this observation, it is easy to show that

M2 = sup
0≤t≤b

∣∣∣∣K̂2(t)−K(t)√
K(t)

∣∣∣∣ = o(n−1/2(log n)(1+ε)/2).(27)
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Substituting (26) and (27) into (25), we have, for b < bH
and any ε > 0,

sup
0<t≤b

K̂(t)−K(t)√
K(t)

= o(n−1/2(log n)(1+ε)/2). a.s.(28)

(ii) For b < bH ,

sup
i:Yi≤b

K(Yi)

K̂(Yi)
(29)

= sup
i:Yi≤b

(E[I(A ≤ Yi ≤ Y )])[n−1
n∑

j=1

[w1I(Aj ≤ Yi ≤ Yj)

+w2δjI(Ṽj ≤ Yi ≤ Yj)]]
−1

≤ sup
i:Yi≤b

E[I(A ≤ Yi ≤ Y )]

n−1w1

∑n
j=1 I(Aj ≤ Yi ≤ Yj)

= sup
i:Yi≤b

K(Yi)

w1K̃(Yi)

= O(log n).

Substituting (28) and (29) in (24), using Assumption (A4)
and the Law of the Iterated Logarithm for empirical process,
we obtain

J1 ≤ o(n−3/2(logn)2+ε(log logn)1/2). a.s.(30)

On the other hand,

J2 ≤ sup
0<t≤b

|K(t)− K̂(t)|2 sup
0<t≤b

∫ t

0

dN̄(u)

K3(u)

= sup
0<t≤b

|K(t)− K̂(t)|2
∫ b

0

dN̄(t)

K3(t)

= O(n−1 log logn). a.s.(31)

Hence, by (23), (30) and (31), we have

sup
0<t≤b

|R0
n2(t)| = O(n−1 log logn).(32)

Part 3: Write

In(t) =

∫ t

0

dN̄(u)

K(u)
−

∫ t

0

dW1(u)

K(u)
.

The process In(t) is an empirical process over a VC class
that has square integral envelope. Hence for b < bH ,
sup0<t≤b |In(t)| = O(n−1/2(log logn)1/2) a.s. [2]. By (29),
(31), Assumption (A4) and the Law of the iterated loga-
rithm for empirical processes, for b < bH ,

Δ := sup
0<t≤b

∣∣∣∣
∫ t

0

dN̄(u)

K̂(u)
−

∫ t

0

dN̄(u)

K(u)

∣∣∣∣
= sup

0<t≤b

∣∣∣∣
n∑

i=1

I(Yi ≤ t)

nK̂(Yi)
−

n∑
i=1

I(Yi ≤ t)

nK(Yi)

∣∣∣∣

≤ sup
i:0<Yi≤b

K(Yi)

K̂(Yi)

∣∣∣∣
∫ b

0

[K̂(u)−K(u)]2

K3(u)
dN̄(u)

∣∣∣∣
+

∣∣∣∣
∫ b

0

K̂(u)−K(u)

K2(u)
dN̄(u)

∣∣∣∣
≤ sup

i:0<Yi≤b

K(Yi)

K̂(Yi)

∣∣∣∣
∫ b

0

[K̂(u)−K(u)]2

K3(u)
dN̄(u)

∣∣∣∣
+ sup

0≤u≤b
|K̂(u)−K(u)|

∣∣∣∣
∫ b

0

dN̄(u)

K2(u)

∣∣∣∣
= O(n−1/2(log logn)1/2). a.s.

Hence we obtain

sup
0<t≤b

|Λn(t)− Λ(t)|

≤ sup
0<t≤b

∣∣∣∣
∫ t

0

dN̄(u)

K̂(u)
−

∫ t

0

dN̄(u)

K(u)

∣∣∣∣
+ sup

0<t≤b

∣∣∣∣
∫ t

0

dN̄(u)

K(u)
−

∫ t

0

dW1(u)

K(u)

∣∣∣∣
= Δ+ sup

0<t≤b
|In(t)| = O(n−1/2(log logn)1/2). a.s.(33)

Combining (19), (22), (32) and (33), Theorem 1 is
proved.

Proof of Theorem 2. Consider the Taylor series’ expansion

of e−Λ̂n(t) − e−Λ(t),

e−Λ̂n(t) − e−Λ(t)

= e−Λ(t) +

∞∑
i=1

(−1)ie−Λ(t)

i!
[Λ̂n(t)− Λ(t)]i − e−Λ(t)

= −e−Λ(t)[Λ̂n(t)− Λ(t)] +
1

2
e−Λ∗(t)[Λ̂n(t)− Λ(t)]2,

where |Λ∗
n(t)− Λ(t)| ≤ |Λn(t)− Λ(t)|. Write

S̄n(t) =
∏

i:Yi≤t

(
nK̂(Yi)

nK̂(Yi) + 1

)δi

in lieu of Ŝn(t) to avoid the logarithm of Ŝn(t)’s becoming
log 0. It follows that

Ŝn(t)− S(t)

= e−Λ̂n(t) − e−Λ(t) + Ŝn(t)− S̄n(t) + S̄n(t)− e−Λ̂n(t)

= −e−Λ(t)[Λ̂n(t)− Λ(t)] +Rn(t),

with

sup
0≤t≤b

|Rn(t)|(34)

≤ sup
0≤t≤b

∣∣1
2
e−Λ∗(t)[Λ̂n(t)−Λ(t)]2

∣∣+ sup
0≤t≤b

|Ŝn(t)− S̄n(t)|
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+ sup
0≤t≤b

|S̄n(t)− e−Λ̂n(t)|

≤
(

sup
0≤t≤b

|Λ̂n(t)− Λ(t)|
)2

+ sup
0≤t≤b

|Ŝn(t)− S̄n(t)|

+ sup
0≤t≤b

|S̄n(t)− e−Λ̂n(t)|

=: R1 +R2 +R3.

It follows straightforwardly from (33) that

R1 = O(n−1 log logn).(35)

For R2, given that
∣∣ ∏n

j=1 aj −
∏n

j=1 bj
∣∣ ≤

∑n
j=1 |aj − bj |

and |aj |, |bj | ≤ 1, we obtain

R2(36)

= sup
0≤t≤b

|Ŝn(t)− S̄n(t)|

≤ sup
0≤t≤b

|
∏

i:Yi≤t

(
nK̂(Yi)− 1

nK̂(Yi)

)δi

−
∏

i:Yi≤t

(
nK̂(Yi)

nK̂(Yi) + 1

)δi

|

= sup
0≤t≤b

∑
i:Yi≤t

I(δi = 1)

nK̂(Yi)[nK̂(Yi) + 1]

= sup
0≤t≤b

∫ t

0

dN̄(t)

K̂(u)[nK̂(u) + 1]

= sup
0≤t≤b

∫ t

0

K̂(u)K(u) +K(u)[K(u)− K̂(u)]

nK2(u)K̂(u)[K̂(u) + n−1]
dN̄(u)

≤ 1

n
sup

0≤t≤b

∣∣∣∣
∫ t

0

dN̄(u)

K(u)[K̂(u) + n−1]

∣∣∣∣
+
1

n
sup

0<t≤b

∣∣∣∣K(t)− K̂(t)√
K(t)

∣∣∣∣ sup
i:Yi≤b

K(Yi)

K̂(Yi)

·
∫ b

0

dN̄(u)√
K3(u)[K̂(u) + n−1]

= O(n−1). a.s.

For R3, applying the Taylor series’ expansion to log(S̄n(t)),
we have

log(S̄n(t)) = −
∑

i:Yi≤t

log

(
1 +

δi

nK̂(Yi)

)

= −
∑

i:Yi≤t

δi

nK̂(Yi)
−

∞∑
j=2

∑
i:Yi≤t

1

j

(
δi

nK̂(Yi)

)j

=: −Λ̂n(t) +Dn(t).

Hence,

sup
0≤t≤b

|Dn(t)|(37)

= sup
0≤t≤b

| log(S̄n(t)) + Λ̂n(t)|

= sup
0≤t≤b

∣∣∣∣ ∑
i:Yi≤t

∞∑
m=1

{
− δi

m[nK̂(Yi) + 1]m

}

+
n∑

i=1

I(Yi ≤ t, δi = 1)

nK̂(Yi)

∣∣∣∣
= sup

0≤t≤b

∑
i:Yi≤t

∣∣∣∣
∞∑

m=2

{
− δi

m[nK̂(Yi) + 1]m

}

+
δi

nK̂(Yi)
− δi

nK̂(Yi) + 1

∣∣∣∣
= sup

0≤t≤b

∑
i:Yi≤t

δi

nK̂(Yi)[nK̂(Yi) + 1]∣∣∣∣1−
∞∑

m=2

nK̂(Yi)

m[nK̂(Yi) + 1]m+1

∣∣∣∣.
Note that

∞∑
m=2

nK̂(Yi)

m[nK̂(Yi) + 1]m+1
(38)

=
nK̂(Yi)

nK̂(Yi) + 1

∞∑
m=2

[nK̂(Yi) + 1]−m

m

=
nK̂(Yi)

nK̂(Yi) + 1

[
log

(
nK̂(Yi) + 1

nK̂(Yi)

)
− 1

nK̂(Yi) + 1

]
= O(1).

Substituting (38) back into (37), we have

sup
0≤t≤b

|Dn(t)| = sup
0≤t≤b

| log(S̄n(t)) + Λ̂n(t)| = O(1)

It then follows, for any b < bH , that

R3(39)

= sup
0≤t≤b

|S̄n(t)− e−Λ̂n(t)|

= sup
0≤t≤b

|e−Λ̂n(t)(eDn(t) − 1)|

= sup
0≤t≤b

∣∣∣∣e−Λ̂n(t)
∞∑
j=1

[Dn(t)]
j

j!

∣∣∣∣
≤ sup

0≤t≤b
|Dn(t)| sup

0≤t≤b

∣∣∣∣
∞∑
j=0

[Dn(t)]
j

(j + 1)!

∣∣∣∣ = O(n−1).

Combining (34), (35), (36) and (39) yields

sup
0≤t≤b

|Rn(t)| ≤ O(n−1 log logn) +O(n−1) +O(n−1)

= O(n−1 log logn).

This completes the proof of Theorem 2.

230 S. Fan et al.



Proof of Theorem 3. By the definition of Ln(t), we have

Ln(t)

=

∫ t

0

dN̄(u)

K(u)
−

∫ t

0

K̂(u)

K2(u)
dW1(u)

=

∫ t

0

d
[ ∑n

i=1 I(Yi ≤ u, δi = 1)
]

nK(u)

−
∫ t

0

∑n
i=1[w1I(Ai ≤ u ≤ Yi)+w2δiI(Ṽi ≤ u ≤ Yi)]

nK2(u)

·dW1(u)

=
1

n

n∑
i=1

∫ t

0

dI(Yi ≤ u, δi = 1)

K(u)

− 1

n

n∑
i=1

∫ t

0

w1I(Ai ≤ u ≤ Yi) + w2δiI(Ṽi ≤ u ≤ Yi)

K2(u)

· dW1(u)

=:
1

n

n∑
i=1

φi(t).

By the functional delta method [13] and Central Limit The-
orem in empirical process, for any 0 < t1 and t2 < b,√
n(Ŝn(t) − S(t)) follows approximately a Gaussian pro-

cess with mean zero and covariance matrix Σ(t1, t2) =
S(t1)S(t2)E[φ1(t1)φ1(t2)]. This provides a basis for obtain-
ing the representation of E[φ1(t1)φ1(t2)]. Without loss of
generality, let t1 ≤ t2. For notational convenience, write
Î1(t) = w1I(A1 ≤ t ≤ Y1) + w2δ1I(Ṽ1 ≤ t ≤ Y1). Then we
have

E[φ1(t1)φ1(t2)](40)

= E

[{∫ t1

0

dI(Y1 ≤ u, δ1 = 1)

K(u)
−

∫ t1

0

Î1(u)

K2(u)
dW1(u)

}
{∫ t2

0

dI(Y1 ≤ u, δ1 = 1)

K(u)
−

∫ t2

0

Î1(u)

K2(u)
dW1(u)

}]

= E

[
I(Y1 ≤ t1, δ1 = 1)

K(Y1)

I(Y1 ≤ t2, δ1 = 1)

K(Y1)

]

−E

[
I(Y1 ≤ t1, δ1 = 1)

K(Y1)

∫ t2

0

Î1(u)

K2(u)
dW1(u)

]

−E

[
I(Y1 ≤ t2, δ1 = 1)

K(Y1)

∫ t1

0

Î1(u)

K2(u)
dW1(u)

+E

[ ∫ t1

0

Î1(u)

K2(u)
dW1(u)

∫ t2

0

Î1(u)

K2(u)
dW1(u)

]

=

∫ t1

0

dW1(u)

K2(u)
+

∫ t2

0

∫ t1

0

E[Î1(u)Î1(v)]

K2(u)K2(v)
dW1(u)dW1(v)

−
∫ t1

0

E

[
w1δ1I(A1 ≤ u ≤ Y1 ≤ t2)

K(Y1)

+
w2δ1I(Ṽ1 ≤ u ≤ Y1 ≤ t2)

K(Y1)

]
dW1(u)

K2(u)

−
∫ t2

0

E

[
w1δ1I(A1 ≤ u ≤ Y1 ≤ t1)

K(Y1)

w2δ1I(Ṽ1 ≤ u ≤ Y1 ≤ t1)

K(Y1)

]
dW1(u)

K2(u)

=:

∫ t1

0

dW1(u)

K2(u)
+A(t1, t2)−B(t1, t2).

In order to give the exact expression of (40), we first
provide the exact expressions of A(t1, t2) and B(t1, t2).

(i) Note that

E

[
I(A1 ≤ u ≤ Y1 ≤ t1, δ1 = 1)

K(Y1)

]

= E

[
I(u ≤ T1 ≤ t1, 0 ≤ A1 ≤ u, T1 −A1 ≤ C1)

K(T1)

]

=

∫ t1

u

∫ u

0

∫ ∞

t−a

f(t)

μK(t)
dG(c)dadt

=

∫ t1

u

f(t)

S(t)ωC(t)
[ωC(t)− ωC(t− u)]dt,

and

E

[
I(Ṽ1 ≤ u ≤ Y1 ≤ t1, δ1 = 1)

K(Y1)

]

= E

[
I(u ≤ T1 ≤ t1, T1 − u ≤ A1 ≤ T1, T1 −A1 ≤ C1)

K(T1)

]

=

∫ t1

u

f(t)

S(t)ωC(t)
ωC(u)dt.

It follows immediately that

E

[
w1δ1I(A1≤u≤Y1≤t1)+w2δ1I(Ṽ1≤u≤Y1≤t1)

K(Y1)

]

=
∫ t1
u

f(t)
S(t)ωC(t) [w1(ωC(t)− ωC(t− u)) + w2ωC(u)]dt.

Therefore,

B(t1, t2)

=
∫ t1
0

∫ t2
u

f(t)f(u)[w1(ωC(t)−ωC(t−u))+w2ωC(u)]
μ−1S(t)ωC(t)S2(u)ωC(u) dtdu

+
∫ t2
0

∫ t1
u

f(t)f(u)[w1(ωC(t)−ωC(t−u))+w2ωC(u)]
μ−1S(t)ωC(t)S2(u)ωC(u) dtdu.

(ii) Note that

E[Î1(u)Î1(v)](41)

= E[{w1I(A1 ≤ u ≤ Y1) + w2δ1I(Ṽ1 ≤ u ≤ Y1)}
{w1I(A1 ≤ v ≤ Y1) + w2δ1I(Ṽ1 ≤ v ≤ Y1)}]

= w2
1E[I(A1 ≤ u, v ≤ Y1)] + w2

2E[δ1I(Ṽ1 ≤ u, v ≤ Y1)]

+w1w2E[δ1I(A1 ≤ u ≤ Y1, Ṽ1 ≤ v ≤ Y1)]

+w1w2E[δ1I(A1 ≤ v ≤ Y1, Ṽ1 ≤ u ≤ Y1)]

=: I11 + I12 + I13 + I14.
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We can write

I11 = w2
1E[I(A1 ≤ u, v ≤ Y1)]

= w2
1E[I(A1 ≤ u ∧ v, Y1 ≥ u ∨ v)]

= w2
1E[I(A1≤u ∧ v, T1≥u ∨ v, C1≥u ∨ v −A1)]

= w2
1

∫ ∞

u∨v

∫ u∧v

0

f(t)

μ
SC(u ∨ v − a)dadt

= w2
1

∫ ∞

u∨v

f(t)

μ
dt

∫ |u−v|

u∨v

S(y)d(−y)

= w2
1μ

−1S(u ∨ v)[ωC(u ∨ v)− ωC(|u− v|)],(42)

I12 = w2
2E[δ1I(Ṽ1 ≤ u, v ≤ Y1)]

= w2
2E[I(T1 −A1≤u ∧ v, u ∨ v≤T1 ≤ A1 + C1)]

= w2
2

∫ ∞

u∨v

∫ t

t−u∧v

∫ ∞

t−a

f(t)

μ
dG(c)dadt

= w2
2

∫ ∞

u∨v

f(t)

μ
ωC(u ∧ v)dt

= w2
2μ

−1S(u ∨ v)ωC(u ∧ v),(43)

and

I13 = w1w2E[δ1I(A1 ≤ u ≤ Y1, Ṽ1 ≤ v ≤ Y1)]

= w1w2E[I(A1 ≤ u ≤ T1 ≤ A1 + C1,

T1 −A1 ≤ v ≤ T1 ≤ A1 + C1)]

= w1w2E[I(T1 − v ≤ A1 ≤ u, T1 − v ≤ u,

u ∨ v ≤ T1, T1 −A1 ≤ C1)]

= w1w2

∫ u+v

u∨v

∫ u

t−v

∫ ∞

t−a

f(t)

μ
dG(c)dadt

= w1w2

∫ u+v

u∨v

∫ u

t−v

f(t)

μ
SC(t− a)dadt

= w1w2

∫ u+v

u∨v

f(t)

μ

∫ t−u

v

S(y)d(−y)

= w1w2

∫ u+v

u∨v

f(t)

μ
[ωC(v)− ωC(t− u)]dt.(44)

Similarly, we can show that

I14 = w1w2E[δ1I(A1 ≤ v ≤ Y1, Ṽ1 ≤ u ≤ Y1)]

= w1w2

∫ u+v

u∨v

f(t)

μ
[ωC(u)− ωC(t− v)]dt.(45)

Substituting (42), (43), (44) and (45) into (41), we have

E[Î1(u)Î1(v)]

= w2
1μ

−1S(u ∨ v)[ωC(u ∨ v)− ωC(|u− v|)]
+w2

2μ
−1S(u ∨ v)ωC(u ∧ v)

+w1w2μ
−1

∫ u+v

u∨v

f(t)[ωC(v) + ωC(u)

− ωC(t− u)− ωC(t− v)]dt

=: H1(u, v) +H(u, v),

where

H1(u, v) = w1μ
−1S(u ∨ v)[ωC(u ∨ v)− ωC(|u− v|)]

+w2μ
−1S(u ∨ v)ωC(u ∧ v), and

H(u, v) = (w2
1 − w1)μ

−1S(u ∨ v)

[ωC(u ∨ v)− ωC(|u− v|)]
+(w2

2 − w2)μ
−1S(u ∨ v)ωC(u ∧ v)

+w1w2μ
−1

∫ u+v

u∨v

f(t)[ωC(v) + ωC(u)

− ωC(t− u)− ωC(t− v)]dt.

From the definition of A(t1, t2), it follows that

A(t1, t2) =

∫ t1

0

∫ t2

0

H1(u, v)

K2(u)K2(v)
dW1(u)dW1(v)

+

∫ t1

0

∫ t2

0

H(u, v)

K2(u)K2(v)
dW1(u)dW1(v).(46)

By the exact expression of B(t1, t2) in (41), the first term

of A(t1, t2) in (46) can be expressed as

∫ t1

0

∫ t2

0

H1(u, v)

K2(u)K2(v)
dW1(v)dW1(u)

=

∫ t1

0

∫ t2

0

[
w1μ

−1S(u ∨ v)[ωC(u ∨ v)− ωC(|u− v|)]
K2(u)K2

+
w2μ

−1S(u ∨ v)ωC(u ∧ v)

K2(u)K2(v)
]dW1(v)dW1(u)

=

∫ t1

0

∫ u

0

[w1(ωC(u)− ωC(u− v)) + w2ωC(v)]

μ−2S2(u)ωC(u)

μ−1S(u)f(u)f(v)dvdu

+

∫ t1

0

∫ t2

u

[w1(ωC(v)− ωC(v − u)) + w2ωC(u)]

μ−2S2(u)ωC(u)S2(v)ωC(v)

μ−1S(v)f(u)f(v)dvdu

=

∫ t2

0

∫ t1

v

[w1(ωC(u)− ωC(u− v)) + w2ωC(v)]

μ−1S(u)ωC(u)S2(v)ωC(v)

f(u)f(v)dvdu

+

∫ t1

0

∫ t2

u

[w1(ωC(v)− ωC(v − u)) + w2ωC(u)]

μ−1S2(u)ωC(u)S(v)ωC(v)

f(u)f(v)dvdu

= B(t1, t2).

Therefore,

A(t1, t2)(47)

= B(t1, t2) +

∫ t1

0

∫ t2

0

H(u, v)

K2(u)K2(v)
dW1(u)dW1(v).
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Combining (40) with (47), it is readily seen that

E[φ1(t1)φ1(t2)] =

∫ t1

0

dW1(u)

K2(u)

+

∫ t2

0

∫ t1

0

H(u, v)

K2(u)K2(v)
dW1(u)dW1(v),

where

H(u, v)

= (w2
1 − w1)μ

−1S(u ∨ v)[ωC(u ∨ v)− ωC(|u− v|)]
+(w2

2 − w2)μ
−1S(u ∨ v)ωC(u ∧ v)

+w1w2μ
−1

∫ u+v

u∨v

f(t)

·[ωC(v) + ωC(u)− ωC(t− u)− ωC(t− v)]dt.(48)

This completes the proof of Theorem 3.

Proof of Corollary 1. (i) By Theorem 2 and recognising
that E[Ln(t)] = 0, we can show that Ŝn(t) − S(t) −→ 0;
(ii) It follows directly from part (i) of Theorem 3 by setting
t1 = t2 = t.

Proof of Corollary 2. (i) We first prove that
√
n(S̃n(t) −

S(t))
D−→ N(0, Σ̃t). Write

L̃n(t) =

∫ t

0

dβn(u)

K(u)
−

∫ t

0

K̃(u)−K(u)

K2(u)
dW1(u).

Similar to the proofs of Theorem 1 and 2, for 0 ≤ t ≤ b ≤ bH ,
we obtain

Λ̃n(t)− Λ(t) = L̃n(t) + R̃0
n(t),

S̃n(t)− S(t) = −S(t)[Λ̃n(t)− Λ(t)] + R̃n(t), and

S̃n(t)− S(t) = −S(t)L̃n(t) + R̃′
n(t),

with

sup
0≤t≤b

|Λ̃n(t)− Λ(t)| = O(n−1/2(log log n)1/2), a.s.

sup
0≤t≤b

|R̃0
n(t)| = sup

0≤t≤b
|R̃n(t)|

= sup
0≤t≤b

|R̃′
n(t)| = O(n−1 log logn).

By the definition of L̃n(t), we have

L̃n(t) =

∫ t

0

dN̄(u)

K(u)
−

∫ t

0

K̃(u)

K2(u)
dW1(u)

=

∫ t

0

d
[ ∑n

i=1 I(Yi ≤ u, δi = 1)
]

nK(u)

−
∫ t

0

∑n
i=1 I(Ai ≤ u ≤ Yi)

nK2(u)
dW1(u)

=
1

n

n∑
i=1

[ ∫ t

0

dI(Yi ≤ u, δi = 1)

K(u)

−
∫ t

0

I(Ai ≤ u ≤ Yi)

K2(u)
dW1(u)

]

=:
1

n

n∑
i=1

φ̃i(t),

where φ̃i(t) =
∫ t

0
dI(Yi≤u,δi=1)

K(u) −
∫ t

0
I(Ai≤u≤Yi)

K2(u) dW1(u). By

the functional delta method [13] and Central Limit The-

orem in empirical process, for any 0 < t1 and t2 < b,√
n(S̃n(t) − S(t)) follows approximately a Gaussian pro-

cess with mean zero and covariance matrix Σ̃(t1, t2) =

S(t1)S(t2)E[φ̃1(t1)φ̃1(t2)]. This provides a basis for obtain-

ing the representation of E[φ̃1(t1)φ̃1(t2)]. Without loss of

generality, let t1 ≤ t2. Then we have

E[φ̃1(t1)φ̃1(t2)](49)

= E

[{∫ t1

0

dI(Y1 ≤ u, δ1 = 1)

K(u)

−
∫ t1

0

I(A1 ≤ u ≤ Y1)

K2(u)
dW1(u)

}
{∫ t2

0

dI(Y1 ≤ u, δ1 = 1)

K(u)

−
∫ t2

0

I(A1 ≤ u ≤ Y1)

K2(u)
dW1(u)

}]

= E

[
I(Y1 ≤ t1, δ1 = 1)

K(Y1)

I(Y1 ≤ t2, δ1 = 1)

K(Y1)

−I(Y1 ≤ t1, δ1 = 1)

K(Y1)

∫ t2

0

I(A1 ≤ u ≤ Y1)

K2(u)
dW1(u)

−I(Y1 ≤ t2, δ1 = 1)

K(Y1)

∫ t1

0

I(A1 ≤ u ≤ Y1)

K2(u)
dW1(u)

+

∫ t1

0

I(A1 ≤ u ≤ Y 1)

K2(u)
dW1(u)∫ t2

0

I(A1 ≤ u ≤ Y1)

K2(u)
dW1(u)

]

=:

∫ t1

0

dW1(u)

K2(u)
+ Ã(t1, t2)− B̃(t1, t2).

In order to give the exact expression of (49), we next calcu-

late exact expression of Ã(t1, t2) and B̃(t1, t2).

Note that

E

[
I(A1 ≤ u ≤ Y1 ≤ t1, δ1 = 1)

K(Y1)

]

= E

[
I(u ≤ T1 ≤ t1, 0 ≤ A1 ≤ u, T1 −A1 ≤ C1)

K(T1)

]

=

∫ t1

u

∫ u

0

∫ ∞

t−a

f(t)

μK(t)
dG(c)dadt

=

∫ t1

u

f(t)

S(t)ωC(t)
[ωC(t)− ωC(t− u)]dt.
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Therefore,

B̃(t1, t2)(50)

=

∫ t1

0

∫ t2

u

f(t)f(u)[ωC(t)− ωC(t− u)]

μ−1S(t)ωC(t)S2(u)ωC(u)
dtdu

+

∫ t2

0

∫ t1

u

f(t)f(u)[ωC(t)− ωC(t− u))]

μ−1S(t)ωC(t)S2(u)ωC(u)
dtdu.

On the other hand,

E[I(A1 ≤ u ≤ Y1)I(A1 ≤ v ≤ Y1)](51)

= E[I(A1 ≤ u, v ≤ Y1)]

= E[I(A1 ≤ u ∧ v, Y1 ≥ u ∨ v)]

= E[I(A1 ≤ u ∧ v, T1 ≥ u ∨ v, C1 ≥ u ∨ v −A1)]

=

∫ ∞

u∨v

∫ u∧v

0

f(t)

μ
SC(u ∨ v − a)dadt

=

∫ ∞

u∨v

f(t)

μ
dt

∫ |u−v|

u∨v

S(y)d(−y)

= μ−1S(u ∨ v)[ωC(u ∨ v)− ωC(|u− v|)].

From the definition of Ã(t1, t2), it can be shown that

Ã(t1, t2)(52)

=

∫ t1

0

∫ t2

0

I(A1 ≤ u ≤ Y 1)I(A1 ≤ v ≤ Y 1)

K2(u)K2(v)

dW1(u)dW1(v)

=

∫ t1

0

∫ t2

0

μ−1S(u ∨ v)[ωC(u ∨ v)− ωC(|u− v|)]
K2(u)K2(v)

dW1(v)dW1(u)

=

∫ t1

0

∫ u

0

μ−1S(u)[ωC(u)− ωC(u− v)]

μ−2S2(u)ωC(u)S2(v)ωC(v)
dvdu

+

∫ t1

0

∫ t2

u

μ−1S(v)[ωC(v)− ωC(v − u)]

μ−2S2(u)ωC(u)S2(v)ωC(v)
dvdu

= B̃(t1, t2).

Combining (52) with (49), it is readily seen that

E[φ1(t1)φ1(t2)] =

∫ t1

0

dW1(u)

K2(u)
.

Hence we have

√
n(S̃n(t)− S(t))

D−→ N(0, Σ̃t),

where Σ̃t = S2(t)
∫ t

0
dW1(u)
K2(u) .

(ii) In order to prove that Σt ≤ Σ̃t, we only need to verify
thatH(u, v) in (48) is less equal than 0 for any u and v. Now,
note that

H(u, v) = (w2
1 − w1)μ

−1S(u ∨ v)[ωC(u ∨ v)− ωC(|u− v|)]
+ (w2

2 − w2)μ
−1S(u ∨ v)ωC(u ∧ v)

+ w1w2μ
−1

∫ u+v

u∨v

f(t)

[ωC(v) + ωC(u)− ωC(t− u)− ωC(t− v)]dt.

≤ (w2
1 − w1)μ

−1S(u ∨ v)[ωC(u ∨ v)− ωC(|u− v|)]
+ (w2

2 − w2)μ
−1S(u ∨ v)ωC(u ∧ v)

+ w1w2μ
−1(ωC(u) + ωC(v))(S(u+ v)− S(v))

= μ−1w1(w1 + w2 − 1)S(v)ωC(v)

+ μ−1w2(w1 + w2 − 1)ωC(u)S(v)

+ μ−1w1(w1 + w2 − 1)[S(v)ωC(u− v)

+ (ωC(u) + ωC(v))S(u+ v)]

= 0.

This completes the proof of Corollary 2.

Proof of Corollary 3. By Corollary 1, Ŝn is most efficient at
the values of w1 and w2 that minimise

M(t;w1, w2) =:

∫ t

0

∫ t

0

H(u, v)

K2(u)K2(v)
dW1(u)dW1(v),

where

H(u, v)

= (w2
1 − w1)μ

−1S(u ∨ v)[ωC(u ∨ v)− ωC(|u− v|)]
+(w2

2 − w2)μ
−1S(u ∨ v)ωC(u ∧ v)

+w1w2μ
−1

∫ u+v

u∨v

f(t)[ωC(v) + ωC(u)

−ωC(t− u)− ωC(t− v)]dt.

Since w1 + w2 = 1, we can rewrite M(t;w1, w2) as

M̃(t, w1) = (w2
1 − w1)μ

−1{S(u ∧ v)

[ωC(u) + ωC(v)− ωC(|u− v|)]

−
∫ u+v

u∧v

f(t)[ωC(u) + ωC(v)

− ωC(t− u)− ωC(t− v)]dt}.(53)

Differentiating (53) with respect to w1 yields

∂M̃(t;w1)

∂w1
= (2w1 − 1)μ−1{S(u ∧ v)

[ωC(u) + ωC(v)− ωC(|u− v|)]

−
∫ u+v

u∧v

f(t)[ωC(u) + ωC(v)

− ωC(t− u)− ωC(t− v)]dt}
= 0

when w1 = 1
2 . This proves Corollary 3.
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nequin, P. L. (ed.), Ecole d’été de Probabilités de Saint-Flour
XII-1982 1–142. Springer, Berlin, Heidelberg. MR0876079
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