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Zero-one-inflated simplex regression models for
the analysis of continuous proportion data
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Continuous data restricted in the closed unit interval [0,1]
often appear in various fields. Neither the beta distribution
nor the simplex distribution provides a satisfactory fitting
for such data, since the densities of the two distributions are
defined only in the open interval (0,1). To model continuous
proportional data with excessive zeros and excessive ones, it
is the first time that we propose a zero-one-inflated simplex
(ZOIS) distribution, which can be viewed as a mixture of
the Bernoulli distribution and the simplex distribution. Be-
sides, we introduce a newminorization–maximization (MM)
algorithm to calculate the maximum likelihood estimates
(MLEs) of parameters in the simplex distribution without
covariates. Likelihood-based inference methods for the ZOIS
regression model are also provided. Some simulation stud-
ies are performed and the hospital stay data of Barcelona
in 1988 and 1990 are analyzed to illustrate the proposed
methods. The comparison between the ZOIS model and the
zero-one-inflated beta (ZOIB) model is also presented.

Keywords and phrases: Continuous proportion data,
MM algorithm; Simplex distribution, Zero-one-inflated beta
model, Zero-one-inflated simplex model.

1. INTRODUCTION

Many scientific studies in different disciplines yield out-
comes in the form of percentages, fractions, rates or pro-
portions that are measured continuously in intervals (0,1),
[0,1), (0,1] or [0,1]. Different strategies have been pro-
posed for modeling such continuous proportional data. To
fit continuous observations restricted on the open inter-
val (0,1), some authors considered the beta distribution
as one of such tools, since its density has various shapes:
left-skewed, right-skewed, “U”, “J”, inverted “J”, and uni-
form depending on the values of the two parameters (see
Johnson et al., 1995, §25.1). Beta regression models have
been studied by Paolino (2001), Kieschnick and McCul-
lough (2003), Ferrari and Cribari-Neto (2004), Smithson and
Verkuilen (2006), Korhonen et al. (2007), Espinheira et al.
(2008a, 2008b), Simas et al. (2010), Ferrari and Pinheiro
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(2011), and so on. Recently, Ospina and Ferrari (2010) pro-
posed mixed continuous–discrete inflated beta distributions
to model data observed on [0,1), (0,1] or [0,1]. Ospina and
Ferrari (2012) proposes a general class of regression models
for continuous proportions when the data contain zeros or
ones.

Moreover, as a non-exponential family member, the sim-
plex distribution of Barndorff-Nielsen and Jørgensen (1991)
can also be utilized to model continuous proportional data
confined in the open interval (0,1). Simulation studies of
Zhang and Qiu (2014) showed that the simplex regression
model has a better robustness against violation of some
distributional assumptions than the beta regression model.
Based on these facts, in this paper, we consider the simplex
model instead of the beta model.

By employing the simplex distribution, Song and Tan
(2000) developed a marginal model for analyzing an eye
surgery longitudinal proportional data. Song et al. (2004)
further modeled heterogeneous dispersion in marginal mod-
els. Qiu and Song (2008) proposed a simplex mixed-effects
models for longitudinal proportional data. Zhang and Wei
(2008) considered maximum likelihood estimation of sim-
plex distribution nonlinear mixed models via the stochas-
tic approximation algorithm. Recently, Zhao et al. (2014)
considered the Bayesian estimation of simplex distribution
nonlinear mixed models for longitudinal data. Quintero and
Contreras-Reyes (2018) proposed a mixture simplex model,
where the parameters were estimated by an expectation–
maximization (EM) algorithm.

In practice, usually, proportional data include a non-
negligible number of zeros and ones. For these situations,
neither the beta distribution nor the simplex distribution
provides a satisfactory fitting for such data, since the den-
sities of the two distributions are defined only in the open
interval (0,1). To model continuous proportional data with
excessive zeros and excessive ones, it is the first time that
we propose a so-called zero-one-inflated simplex (ZOIS) dis-
tribution, which can be viewed as a mixture of the Bernoulli
distribution and the simplex distribution. Besides, we pro-
vide a new minorization–maximization (MM) algorithm to
calculate the maximum likelihood estimate (MLE) of the
mean parameter in the simplex distribution. Two stochas-
tic representations (SRs) of the ZOIS random variable are
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introduced to facilitate the likelihood-based statistical infer-
ences.

The rest of this paper is organized as follows. In Sec-
tion 2, we first review some basic properties of the simplex
distribution and present a simple procedure to generate i.i.d.
random samples from the simplex distribution (see the Ap-
pendix), then provide an MM algorithm to calculate MLEs
of parameters in the simplex distribution, and introduce a
ZOIS distribution via two SRs. In Section 3, likelihood-based
inference methods for the ZOIS distribution without covari-
ates and the ZOIS regression model are given. In addition,
model selection and goodness-of-fit tests are also provided.
Some simulation studies are performed in Section 4. In Sec-
tion 5, we first fit the hospital stay data of Barcelona in
1988 and 1990 with both ZOIS and ZOIB distributions with-
out/with covariates to illustrate the proposed methods, then
we compare the difference between the beta and the sim-
plex distributions for only fitting the continuous part (i.e.,
the observations in (0,1)). A discussion is presented in Sec-
tion 6. The algorithm of random variable generation from
the simplex distribution is given in the Appendix.

2. ZERO-ONE-INFLATED SIMPLEX MODEL

2.1 The simplex distribution

A continuous random variable X taking values in the
open unit interval (0, 1) is said to follow the simplex distri-
bution (Barndorff-Nielsen & Jørgensen, 1991), denoted by
X ∼ S−(μ, σ2), if its probability density function (pdf) is
given by

(2.1) fS(x;μ, σ
2) = [2πσ2x3(1− x)3]−

1
2 exp

[
−d(x;μ)

2σ2

]
,

for x ∈ (0, 1), where μ ∈ (0, 1) is the mean parameter,
σ2 (> 0) is the dispersion parameter, and

(2.2) d(x;μ) =̂
(x− μ)2

x(1− x)μ2(1− μ)2

is the unit deviance. The mean and variance of X are

(2.3)

E(X) = μ and

Var(X) = μ(1− μ)− 1√
2σ2

exp

[
1

2σ2μ2(1− μ2)

]
×Γ

(
1

2
,

1

2σ2μ2(1− σ)2

)
,

where Γ(a, b) =
∫∞
b

ta−1e−t dt denotes the upper incomplete
gamma function.

To generate i.i.d. random samples from the simplex dis-
tribution (2.1), in Appendix A.3, we introduce a simple sim-
ulation procedure, which is closely related with the inverse
Gaussian distribution (Appendix A.1) and the inverse Gaus-
sian mixture distribution (Appendix A.2).

2.2 MLEs of parameters in the simplex
distribution via an MM algorithm

Let X1, . . . , Xn
iid∼ S−(μ, σ2), {xi}ni=1 be the correspond-

ing realizations of {Xi}ni=1, and Yobs = {xi}ni=1 denote the
observed data. The log-likelihood function of the unknown
parameters (μ, σ2) is given by

�(μ, σ2|Yobs) = −n

2
log(σ2)− 1

2σ2
D(μ|Yobs) + constant,

where

(2.4) D(μ|Yobs) =
1

μ2(1− μ)2

n∑
i=1

(xi − μ)2

xi(1− xi)
.

The aim is to calculate the MLEs of the parameters (μ, σ2).
The MLE of μ is

μ̂ = arg max
μ∈(0,1)

[
−D(μ|Yobs)

]
= arg min

μ∈(0,1)
D(μ|Yobs)

= arg min
μ∈(0,1)

log[D(μ|Yobs)]

= arg max
μ∈(0,1)

{
− log[D(μ|Yobs)]

}
,

where

log[D(μ|Yobs)] = −2[log(μ) + log(1− μ)]

+ log

[
n∑

i=1

(xi − μ)2

xi(1− xi)

]
.

Define

(2.5) z =

n∑
i=1

(xi − μ)2

xi(1− xi)
and z(t) =

n∑
i=1

(xi − μ(t))2

xi(1− xi)
,

where μ(t) denotes the t-th approximate of the MLE μ̂. By
using the supporting hyperplane inequality

− log(z) � 1− log(z(t))− z

z(t)
,

we can construct a Q function as

Q(μ|μ(t)) = 1− log(z(t))(2.6)

+ 2[log(μ) + log(1− μ)]

− 1

z(t)

n∑
i=1

(xi − μ)2

xi(1− xi)

such that Q(μ|μ(t)) minorizes − log[D(μ|Yobs)] at the point
μ = μ(t); i.e.,

Q(μ|μ(t)) � − log[D(μ|Yobs)] ∀ μ, μ(t) ∈ (0, 1) and

Q(μ(t)|μ(t)) = − log[D(μ(t)|Yobs)].
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According to the MM principle (Lange et al., 2000), the
(t+ 1)-th approximate of the MLE μ̂ is given by

μ(t+1) = arg max
μ∈(0,1)

Q(μ|μ(t)).

Letting dQ(μ|μ(t))/ dμ = 0, we can obtain μ(t+1) as the real
root of the cubic equation

(2.7) a(t)μ3 − (a(t) + b(t))μ2 + (b(t) − 2)μ+ 1 = 0,

where

a(t) =
1

z(t)

n∑
i=1

1

xi(1− xi)
and b(t) =

1

z(t)

n∑
i=1

1

1− xi
,

and z(t) is specified by (2.5). In practice, we can take the
initial value μ(0) = 0.5.

On the other hand, letting ∂�(μ, σ2|Yobs)/∂σ
2 = 0, we

can obtain the MLE of σ2 as

(2.8) σ̂2 =
1

nμ̂2(1− μ̂)2

n∑
i=1

(xi − μ̂)2

xi(1− xi)
.

2.3 Zero-one-inflated simplex distribution

Continuous data restricted in the closed unit interval [0,1]
often appear in various fields. To model such continuous pro-
portion data with extra zeros and ones, in this paper, we
propose a so-called zero-one-inflated simplex (ZOIS) distri-
bution, which can be viewed as a mixture of the Bernoulli
distribution and the simplex distribution.

2.3.1 The first stochastic representation

Specifically, a continuous random variable Y with support
[0, 1] is said to follow the ZOIS distribution, denoted by
Y ∼ ZOIS(λ, ρ, μ, σ2), if its pdf is

zois(y;λ, ρ, μ, σ2) =

⎧⎨⎩ λρy(1− ρ)1−y, if y = 0, 1,

(1− λ)f
S
(y;μ, σ2), if y ∈ (0, 1),

(2.9)

where λ ∈ [0, 1) is the mixture parameter, ρy(1 − ρ)1−y

denotes the pmf of the Bernoulli distribution with ρ ∈
(0, 1), and fS(·;μ, σ2) denotes the pdf of the simplex
distribution S−(μ, σ2). In particular, when λ = 0, the
ZOIS(λ, ρ, μ, σ2) distribution is reduced to the simplex dis-
tribution S−(μ, σ2).

Let Z ∼ Bernoulli(λ), η ∼ Bernoulli(ρ), X ∼ S−(μ, σ2),
and (Z, η,X) be mutually independent. Then, the random
variable Y ∼ ZOIS(λ, ρ, μ, σ2) has the following stochastic
representation (SR):

Y
d
= Zη + (1− Z)X =

⎧⎨⎩ η, with probability λ,

X, with probability 1− λ.

(2.10)

Based on the SR (2.10), we easily obtain

Pr(Y = 0) = Pr(Z = 1, η = 0) = λ(1− ρ),

Pr(Y = 1) = Pr(Z = 1, η = 1) = λρ,

E(Y ) = λρ+ (1− λ)E(X) = λρ+ (1− λ)μ,

E(Y 2) = E(Z2)E(η2) + E[(1− Z)2]E(X2)

+ E[Z(1− Z)]E(η)E(X)

= λρ+ (1− λ)E(X2)

= λρ+ (1− λ)[Var(X) + μ2],

Var(Y ) = λρ(1− ρ) + λ(1− λ)(ρ− μ)2

+ (1− λ)Var(X),

where Var(X) is given by (2.3).

2.3.2 The second stochastic representation

Alternatively, after the reparameterization of λ = φ0+φ1

and ρ = φ1/(φ0 + φ1), the density (2.9) can be rewritten
as

zois(y;φ0, φ1, μ, σ
2) =

⎧⎪⎪⎨⎪⎪⎩
φ0, if y = 0,

φ1, if y = 1,

(1− φ0 − φ1)fS(y;μ, σ
2), if y ∈ (0, 1),

(2.11)

where φ0, φ1, φ0 + φ1 ∈ [0, 1), φ0 denotes the probability
of the response being zeros, φ1 denotes the probability of
the response being ones, and fS(·;μ, σ2) is given by (2.1).
We denote the distribution by Y ∼ ZOIS(φ0, φ1, μ, σ

2).
In particular, when φ0 = 0, the ZOIS distribution is re-
duced to the one-inflated simplex (OIS) distribution (de-
noted by OIS(φ1, μ, σ

2)); when φ1 = 0, the ZOIS distri-
bution becomes the zero-inflated simplex (ZIS) distribu-
tion (denoted by ZIS(φ0, μ, σ

2)); when φ0 = φ1 = 0, the
ZOIS distribution becomes the original simplex distribution
S−(μ, σ2).

Let z = (Z0, Z1, Z2)
� ∼ Multinomial(1;φ0, φ1, 1 −

φ0 − φ1), X ∼ S−(μ, σ2), z and X be mutu-
ally independent (denoted by z ⊥⊥ X). Then, the ran-
dom variable Y ∼ ZOIS(φ0, φ1, μ, σ

2) has the following
SR:

Y
d
= Z0 · 0 + Z1 · 1 + Z2 ·X = Z1 + Z2X(2.12)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, with probability φ0,

1, with probability φ1,

X, with probability 1− φ0 − φ1.

The SR (2.12) means that Y ∼ ZOIS(φ0, φ1, μ, σ
2) is a mix-

ture of three distributions: Degenerate(0), Degenerate(1)
and S−(μ, σ2).
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3. LIKELIHOOD-BASED INFERENCE
METHODS

3.1 MLEs of parameters via an MM
algorithm

Let Y1, . . . , Yn
iid∼ ZOIS(λ, ρ, μ, σ2) and {yi}ni=1 be the

realizations of {Yi}ni=1. Furthermore, let Yobs = {yi}ni=1 de-
note the observed data and θ = (λ, ρ, μ, σ2)� the unknown
parameter vector. For the purpose of convenience, we define

I0 = {i: yi = 0, 1 � i � n}, I1 = {i: yi = 1, 1 � i � n},

and I2 = {i: 0 < yi < 1, 1 � i � n}. In addition, let
n0 = # I0, n1 = # I1, and m = n0 + n1. In this paper, we
assume that both I0 and I1 are not empty sets; i.e., n0 and
n1 cannot be equal to 0. From (2.9), the likelihood function
of θ based on the observed-data is

L(θ|Yobs) =

⎡⎣∏
i∈I0

λ(1− ρ)

⎤⎦ ×

⎡⎣∏
i∈I1

λρ

⎤⎦
×

⎡⎣∏
i∈I2

(1− λ)fS(yi;μ, σ
2)

⎤⎦
= λm(1− λ)n−m · ρn1(1− ρ)m−n1 ·

∏
i∈I2

fS(yi;μ, σ
2),

so that the log-likelihood function is

�(θ|Yobs) = m log(λ) + (n−m) log(1− λ)

+ n1 log(ρ) + (m− n1) log(1− ρ)

+
∑
i∈I2

log[f
S
(yi;μ, σ

2)].

Therefore, the MLEs of θ are given by

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ̂ =
m

n
, ρ̂ =

n1

m
,

μ̂ = arg max
μ∈(0,1)

{
− log[DI2(μ|Yobs)]

}
,

σ̂2 =
1

(n−m)μ̂2(1− μ̂)2

∑
i∈I2

(yi − μ̂)2

yi(1− yi)
,

where

DI2(μ|Yobs) =
1

μ2(1− μ)2

∑
i∈I2

(yi − μ)2

yi(1− yi)
.

Let μ(t) be the t-th approximate of the MLE μ̂ in the MM
algorithm. From (2.6) and (2.7), we know that the (t+1)-th
approximate μ(t+1) can be obtained as the real root of the
cubic equation

(3.2) a(t)μ3 − (a(t) + b(t))μ2 + (b(t) − 2)μ+ 1 = 0,

where

a(t) =

∑
i∈I2

[yi(1− yi)]
−1∑

i∈I2

(yi − μ(t))2

yi(1− yi)

and b(t) =

∑
i∈I2

(1− yi)
−1∑

i∈I2

(yi − μ(t))2

yi(1− yi)

.

Alternatively, if we assume that Y1, . . . , Yn
iid∼

ZOIS(φ0, φ1, μ, σ
2), then according to the invariance

property of the maximum likelihood estimators, we know
that the MLEs of φ0 and φ1 are given by

φ̂0 = λ̂(1− ρ̂) =
n0

n
and φ̂1 = λ̂ρ̂ =

n1

n
,

because the two densities (2.9) and (2.11) are totally same
after the reparameterization of λ = φ0+φ1 and ρ = φ1/(φ0+
φ1).

3.2 Bootstrap confidence intervals

For small sample sizes, the bootstrap method is a
useful tool to calculate a bootstrap confidence interval
(CI) for an arbitrary function of θ = (λ, ρ, μ, σ2)�, say,

ϑ = h(θ). Let ϑ̂ = h(θ̂) denote the MLE of ϑ, where

θ̂ = (λ̂, ρ̂, μ̂, σ̂2)� are the MLEs of θ calculated by means
of (3.1). Based on the obtained MLEs θ̂, by using the

SR (2.10) we can generate Y ∗
1 = y∗1 , . . . , Y

∗
n = y∗n

iid∼
ZOIS(λ̂, ρ̂, μ̂, σ̂2). Having obtained Y ∗

obs = {y∗1 , . . . , y∗n},
we can calculate the bootstrap replications θ̂

∗
and get

ϑ̂∗ = h(θ̂
∗
). Independently repeating this process G

times, we obtain G bootstrap replications {ϑ̂∗
g}Gg=1. Conse-

quently, the standard error, se(ϑ̂), of ϑ̂ can be estimated
by the sample standard deviation of the G replications,
i.e.,

(3.3) ŝe(ϑ̂) =

{
1

G− 1

G∑
g=1

[ϑ̂∗
g − (ϑ̂∗

1 + · · ·+ ϑ̂∗
g)/G]2

}1/2

.

The bootstrap CI for ϑ is given by

(3.4) [ϑ̂L, ϑ̂U ],

where ϑ̂L and ϑ̂U are the 100(α/2) and 100(1 − α/2) per-

centiles of {ϑ̂∗}Gg=1, respectively.

3.3 Zero-one-inflated simplex regression
model

Suppose that we want to investigate the influence of some
covariates on the probability (φ0) of the response being ze-
ros, the probability (φ1) of the response being ones and the
mean parameter μ. Based on the ZOIS distribution (2.11),
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we consider the following ZOIS regression model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi
ind∼ ZOIS(φ0i, φ1i, μi, σ

2),

log

(
φ0i

1− φ0i − φ1i

)
= u�iα,

log

(
φ1i

1− φ0i − φ1i

)
= v�iβ,

log

(
μi

1− μi

)
= x�iγ,

(3.5)

where i = 1, . . . , n, ui = (ui1, . . . , uip)
�, vi = (vi1, . . . , viq)

�

and xi = (xi1, . . . , xir)
� are covariate vectors for subject i

and they are not necessarily identical; α = (α1, . . . , αp)
�,

β = (β1, . . . , βq)
�, γ = (γ1, . . . , γr)

� are vectors of unknown
parameters in the model and p+ q + r < n. In addition, we
assume that σ2 is the same across all subjects. In practice,
it is possible that ui1 = vi1 = xi1 = 1 so that {α1, β1, γ1}
denote intercepts.

The likelihood function for θ = (α�,β�,γ�, σ2)� can be
factorized into two parts:

L(θ) =

n∏
i=1

zois(yi;φ0i, φ1i, μi, σ
2) = L1(θ1)L2(θ2),

where θ1 = (α�,β�)�, θ2 = (γ�, σ2)�,

L1(θ1) =

n∏
i=1

φ
I{0}(yi)

0i φ
I{1}(yi)

1i (1− φ0i − φ1i)
1−I{0,1}(yi),

L2(θ2) =
∏
i∈I2

f
S
(yi;μi, σ

2),

IA(y) is the indicator function,

(3.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0i =
exp (u�iα)

Δ
,

φ1i =
exp (v�iβ)

Δ
,

μi =
exp (x�iγ)

1 + exp (x�iγ)
,

and Δ = 1+exp (u�iα)+exp (v�iβ). Thus, the log-likelihood
function is given by

�(θ) = �1(θ1) + �2(θ2) =

n∑
i=1

�∗1(φ0i, φ1i) +
∑
i∈I2

�∗2(μi, σ
2),

where �∗2(μi, σ
2
i ) = log[fS(yi;μi, σ

2)] and

�∗1(φ0i, φ1i) = I{0}(yi) log(φ0i) + I{1}(yi) log(φ1i)

+[1− I{0,1}(yi)] log(1− φ0i − φ1i).

Therefore, the MLEs of θ1 and θ2 can be calculated sep-
arately. For the current situation, MM algorithms are not
available. Fortunately, Zhang & Qiu (2014) provided an R
package named “simplexreg” to calculate the MLEs of pa-
rameters in a simplex regression model, and we use this
package to compute θ̂2 = (γ̂�, σ̂2)�.

To calculate the MLEs of θ1, we first calculate the score
function, which is given by

∇�1(θ1) =
∂�1(θ1)

∂θ1
=

⎛⎜⎜⎝
∂�1(θ1)

∂α

∂�1(θ1)

∂β

⎞⎟⎟⎠ ,

where

∂�1(θ1)

∂α
=

n∑
i=1

[
I{0}(yi)ui −

exp(u�iα)

Δ
ui

]

=

n∑
i=1

ui[I{0}(yi)− φ0i]

∂�1(θ1)

∂β
=

n∑
i=1

[
I{1}(yi)vi −

exp(v�iβ)

Δ
vi

]

=

n∑
i=1

vi[I{1}(yi)− φ1i].

The Hessian matrix is

∇2�1(θ1) =
∂2�1(θ1)

∂θ1∂θ
�
1

=

⎛⎜⎜⎜⎝
∂2�1(θ1)

∂α∂α�
∂2�1(θ1)

∂α∂β�

∂2�1(θ1)

∂β∂α�
∂2�1(θ1)

∂β∂β�

⎞⎟⎟⎟⎠ ,

where

∂2�1(θ1)

∂α∂α� = −
n∑

i=1

exp(u�iα)[1 + exp(v�iβ)]

Δ2
uiu

�
i

= −
n∑

i=1

φ0i(1− φ0i)uiu
�
i ,

∂2�1(θ1)

∂β∂β�
= −

n∑
i=1

exp(v�iβ)[1 + exp(u�iα)]

Δ2
viv

�
i

= −
n∑

i=1

φ1i(1− φ1i)viv
�
i ,

∂2�1(θ1)

∂α∂β�
=

n∑
i=1

exp(u�iα) exp(v�iβ)

Δ2
uiv

�
i

=

n∑
i=1

φ0iφ1iuiv
�
i .
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Therefore, the Newtown–Raphson iteration

(3.7) θ
(t+1)
1 = θ

(t)
1 − [∇2�1(θ

(t)
1 )]−1∇�1(θ

(t)
1 )

can be employed to calculate the MLEs of θ1.

3.4 Model selection and goodness-of-fit
tests

The proposed ZOIS model is a mixture of two distribu-
tions: The discrete part or zero-and-one inflated part (fit-
ting the Bernoulli data 0’s and 1’s) and the continuous part
(fitting the data in the open unit interval (0,1)). Ospina
and Ferrari (2010, 2012) proposed the zero-one-inflated beta
(ZOIB) distribution (denoted by Y ∼ ZOIB(λ, ρ, p, q)) with
pdf

zoib(y;λ, ρ, p, q) =

⎧⎨⎩ λρy(1− ρ)1−y, if y = 0, 1,

(1− λ)fB(y; p, q), if y ∈ (0, 1),

(3.8)

where λ ∈ [0, 1) is the mixture parameter, ρy(1 − ρ)1−y

denotes the pmf of the Bernoulli distribution with ρ ∈ (0, 1),
and fB(y; p, q) denotes the pdf of the beta random variable
Y ∗ ∼ Beta(pq, (1− p)q), i.e.,

(3.9)

fB(y; p, q) =
Γ(q)

Γ(pq)Γ((1− p)q)
ypq−1(1− y)(1−p)q−1,

where 0 < y < 1, with E(Y ∗) = p ∈ (0, 1) and Var(Y ∗) =
p(1−p)/(1+q). Note that (3.8) is a mixture of the Bernoulli
distribution and the beta distribution. Alternatively, after
the parameterization of λ = φ0 + φ1 and ρ = φ1/(φ0 + φ1),
the density (3.8) can be rewritten as

zoib(y;φ0, φ1, p, q) =

⎧⎪⎪⎨⎪⎪⎩
φ0, if y = 0,

φ1, if y = 1,

(1− φ0 − φ1)fB(y; p, q), if y ∈ (0, 1),

(3.10)

where φ0, φ1, φ0 + φ1 ∈ [0, 1), φ0 denotes the probability of
the response being zeros, φ1 denotes the probability of the
response being ones, and fB(y; p, q) is given by (3.9). We
denote the distribution by Y ∼ ZOIB(φ0, φ1, p, q). For the
model selection, we would like to compare the ZOIS and
ZOIB models via the Akaike information criterion (AIC).
In addition, we use the Kolmogorov–Smirnov (KS) statistic
and Pearson’s chi-squared statistic for the goodness-of-fit
tests of both the simplex and beta distributions for modeling
the continuous data in (0, 1).

Similar to the ZOIS regression model (3.5), based on the
ZOIB distribution (3.10), we consider the following ZOIB

regression model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi
ind∼ ZOIB(φ0i, φ1i, pi, q),

log

(
φ0i

1− φ0i − φ1i

)
= u�iα,

log

(
φ1i

1− φ0i − φ1i

)
= v�iβ,

log

(
pi

1− pi

)
= x�iγ,

(3.11)

where i = 1, . . . , n, ui, vi and xi are covariate vectors for
subject i and they are not necessarily identical; α, β and γ
are vectors of unknown parameters in the model. In addi-
tion, we assume that q is the same across all subjects. For
more details on the beta regression and the corresponding
parameter estimation, see Ferrari & Cribari-Neto (2004) and
Cribari-Neto & Zeileis (2010). Moreover, based on the con-
struction of the ZOIS/ZOIB distributions without covariate
and the ZOIS/ZOIB models with covariates, we have ob-
served that the fittings of the discrete data (i.e., zeros and
ones) for the two models are identical, indicating that the
estimates of λ, ρ, α and β in the ZOIS models are the same
as those in the ZOIB models.

4. SIMULATION STUDIES

To evaluate the finite sample performance of the proposed
MLEs of θ for both cases of without and with covariates, we
conduct some Monte Carlo simulations. Let ϑ = h(θ) be an

arbitrary function of θ. The performance of the estimator ϑ̂
is assessed by the mean square error (MSE), defined by

(4.1) MSE(ϑ̂) = E(ϑ̂− ϑ)2 = Var(ϑ̂) + [b(ϑ̂, ϑ)]2,

where b(ϑ̂, ϑ) = E(ϑ̂)−ϑ denotes the bias of the estimator ϑ̂.

4.1 The case without covariates

To conduct the simulations, we consider the sample size
n = 100, 200, 500, 800, 1000. The true values of parameters
are set as (λ, ρ, μ, σ2) = (0.2, 0.3, 0.5, 4), (0.5, 0.2, 0.3, 9).
Based on the SR (2.10), we independently generate

Y
(k)
1 , . . . , Y (k)

n
iid∼ ZOIS(λ, ρ, μ, σ2)

for k = 1, . . . ,K (K = 1000).

For the k-th generated sample Y
(k)
obs = {Y (k)

i }ni=1, the
MLEs of θ = (λ, ρ, μ, σ2)� can be calculated according to

(3.1) and (3.2), denoted by θ̂
(k)

= (λ̂(k), ρ̂(k), μ̂(k), σ̂2(k))�.
The MSE of each component in θ is computed in terms
of (4.1), denoted by MSE(λ̂(k)), MSE(ρ̂(k)), MSE(μ̂(k)),
MSE(σ̂2(k)), respectively, where all expectations are re-
placed by averages. The average MLE for each parameter
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Table 1. The average MLE of each parameter and the average MSE of each MLE for the ZOIS distribution

n Parameter True value A-MLE A-MSE True value A-MLE A-MSE

100 0.1997 0.0017 0.5001 0.0023
200 0.2015 0.0008 0.5012 0.0014
500 λ 0.2 0.2011 0.0003 0.5 0.4995 0.0005
800 0.1996 0.0002 0.5008 0.0003
1000 0.1998 0.0002 0.4991 0.0002

100 0.3049 0.0107 0.2001 0.0032
200 0.3016 0.0054 0.1989 0.0015
500 ρ 0.3 0.3003 0.0021 0.2 0.1989 0.0007
800 0.3019 0.0012 0.1990 0.0004
1000 0.3005 0.0010 0.1997 0.0003

100 0.5012 0.0004 0.3023 0.0012
200 0.5005 0.0002 0.2882 0.0005
500 μ 0.5 0.5003 0.0001 0.3 0.3027 0.0003
800 0.5001 0.0001 0.3023 0.0002
1000 0.4997 0.0000 0.3029 0.0001

100 3.9418 0.4169 8.7896 2.9848
200 3.9618 0.1978 9.0038 1.7063
500 σ2 4 3.9974 0.0763 9 8.9636 0.6309
800 3.9981 0.0050 8.9925 0.4311
1000 3.9944 0.0043 8.9626 0.3355

A-MLE = Average MLE based on 1000 repetitions.
A-MSE = Average MSE based on 1000 repetitions.

based on the 1000 repetitions and the average MSE for
each MLE based on the 1000 repetitions are reported in
Table 1.

From Table 1, we have observed the following facts:

(a) For the given values of the four parameters (λ, ρ, μ, σ2),
as expected, the differences between the average MLE
and its true value become smaller in tendency as the
sample size n increases. In addition, the average MSEs
of the estimators λ̂, ρ̂, μ̂ and σ̂2 also become smaller
and smaller as the sample size n increases.

(b) For the given sample size n, the performance of the MLE
μ̂ is the best in terms of model error. Furthermore, the
performances of both λ̂ and μ̂ are significantly better
than those of ρ̂ and σ̂2.

4.2 The case with covariates

The sample size n is set to be 100, 200, 500, 800, 1000,
and the ten parameters are set as α = (α1, α2, α3)

� =
(1, 0.5,−0.5)�, (1.5, 1,−1)�; β = (β1, β2, β3)

� =
(1, 0.5,−0.5)�, (1.5, 1,−1)�; γ = (γ1, γ2, γ3)

� =
(1.5, 0.5,−0.5)�, (1,−1, 0.5)�; and σ2 = 4, 9. The co-

variates are distributed as ui1 = 1, ui2, ui3
iid∼ U(−1, 1);

vi1 = 1, vi2, vi3
iid∼ U(−1, 1); xi1 = 1, xi2 ∼ Bernoulli(0.5),

xi3 ∼ U(0, 5). Let ui = (ui1, ui2, ui3)
�, vi = (vi1, vi2, vi3)

�

and xi = (xi1, xi2, xi3)
�.

Based on the SR (2.12), we independently (for k =
1, . . . ,K and K = 1000) generate

Y
(k)
i

ind∼ ZOIS(φ0i, φ1i, μi, σ
2) for i = 1, . . . , n,

where (φ0i, φ1i, μi) are determined by (3.6). For the k-

th generated sample Y
(k)
obs = {Y (k)

i }ni=1, the MLEs of
θ = {α,β,γ, σ2} can be calculated according to (3.7)

and the R package “simplexreg”, denoted by θ̂
(k)

=

{α̂(k), β̂
(k)

, γ̂(k), σ̂2(k)}. The MSE of each component in

θ is computed in terms of (4.1), denoted by MSE(α̂
(k)
j ),

MSE(β̂
(k)
j ), MSE(γ̂

(k)
j ), MSE(σ̂2(k)), respectively, where j =

1, 2, 3. The average MLE for each parameter based on the
1000 repetitions and the average MSE for each MLE based
on the 1000 repetitions are displayed in Table 2.

From Table 2, we have observed the following facts:

(a) For the given ten parameters α, β, γ and σ2, as ex-
pected, the performances of the MLEs become better
and better as the sample size n increases. In addition,
the MSEs of estimators α̂, β̂, γ̂ and σ̂2 also become
smaller and smaller as the sample size n increases.

(b) For the given sample size n, the performance of the MLE
γ̂ is the best in terms of model error. Furthermore, the
performances of α̂, β̂ and γ̂ are significantly better than
that of σ̂2.

5. A REAL EXAMPLE

In this section, we first fit the hospital stay (HS) data of
Barcelona in 1988 and 1990 with both ZOIS and ZOIB dis-
tributions without/with covariates to illustrate the proposed
methods, then we compare the difference between the beta
and the simplex distributions for only fitting the continuous
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Table 2. The average MLE of each parameter and the average MSE of each MLE for the ZOIS regression model

n Parameter True value A-MLE A-MSE True value A-MLE A-MSE

100 1.0148 0.0920 1.5385 0.1435
200 1.0146 0.0497 1.5150 0.5652
500 α1 1 0.9965 0.0184 1.5 1.5100 0.0258
800 1.0060 0.0112 1.5042 0.0160
1000 1.0049 0.0094 1.5043 0.0127

100 0.5158 0.1518 1.0353 0.1839
200 0.4946 0.0698 1.0281 0.0865
500 α2 0.5 0.5122 0.0263 1 1.0071 0.0322
800 0.5004 0.0171 1.0049 0.0218
1000 0.4963 0.0130 1.0047 0.0162

100 −0.5229 0.1582 −1.0548 0.1891
200 −0.5159 0.0701 −1.0284 0.0909
500 α3 −0.5 −0.5160 0.0281 −1 −1.0133 0.0328
800 −0.4991 0.0167 −1.0033 0.0208
1000 −0.5021 0.0125 −1.0024 0.0171

100 1.0160 0.0898 1.5422 0.1488
200 1.0118 0.0501 1.5147 0.0660
500 β1 1 0.9985 0.0174 1.5 1.5052 0.0259
800 1.0033 0.0103 1.5048 0.0163
1000 1.0053 0.0090 1.5078 0.0138

100 0.5170 0.1697 1.0344 0.1892
200 0.8098 0.0740 1.0233 0.0844
500 β2 0.5 0.5067 0.0299 1 1.0123 0.0305
800 0.5081 0.0148 1.0110 0.0207
1000 0.5022 0.0138 1.0045 0.0154

100 −0.5207 0.1605 −1.0601 0.1962
200 −0.5243 0.0729 −1.0361 0.0963
500 β3 −0.5 −0.5046 0.0270 −1 −1.0154 0.0332
800 −0.5000 0.0168 −1.0034 0.0203
1000 −0.5125 0.0137 −1.0042 0.0160

100 1.5399 0.1025 1.0413 0.1612
200 1.5233 0.0450 1.0001 0.0711
500 γ1 1.5 1.5044 0.0174 1 1.0019 0.0269
800 1.5100 0.0102 1.0030 0.0160
1000 1.5055 0.0084 0.9994 0.0136

100 0.5048 0.0913 −1.0195 0.1124
200 0.4945 0.0344 −0.9941 0.0477
500 γ2 0.5 0.4997 0.0146 −1 −0.9958 0.0190
800 0.4994 0.0087 −0.9991 0.0115
1000 0.4955 0.0070 −1.0006 0.0094

100 −0.5112 0.0087 0.4992 0.0120
200 −0.5070 0.0046 0.5040 0.0055
500 γ3 −0.5 −0.5022 0.0016 0.5 0.5012 0.0028
800 −0.5012 0.0010 0.5007 0.0012
1000 −0.5003 0.0008 0.5021 0.0010

100 3.9744 1.1594 9.0900 6.2986
200 4.0412 0.5569 9.0981 3.0704
500 σ2 4 3.9785 0.2081 9 9.0098 1.0516
800 4.0059 0.1242 9.0289 0.6670
1000 3.9967 0.0976 8.9609 0.5529

A-MLE = Average MLE based on 1000 repetitions.
A-MSE = Average MSE based on 1000 repetitions.
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Table 3. 1988 HS data with 750 patients and some
descriptive statistics

Length of Number Average Some
stay (days) of patients inappropriate descriptive

stay (days) statistics

1 34 0
2 109 0
3 41 0.1
4 42 0.6 Age of patients:
5 30 1 53.4±19.7
6 42 1.4
7 52 1.4 Gender:
8 36 2
9 44 2 Male 349 (47%)
10 23 2.7 Female 401 (53%)
11 22 2.7
12 28 4.3
13 21 4.2
14 23 3.3
15 22 3.5
[16, 20] 61 5.2
[21, 30] 68 9
[31, 40] 24 14.3
> 40 28 21.6

part (i.e., observations in (0,1)) to illustrate the goodness-
of-fit tests.

5.1 The hospital stay data of Barcelona

Gange et al. (1996) reported a hospital stay data set con-
taining 1383 patients from a study at the Hospital Univer-
sitari del Mar (a teaching hospital in Barcelona, Spain) in
1988 with 750 patients and in 1990 with 633 patients, respec-
tively. Each patient was assessed for inappropriate stay on
each day through two physicians by using the appropriate-
ness evaluation protocol (AEP) method developed by Gert-
man and Restuccia (1981), see Gange et al. (1996) for more
detail. The response variable Y is the number of inappropri-
ate days relative to the total number of days that patients
spent in the hospital, so Y is the proportion of inappropriate
days out of all days spent in the hospital. Tables 3 and 4 list
the corresponding HS data in 1988 (with 750 patients) and
in 1990 (with 633 patients), and some descriptive statistics.
From the two tables, we found out that with the increase
of stay days, the average inappropriate stay days may in-
crease too. Figure 1 plots the histograms and box-plots for
the proportion of inappropriate stay data (the response Y )
in 1988 and in 1990, respectively. From Figure 1, we can see
that there are a lot of zeros and ones for the HS data in
both 1988 and 1990.

Gange et al. (1996) used a logistic regression to model
the proportion of inappropriate stay data with binomial
and beta–binomial (BB) distributions, respectively. They
found that the BB distribution provides a better fit to the

Table 4. 1990 HS data with 750 patients and some
descriptive statistics

Length of Number Average Some
stay (days) of patients inappropriate descriptive

stay (days) statistics

1 76 0
2 74 0.1
3 45 0.4
4 39 0.8 Age of patients:
5 34 0.9 55.3±19.5
6 39 1.5
7 54 2 Gender:
8 40 2
9 27 2.3 Males 321 (51%)
10 26 3.2 Females 346 (49%)
11 20 4.2
12 16 4.8
13 15 3.1
14 14 1.4
15 10 1.8
[16, 20] 30 6.9
[21, 30] 42 8.9
[31, 40] 15 10.1
> 40 17 17.7

data by modeling both its mean and dispersion as func-
tions of explanatory variables. In this section, we would like
to use the proposed zero-one-inflated simplex distribution
ZOIS(λ, ρ, μ, σ2)

(1) to model the proportion of inappropriate stay data in
1988 and 1990, respectively;

(2) to estimate the four parameters (λ, ρ, μ, σ2) without
considering covariates;

(3) to investigate the zero-one-inflated simplex regression
by considering the effect of some covariates (e.g., sex,
age and so on) on the response Y .

5.2 ZOIS and ZOIB distributions without
covariates

First we fit the HS data in 1988 with both ZOIS and
ZOIB distributions. Let Y1, . . . , Yn

iid∼ ZOIS(λ, ρ, μ, σ2) and
θ = (λ, ρ, μ, σ2)�. By employing the MM algorithm (3.1) and
(3.2), we calculate the MLEs of θ and these results are listed
in the third column of Table 5. With G = 1,000 bootstrap
replications, the estimated standard deviation (Std) and the
95% bootstrap CIs of each component in θ are given in the
fourth and fifth columns of Table 5. The AIC for the ZOIS
distribution is reported in the last co1umn of Table 5. If
we only fit the continuous data in (0, 1) with the simplex
distribution, the corresponding AIC is −74.868, see the last
column of Table 5. Finally, in the goodness-of-fit tests, we
use the Kolmogorov–Smirnov and Pearson’s χ2 statistics to
model the continuous data in (0, 1) with the simplex dis-
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Table 5. MLEs and CIs of parameters without covariates for the HS data in 1988

Model Parameter MLE Std 95% bootstrap CI AIC

ZOIS λ 0.6267 0.0177 [0.5933, 0.6600] 1143.326 (ZOIS)
ρ 0.0638 0.0111 [0.0429, 0.0858]
μ 0.4757 0.0127 [0.4517, 0.5006] −74.868 (Simplex)
σ2 6.6739 0.5503 [5.6159, 7.6820]

ZOIB p 0.4690 0.0137 [0.4433, 0.4969] 1149.874 (ZOIB)
q 4.0043 0.3169 [3.4827, 4.7344] −68.324 (Beta)

Test Simplex Beta
p-value KS 0.1216 0.0322

Pearson’s χ2 0.2636 0.1618

Figure 1. Comparison of histograms and box-plots for the
proportion of inappropriate stay in 1988 and in 1990,

respectively.

tributions, the resulting p-values are 0.1216 and 0.2636, re-
spectively.

To compare ZOIS with ZOIB distributions, alternatively,

we assume that Y1, . . . , Yn
iid∼ ZOIB(λ, ρ, p, q), the corre-

sponding MLEs and CIs of parameters are also reported
in Table 5. From the viewpoint of the AIC, the ZOIS (or
simplex) distribution fit the data better than the ZOIB (or
beta) distribution. On the one hand, at the 0.05 significant
level, the p-values of the KS test show that the observations
in (0, 1) follow the simplex distribution, but do not follow
the beta distribution. On the other hand, at the 0.05 signif-
icant level, the p-values of the Pearson’s χ2 test show that
we cannot reject H0: The observations in (0, 1) follow both

the simplex and beta distributions. Since the p-value for the
simplex distribution is larger than that for the beta distri-
bution, the simplex distribution fits the data in (0, 1) better
than the beta distribution.

Next we fit the HS data in 1990 with both ZOIS and
ZOIB distributions. Similarly, we display these results in
Table 6. Based on the values of AIC, we can see that the
ZOIS (or simplex) distribution might not be a good choice
for the HS data in 1990. The KS test has the p-value of
8.28×10−8 for the simplex distribution, and 1.46×10−6 for
the beta distribution. Pearson’s χ2 test has the p-value of
0.0009 for the simplex distribution, and 0.0039 for the beta
distribution. Therefore, at the 0.05 level of significance, both
distributions do not fit the data well.

Figure 2(a) and Figure 2(b) compared three histograms
among the observed (black bar), estimated proportion of
inappropriate stay with the ZOIS distribution (grey bar)
and the ZOIB distribution (white bar) in 1988 (left) and
1990 (right), respectively. The observed proportions are very
close to the estimated proportions fitted by both the ZOIS
and ZOIB distributions in 1988 and 1990. Figure 2(c) and
Figure 2(d) compared the empirical distribution function
with the estimated cumulative ZOIS and ZOIB distribution
functions based the HS data in 1988 and 1990, respectively.
From Figure 2(c), we can see that both the ZOIS and ZOIB
distribution are suitable for fitting the HS data in 1988.
However, for the HS data in 1990, Figure 2(d) indicates
that neither ZOIS nor ZOIB fitted data very well, and these
results are consistent with the KS test and Pearson’s χ2 test.

5.3 ZOIS and ZOIB regression models

First we fit the HS data in 1988 with both ZOIS and
ZOIB regression models. We consider three covariates: x1

is the gender of patient (= 0 if male, = 1 if female); x2 is
the age of the patient in years; and x3 (los, i.e., length of
stay) is the total number of days patients spent in hospital.
Again, let the response variable Yi (HS) be the number of
inappropriate days of the patient i out of the total number
of days that patients spent in hospital, i.e., the proportion of
inappropriate days out of all days spent in the hospital. Ac-
cording to (3.5), we consider the following ZOIS regression
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Table 6. MLEs and CIs of parameters without covariates for the HS data in 1990

Model Parameter MLE Std 95% bootstrap CI AIC

ZOIS λ 0.5703 0.0196 [0.5308, 0.6082] 1010.075 (ZOIS)
ρ 0.1053 0.0164 [0.0764, 0.1395]
μ 0.3988 0.0095 [0.3920, 0.4290] −101.844 (Simplex)
σ2 7.8180 0.6650 [6.5083, 9.1458]

ZOIB p 0.3723 0.0127 [0.3477, 0.3961] 1004.759 (ZOIB)
q 4.1907 0.3330 [3.6220, 4.9473] −107.154 (Beta)

Test Simplex Beta
p-value KS 8.28×10−8 1.46×10−6

Pearson’s χ2 0.0009 0.0039

Figure 2. (a)(b) Comparison of histograms among the
observed (black bar), estimated proportion of inappropriate
stay with the ZOIS distribution (grey bar) and the ZOIB
distribution (white bar) in 1988 (left) and 1990 (right),

respectively; (c)(d) The horizontal step functions from the
empirical distribution functions of hospital stay sample, the
curves are estimated cumulative ZOIS distribution functions
(black line) and ZOIB distribution functions (red dash line) in

1988 (left) and 1990 (right), respectively.

model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi
ind∼ ZOIS(φ0i, φ1i, μi, σ

2),

log

(
φ0i

1− φ0i − φ1i

)
= α0 + xi1α1 + xi2α2 + xi3α3,

log

(
φ1i

1− φ0i − φ1i

)
= β0 + xi1β1 + xi2β2 + xi3β3,

log

(
μi

1− μi

)
= γ0 + xi1γ1 + xi2γ2 + xi3γ3,

where i = 1, . . . , n. We employ the Newton–Raphson algo-
rithm (3.7) and the R package “simplxreg” to calculate the
MLEs of the regression coefficients {αj , βj , γj}3j=0 and pa-

rameter σ2, and these results are displayed in the second
column of Table 7. With G = 1,000 bootstrap replications,
the estimated Std and the 95% bootstrap CIs of all param-
eters are given in the third and fourth columns of Table 7.
The AIC for the ZOIS regression model is 1029.587, which is
also reported in Table 7. If we only fit the continuous data in
(0,1) with the simplex regression model, the corresponding
AIC is −84.4164.

To compare ZOIS with ZOIB regression models, based on
(3.11) we also consider the following ZOIB regression model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi
ind∼ ZOIB(φ0i, φ1i, pi, q),

log

(
φ0i

1− φ0i − φ1i

)
= α0 + xi1α1 + xi2α2 + xi3α3,

log

(
φ1i

1− φ0i − φ1i

)
= β0 + xi1β1 + xi2β2 + xi3β3,

log

(
pi

1− pi

)
= γ0 + xi1γ1 + xi2γ2 + xi3γ3,

where i = 1, . . . , n and the corresponding MLEs, CIs of the
regression coefficients {αj , βj , γj}3j=0 and the parameter q,
and the values of AIC are also reported in Table 7.

From the viewpoint of the AIC, the ZOIS (or simplex)
model fit the data better than the ZOIB (or beta) distri-
bution. From Table 7, we could see that the x3 (los) has
negative effect on φ0i (see, the MLE of α3). Moreover, with
the increase of age, the proportion of inappropriate stay days
becomes larger in 1988 (see, the MLE of γ2), indicating that
older patients may spend much time in hospital. In addition,
there is no difference for male and female about inappropri-
ate stay days.

Next we fit the HS data in 1990 with both ZOIS and ZOIB
regression models. Similarly, we display the corresponding
results in Table 8. According to the values of AIC, we can
see that the ZOIS (or simplex) model and the ZOIB (or
beta) model have no difference for fitting the HS data in
1990. From Table 8, we could see that both the age and
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Table 7. MLEs and CIs of regression coefficients for the HS data in 1988

Coefficient MLE Std 95% bootstrap CI

α0 1.5155 0.2787 [1.0143, 2.0649]*

α1 0.3361 0.1708 [−0.0093, 0.6722]
α2 −0.0057 0.0045 [−0.0147, 0.0028]

α3 −0.0774 0.0094 [−0.0979,−0.0603]*

β0 −1.5618 0.6826 [−2.9954,−0.3325]*

β1 0.4716 0.3924 [−0.2403, 1.2812]
β2 −0.0027 0.0106 [−0.0234, 0.0184]

β3 −0.0606 0.0257 [−0.1243,−0.0241]*

Simplex

γ0 −0.7223 0.1834 [−1.0956,−0.3601]*

γ1 −0.1392 0.1035 [−0.3419, 0.0573]

γ2 0.0091 0.0027 [0.0042, 0.0145]*

γ3 0.0064 0.0036 [−0.0008, 0.0135]

σ2 6.4042 0.5389 [5.3580, 7.4924]*

AIC 1029.587 (ZOIS) −84.4164 (Simplex)

Beta

γ0 −0.6977 0.1845 [−1.0457,−0.3298]*

γ1 −0.1776 0.1007 [−0.3866, 0.0178]

γ2 0.0082 0.0026 [0.0030, 0.0129]*

γ3 0.0083 0.0036 [0.0013, 0.0154]*

q 4.2724 0.3406 [3.7505, 5.0874]*

AIC 1033.796 (ZOIB) −80.2038 (Beta)
*Indicating that the CI does not include the zero value.

Table 8. MLEs and CIs of regression coefficients for the HS data in 1990

Coefficient MLE Std 95% bootstrap CI

α0 2.3062 0.3423 [1.6370, 3.0276]*

α1 0.1017 0.1903 [−0.2570, 0.4909]

α2 −0.0197 0.0050 [−0.0300,−0.0109]*

α3 −0.1145 0.0152 [−0.1487,−0.0888]*

β0 −0.9627 0.6403 [−2.324, 0.2185]
β1 −0.0283 0.3469 [−0.7222, 0.6351]
β2 −0.0062 0.0095 [−0.0240, 0.0127]

β3 −0.0562 0.0250 [−0.1184,−0.0202]*

Simplex

γ0 −0.8810 0.2107 [−1.3037,−0.4465]*

γ1 0.1483 0.1166 [−0.0756, 0.3729]
γ2 0.0030 0.0032 [−0.0033, 0.0091]
γ3 0.0078 0.0047 [−0.0015, 0.0172]

σ2 7.6927 0.6715 [6.3983, 9.0525]*

AIC 882.8492 (ZOIS) −104.2362 (Simplex)

Beta

γ0 −0.7781 0.2124 [−1.2107,−0.3502]*

γ1 0.1462 0.1099 [−0.0655, 0.3594]
γ2 0.0018 0.0031 [−0.0042, 0.0079]
γ3 0.0047 0.0046 [−0.0045, 0.0138]

q 4.2463 0.3347 [3.7350, 5.0196]*

AIC 882.4392 (ZOIB) −104.6462 (Beta)
*Indicating that the CI does not include the zero value.
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Figure 3. (a)(b) Comparison of histograms among the
observed (black bar), estimated proportion of inappropriate

stay with the ZOIS regression model (grey bar) and the ZOIB
regression model (white bar) based on the HS data in 1988

(left) and 1990 (right), respectively.

total length of stay have a significant impact on φ0i (see,
the MLEs of α2 and α3), and total length of stay has an
impact on φ1i (see, the MLE of β3). However, there is no
obvious relation between the continuous part of HS data in
1990 and the three factors, which can be interpreted par-
tially by the fact that neither the ZOIS nor ZOIB mod-
els fitted the HS data in 1990 very well as showed in Fig-
ure 2(d).

Figure 3(a) and Figure 3(b) compared three histograms
among the observed (black bar), estimatd proportion of in-
appropriate stay with the ZOIS regression model (grey bar)
and the ZOIB regression model (white bar) based the HS
data in 1988 (left) and 1990 (right), respectively. Obviously,
the observed proportions are very close to the estimated pro-
portions fitted by the ZOIS regression model in both 1988
and 1990, indicating that the ZOIS regression model is suit-
able for fitting the hospital stay data.

Figure 4(a) and Figure 4(b) plot the ordinary residuals
against the fitted values for the ZOIS regression model based
the HS data in 1988 and 1990, respectively. The two residual
plots in Figure 4 do not suggest a lack of fit. Residuals are
randomly scatted in the parallelogram, since hospital data
are from [0, 1], then |residuals+ fitted values| � 1. More-
over, for the zero and one inflated data (i.e., the discrete data
0’s and 1’s), the lower and upper bounds, corresponding to
responses equal to zero and one, respectively, are typical of
data with only two outcomes. There are similar results in
Ospina and Ferrari (2012).

6. DISCUSSION

As a mixture of the Bernoulli distribution (or two de-
generate distributions at zero and at one) and the simplex
distribution, the proposed ZOIS distribution provides a new

Figure 4. (a)(b)Ordinary residuals against the fitted values
for the ZOIS regression model based on the HS data in 1988

and 1990, respectively.

tool to analyze continuous proportional data with excessive
zeros and excessive ones. We also developed the ZOIS re-
gression models, which allow us to explore the relationship
between a set of covariates with the probabilities of observ-
ing zero and one values, and the mean of the continuous
responses in (0,1). The algorithms for calculating MLEs of
parameters and the bootstrapping method for constructing
CIs of parameters are given.

Since the observations in the closed unit interval [0, 1]
can be decomposed into two parts, the discrete part (the
Bernoulli data 0’s and 1’s) and the continuous part (the
data in the open unit interval (0, 1)), both the simplex and
beta distributions could be used to model the continuous
data in (0, 1). Then, both the ZOIS and ZOIB models can
be employed to model continuous proportional data with
excessive zeros and excessive ones. For the case of without
covariates, in Section 5.2, we utilized the KS test, the Pear-
sion χ2 test and the AIC to compare the ZOIS and ZOIB
distributions. The results showed that the ZOIS is better
than the ZOIB distributions in fitting the HS data in 1988,
while neither the ZOIS nor the ZOIB are suitable for fitting
the HS data in 1990. For the regression models in Section
5.3, AIC indicated that the ZOIS (or simplex) model is more
suitable than the ZOIB (or beta) model for fitting the HS
data in 1988, while the two models are not much different
for fitting the HS data in 1990. Overall, for the HS data, the
ZOIS model is a better choice.

In the ZOIS regression model (3.5), we assumed that σ2

is the same across all subjects. In fact, we could also con-
sider the effect of some covariates on the dispersion pa-
rameter σ2

i in the future’s research. In addition, we did
not discuss the problem of variable selection in the ZOIS
regression models. Finally, the testing hypotheses under
large sample sizes in the ZOIS model for the one-sample
and/or the two-sample tests are also our interest in the fu-
ture.
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APPENDIX A. RANDOM VARIABLE
GENERATION FROM THE
SIMPLEX DISTRIBUTION

A.1 The inverse Gaussian distribution and
its generation

A positive random variable X follows the inverse Gaus-
sian (or Wald) distribution with mean parameter μ > 0 and
shape parameter λ > 0, denoted by X ∼ IGaussian(μ, λ), if
it has pdf

(A.1) IGaussian(x|μ, λ) =
√

λ

2πx3
exp

[
− λD(x;μ)

2

]
,

for x > 0, where

(A.2) D(x;μ) =̂
(x− μ)2

μ2x
.

An important result (Shuster, 1968) onX ∼ IGaussian(μ, λ)
is λD(X;μ) ∼ χ2(1), which can be used to generate N i.i.d.
samples from the inverse Gaussian distribution. The gener-
ation procedure is as follows:

Step 1. Draw U ∼ U(0, 1) and independently draw Y ∼
χ2(1);

Step 2. Set X1 = μ+ μ2Y
2λ − μ

2λ

√
4μλY + μ2Y 2 and X2 =

μ2

X1
;

Step 3. If U � μ/(μ +X1), return X = X1, else return
X = X2.

The corresponding R code for generating X ∼
IGaussian(μ, λ) is given by

function(N, mu, lambda)

{ # Function name: rigaussian(N, mu, lambda)

# -------------- Aim -------------------------------------

# Generate N i.i.d. samples of x ~ IGaussianDE(mu, lambda)

# with density given by (A.1)

# -------------- Input ------------------------------------

# N = sample size

# mu = mean parameter

# lambda = shape parameter

# -------------- Output -----------------------------------

# x_1, ..., x_N ~iid IGaussianDE(mu, lambda)

###########################################################

y <- rchisq(N, 1)

a <- (mu^2/(2 * lambda)) * y

b <- 4 * mu * lambda * y + mu^2 * y^2

x1 <- mu + a - (mu/(2 * lambda)) * sqrt(b)

u <- runif(N)

x <- rep(0, N)

for(i in 1:N) {

if(u[i] < mu/(mu + x1[i])) { x[i] <- x1[i] }

else { x[i] <- mu^2/x1[i] }

}

return(x)

}

For the sake of convenience, in this paper, we alter-
natively denote the inverse Gaussian distribution X ∼

IGaussian(μ, 1/σ2) by X ∼ IG(μ, σ2) with density function

(A.3) IG(x|μ, σ2) =

√
1

2πσ2x3
exp

[
− D(x;μ)

2σ2

]
, x > 0,

where σ2 (> 0) is called scale parameter.

A.2 The inverse Gaussian mixture
distribution and its generation

Let X1 ∼ IG(μ, σ2), X−1
2 ∼ IG(μ−1, σ2μ2), and

X1 ⊥⊥ X2. The random variable X2 is called the complemen-
tary reciprocal of X1. Define a new r.v. Y as the mixture of
the inverse Gaussian r.v. with its complementary reciprocal;
i.e.,

(A.4) Y =

{
X1, with probability 1− p,

X2, with probability p,

where p ∈ [0, 1]. The distribution of Y is called the inverse
Gaussian mixture distribution (Jørgensen et al., 1991), de-
noted by Y ∼ M-IG(μ, σ2, p), and its pdf is given by

M-IG(y|μ, σ2, p) =

√
1

2πσ2y3

(
1− p+

py

μ

)
× exp

[
− D(y;μ)

2σ2

]
,

where y > 0.
Note that (A.4) can be rewritten as

(A.5) Y
d
= (1− Z)X1 + ZX2,

where Z ∼ Bernoulli(p) and (Z,X1, X2) are mutually inde-
pendent. Therefore, the SR (A.5) provides a procedure for
generating random samples from Y ∼ M-IG(μ, σ2, p). Fur-
thermore, Jørgensen et al. (1991) also obtained the following
SR:

(A.6) Y
d
= X1 + ZX3,

where Z ∼ Bernoulli(p), X3 ∼ σ2μ2χ2(1) and (X1, Z,X3)
are mutually independent. In this paper, we use the SR (A.6)
rather than (A.5) to generate random samples from Y ∼
M-IG(μ, σ2, p).

A.3 The simplex distribution and its
generation

LetX ∼ S−(μ, σ2) and make a one-to-one transformation
Y = X/(1−X). It is easy to show that (see, Zhang & Qiu,
2014)

(A.7) Y ∼ M-IG

(
μ

1− μ
, σ2(1− μ)2, μ

)
.

Therefore, for a given pair (μ, σ2) with μ ∈ (0, 1) and σ2 > 0,
we first generate Y = y from (A.7), and solve the inverse
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transformation x = y/(1 + y), then X = x is a random
sample from X ∼ S−(μ, σ2).
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