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A large literature has been developed for the analysis of
case-cohort studies that are often performed with the aim
of reducing the cost on the collection of covariate informa-
tion. In particular, many authors have discussed their regres-
sion analysis under the framework of the additive hazards
model, which is often preferred when the risk difference is
of main interest. However, all of the existing methods as-
sume or are applicable only to right-censored data. In this
paper, we consider the case of interval-censored data, which
often occur in practice and include right-censored data as a
special case, and propose two estimation approaches, an es-
timating equation-based method and a maximum likelihood
method. The resulting estimators of regression parameters
are shown to be consistent and asymptotically normal. Also
a simulation study is conducted and suggests that the pro-
posed methods works well in practice, and an application is
provided.

Keywords and phrases: Additive hazards model, Case-
cohort design, Interval censoring, Sieve estimation.

1. INTRODUCTION

Since its proposal (Prentice, 1986), a large literature has
been developed for the case-cohort design that aims to re-
duce the cost on the collection of covariate information
among others. In large epidemiological cohort studies, the
assembling or collecting of covariate information on all study
subjects may be expensive and some examples of such co-
variates include chemical exposures in blood samples and ge-
netic information. Instead of collecting the information from
all subjects, the case-cohort design selects a random sample
or subcohort from the original whole cohort and collects or
measures the covariate information only from the subjects in
the subcohort or who experience the failure event of interest.

Many estimation methods have been proposed for the
analysis of case-cohort studies or the failure time data col-
lected under the case-cohort design (Chen and Lo, 1999;
Nan, 2004; Scheike and Martinussen, 2004). For example,
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Prentice (1986) and Self and Prentice (1988) developed some
pseudo likelihood estimation procedures and Barlow (1994)
gave a robust variance estimation procedure for the data
arising from the proportional hazards models (Cox, 1972).
Chen (2001) and Keogh and White (2013) also considered
the same problem. The former investigated some estimat-
ing equation-based methods and the latter developed some
multiple imputation-based methods. Furthermore Kang and
Cai (2009), Kang et al. (2013) and Kim et al. (2013) dis-
cussed the situation where there exist multivariate failure
times and developed some weighted estimating equation-
based approaches.

Note that all of the methods described above assume or
apply only to right-censored failure time data, where the
failure time of interest is either exactly observed or right-
censored (Kalbfleisch and Prentice, 2002). In many epidemi-
ological or medical follow-up studies, however, it is com-
mon that one can only observe interval-censored failure time
data, meaning that the failure time of interest is known or
observed only to belong to an interval. It is apparent that
interval-censored data include right-censored data as a spe-
cial case, and there exist several methods for the analysis
of case-cohort studies that yield interval-censored data (Li
and Nan, 2011). For example, Li et al. (2008) discussed the
problem when one faces the situation where the observa-
tion process generating censoring intervals is the same for
all subjects, and Zhou et al. (2017) developed a sieve semi-
parametric maximum likelihood estimation approach. How-
ever, all of these methods assume the proportional hazards
model and it is well-known that this assumption may not
hold in practice. Also in many situations such as epidemio-
logical studies, one is often interested in the risk difference
and in these cases, the additive hazards model is usually
preferred over the proportional hazards model (Lin et al.,
1998). In the following, we will consider this latter situa-
tion, for which there does not seem to exist an established
estimation procedure, and propose two estimation methods.

The remainder of the paper is organized as follows. We
will first describe in Section 2 some notation, the model and
some assumptions that will be used throughout the paper,
and two estimation procedures will be developed in Sec-
tion 3. One is an estimating equation-based procedure and
the other is a maximum likelihood estimation procedure.
Furthermore the resulting estimators of regression parame-
ters will be shown to be consistent and follow asymptotically
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a normal distribution. Section 4 presents some results ob-
tained from a simulation study conducted to assess the finite
sample performance of the proposed methods and they sug-
gest that both methods work well in practical situations. An
application is provided in Section 5 and Section 6 contains
some discussion and concluding remarks.

2. NOTATION, MODEL AND
ASSUMPTIONS

Consider a cohort study that consists of n independent
subjects and for subject i, let Ti denote the associated failure
time of interest and Zi a p-dimensional vector of covariates
that may be related to Ti. For the relationship between Ti

and Zi, we will assume that given Zi, the hazard function
of Ti has the form

λi(t|Zi) = λ(t) + β′Zi(t) ,(1)

where λ(t) is an unknown baseline hazard function and β
a p-dimensional vector of regression parameters. That is, Ti

follows the additive hazards model (Lin et al., 1998). In the
following, it will be assumed that the focus is on estimation
of the covariate effect or β.

For inference about model (1), suppose that for subject i,
there exist two examination times denoted by Ui and Vi with
Ui < Vi. Define the indicator functions δ1i = I(Ti ≤ Ui),
δ2i = I(Ui < Ti ≤ Vi) and δ3i = 1 − δ1i − δ2i, indicating if
the failure event of interest occurs before or at Ui, during
the interval (Ui, Vi], or after Vi, respectively. Also define
Oi = {Ui, Vi, δ1i, δ2i, Zi } and assume that the observed full
cohort data would be O = {Oi, i = 1, ..., n } if the covariate
information is available for all subjects. That is, we have
interval-censored data on the Ti’s (Sun, 2006). Then the
corresponding likelihood function would have the form

Ln(β,Λ|O) =

n∏
i=1

{
[1− exp{−Λ(Ui)− β′Z∗

i (Ui)}]δ1i

× [exp{−Λ(Ui)− β′Z∗
i (Ui)} − exp{−Λ(Vi)− β′Z∗

i (Ui)}]δ2i

× [exp{−Λ(Vi)− β′Z∗
i (Vi)}]δ3i

}
,

where Λ(t) =
∫ t

0
λ(s)ds.

Of course, for case-cohort studies, the covariate informa-
tion is available only for the subjects from the subcohort or
who have experienced the failure event of interest. Define
ξi = 1 if the covariate Zi is known or observed and 0 oth-
erwise, i = 1, . . . , n. Then under the case-cohort design, the
observed data have the form

Oξ = {Oξ
i = (Ui, Vi, δ1i, δ2i, ξiZi, ξi); i = 1, . . . , n } .

For the selection of the subcohort, by following Zhou et al.
(2017), we will focus on the independent Bernoulli sampling
with the selection probability q ∈ (0, 1). Then the probabil-
ity that the covariate Zi can be observed is given by

Pr(ξi = 1)
d
= πq(δ1i, δ2i) = δ1i + δ2i + (1− δ1i − δ2i)q ,

i = 1, . . . , n. Also we will assume that given Zi, Ti is inde-
pendent of the examination process or times Ui and Vi. That
is, we have the independent censoring mechanism (Sun,
2006).

3. ESTIMATION PROCEDURES

In this section, we will propose two estimation proce-
dures for the regression parameter β. First we will describe
an estimating equation-based procedure with the use of the
inverse probability weighting technique and then a pseudo
likelihood-based procedure.

3.1 Inverse probability weighted estimation

To present the estimating equation-based estimation pro-

cedure, for each i, define N
(1)
i (t) = (1− δ1i)I(Ui ≤ t). Also

conditional on Ui, define N
(2)
i (t) = δ3iI(Vi ≤ t) if t ≥ Ui

and 0 if t < Ui, and for k = 0, 1 and 2, define

S
(k)
1,β(t, β) =

1

n

n∑
i=1

I(t ≤ Ui) exp{−β′Zi
∗(t)}Z∗

i (t)
⊗k ,

and

S
(k)
2,β(t, β) =

1

n

n∑
i=1

I(Ui < t ≤ Vi) exp{−β′Zi
∗(t)}Z∗

i (t)
⊗k

with Z∗
i (t)

⊗0 = 1, Z∗
i (t)

⊗1 = Z∗
i (t), Z∗

i (t)
⊗2 =

Z∗
i (t)Z

∗
i (t)

T . First note that if the full-cohort data O were
available, Wang et al. (2010) suggested to estimate the re-
gression parameter β by solving the estimating function

U(β) =

n∑
i=1

[∫ τ1

0

{
Z∗
i (t)−

S
(1)
1,β(t, β)

S
(0)
1,β(t, β)

}
dN

(1)
i (t)(2)

+

∫ τ2

0

{
Z∗
i (t)−

S
(1)
2,β(t, β)

S
(0)
2,β(t, β)

}
dN

(2)
i (t)

]
,

where Z∗
i (t) =

∫ t

0
Zi(s)ds, τ1 = sup{t : Pr(U ≥ t) > 0},

and τ2 = sup{t : Pr(U < t ≤ V ) > 0}.
For the case of case-cohort studies, it is apparent that the

estimating equation above is not available. To address this,
for k = 0, 1 and 2, define

S
(k)
w,1,β(t, β) =

1

n

n∑
i=1

ωiI(t ≤ Ui)exp{−β′Zi
∗(t)}[Z∗

i (t)]
⊗k ,

and

S
(k)
w,2,β(t, β)=

1

n

n∑
i=1

ωiI(Ui<t≤Vi)exp{−β′Zi
∗(t)}[Z∗

i (t)]
⊗k,

where the wi’s are some weights given by

wi =
ξi

δ1i + δ2i + (1− δ1i − δ2i)q
� ξi

πq(δ1i, δ2i)
.
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Then by following Zhou et al. (2017) and motivated by (2),
we consider the following inverse probability weighted esti-
mating function

UIPW (β) =

n∑
i=1

[∫ τ1

0

wi

{
Z∗
i (t)−

S
(1)
w,1,β(t, β)

S
(0)
w,1,β(t, β)

}
dN

(1)
i (t)

+

∫ τ2

0

wi

{
Z∗
i (t)−

S
(1)
w,2,β(t, β)

S
(0)
w,2,β(t, β)

}
dN

(2)
i (t)

]
,

and define the inverse probability weight estimator β̂IPW of
β as the solution to UIPW (β) = 0. The following theorem

establishes the asymptotic properties of β̂IPW .

Theorem 1. Suppose that the regularity conditions (A1)−
(A4) given in the Appendix hold. Then β̂IPW is consistent
and as n → ∞, we have that

n1/2(β̂IPW − β0) −→ N(0,Ω−1
w ΓwΩ

−1
w )

in distribution, where Ωw = B1 +B2 and

Γw = E

⎛
⎝ 1

πq(δ1i, δ2i)

⎡
⎣
⎧⎨
⎩

∫ τ1

0

⎧⎨
⎩Z∗

i (t)−
s
(1)
w,1,β(t, β)

s
(0)
w,1,β(t, β)

⎫⎬
⎭ dM

(1)
i (t)

⎫⎬
⎭

⊗2

+

⎧⎨
⎩

∫ τ2

0

⎧⎨
⎩Z∗

i (t)−
s
(1)
w,2,β(t, β)

s
(0)
w,2,β(t, β)

⎫⎬
⎭ dM

(2)
i (t)

⎫⎬
⎭

⊗2⎤
⎦
⎞
⎠

with

B1 = E

(∫ τ1

0

⎧⎨
⎩Z∗

i (t)−
s
(1)
w,1,β(t, β)

s
(0)
w,1,β(t, β)

⎫⎬
⎭

⊗2

I(Ui ≥ t)exp
{
−Λ(t)− β′Z∗

i (t)
}
dt

)
,

B2 = E

(∫ τ2

0

⎧⎨
⎩Z∗

i (t)−
s
(1)
w,2,β(t, β)

s
(0)
w,2,β(t, β)

⎫⎬
⎭

⊗2

I(Ui < t ≤ Vi)exp
{
−Λ(t)− β′Z∗

i (t)
}
dt

)
,

M
(1)
i (t) = N

(1)
i (t)−

∫ t

0
I(Ui ≥ s)exp{−Λ(s)− β′Z∗

i (s))}ds ,

M
(2)
i (t) = N

(2)
i (t)−

∫ t

0
I(Ui < s ≤ Vi)exp{−Λ(s)− β′Z∗

i (s)}ds ,

s
(k)
w,1,β(t, β) = E

(
I(t ≤ Ui)exp{−β′Zi

∗(t)}[Z∗
i (t)]

⊗k
)
, for k = 0, 1, 2,

and

s
(k)
w,2,β(t, β) = E

(
I(Ui < t ≤ Vi)exp{−β′Zi

∗(t)}[Z∗
i (t)]

⊗k
)
,

for k = 0, 1, 2.

The proof of the theorem above is sketched in the Ap-
pendix. For the application of the result above, one needs
to estimate the asymptotic covariance matrix, and although
it is possible to derive a consistent estimator, it would be
complicated. Thus instead by following Ma and Kosorok
(2005), we suggest to employ the nonparametric weighted

bootstrap procedure to estimate the covariance matrix of
β̂IPW as follows. Specifically, let B be a given integer and
for each b (1 ≤ b ≤ B), let {ub

1, . . . , u
b
n} denote n inde-

pendent realizations of a bounded positive random variable
u satisfying E(u) = 1 and var(u) = ε0 < ∞. Define the

new weights wb
i = ub

iwi for i = 1, . . . , n and let β̂b
IPW de-

note the estimator of θ defined above with replacing the wi’s
by the wb

i ’s. Then one can estimate the asymptotic covari-

ance matrix of β̂IPW by the sample covariance matrix of
the β̂b

IPW ’s. One can expect that the estimator is consistent
(Ma and Kosorok, 2005) and the numerical results below
indicate that this method seems to work well.

Note that one advantage of the approach given above
is that it does not involve the estimation of the baseline
hazard function Λ(t) and thus it can be relatively stable or
robust as discussed below. On the other hand, it may lose
some efficiency and corresponding to this, we will present a
pseudo likelihood-based approach in the next subsection.

3.2 Sieve pseudo maximum likelihood
estimation

In general, if all information was available, one would
prefer to estimate β by maximizing the likelihood function
Ln(β,Λ). Since this is not possible, instead by following
Zhou et al. (2017), we suggest to consider the inverse prob-
ability weighted pseudo log likelihood function

lwn (β,Λ) =

n∑
i=1

lw(β,Λ;Oξ
i ) =

n∑
i=1

wil(β,Λ;Oi)

=
n∑

i=1

wi

{
δ1i log [1− exp{−Λ(Ui)− β′Z∗

i (Ui)}]

+δ2i log [exp{−Λ(Ui)−β′Z∗
i (Ui)}−exp{−Λ(Vi)−β′Z∗

i (Ui)}]

+(1− δ1i − δ2i){−Λ(Vi)− β′Z∗
i (Vi)}

}
.(3)

Of course, as mentioned above, now we have to deal with
the estimation of β and the baseline hazard function Λ(t)
together, which may be difficult. For this, by following Ma
et al. (2015) and others, we will approximate Λ(t) first by
Bernstein polynomials.

Specifically, let

Θ =

{
θ = (β,Λ) ∈ B ⊗M

}

denote the parameter space of θ, where B = {β ∈ R
p :

||β|| ≤ M} with M being a positive constant and M is the
collection of all continuous nonnegative and nondecreasing
functions over the interval [r1, r2]. Here, r1 and r2 are sup-
posed to be known constants that are usually taken in prac-
tice to be the lower and upper bounds of all observation
times. Also denote the sieve space

Θn =

{
θn = (β,Λn) ∈ B ⊗Mn

}
,
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where

Mn =

{
Λn(t) =

m∑
k=0

φkBk(t,m, r1, r2) : φm≥· · ·≥φ1 ≥ φ0,

m∑
k=0

|φk| ≤ Mn

}
.

In the above, Bk(t,m, r1, r2) denotes the Bernstein basis
polynomial of degree m = o(nv) for some v ∈ (0, 1) given by

Bk(t,m, r1, r2) =

(
m
k

)
(
t− r1
r2 − r1

)k(1− t− r1
r2 − r1

)m−k

(k = 0, . . . ,m) ,

and Mn = O(na) with a being a positive constant (Lorentz
1986; Shen 1997). We will define the sieve pseudo maximum

likelihood estimator θ̂n = (β̂n, Λ̂n) of θ to be the value of
θ that maximizes the pseudo log likelihood function lwn (θ)
over Θn.

Note that one advantage of the use of Bernstein polyno-
mials is that it can easily accommodate the non-decreasing
property of the baseline cumulative hazard function Λ(t).
Also the method can be relatively easily implemented. Of
course, instead of Bernstein polynomials, one may employ
other smooth functions such as B-spline or I-spline func-
tions for the approximation. To establish the asymptotic
properties of the proposed estimator θ̂n, let G(u, v) denote
the joint density function of the two random examination
times U and V and g(u, v|z) the conditional density of U
and V given Z = z. Also let θ0 = (β0,Λ0) denote the true
value of θ and define the distance between θ1 = (β1,Λ1) and
θ2 = (β2,Λ2) as

d(θ1, θ2) = { ||β1 − β2||2 + ||Λ1 − Λ2||22 }1/2 ,

where ||v|| denotes the Euclidean norm of a vector v
and ||Λ1 − Λ2||22 =

∫
[{Λ1(u) − Λ2(u)}2 + {Λ1(v) −

Λ2(v)}2]dG(u, v). Then the following theorems establish the
asymptotic consistency and normality of the proposed esti-
mators.

Theorem 2. Suppose that the regularity conditions (A1),
(A3) − (A6) given in the Appendix hold. Then as n → ∞,

we have that d(θ̂n, θ0) → 0 almost surely and d(θ̂n, θ0) =
Op(n

−min{(1−v)/2,vr/2}), where v ∈ (0, 1) such that m =
o(nv) and r is defined in the regularity condition (A5).

Theorem 3. Suppose that the regularity conditions (A1),
(A3) − (A6) given in the Appendix hold with r > 2 in the
regularity condition (A5). Then if v > 1/(2r) and as n → ∞,
we have that

√
n(β̂n − β0)

= I−1(β0)n
−1/2

n∑
i=1

wil
∗(β0,Λ0;Oi) + op(1) → N(0,Σ)

in distribution with

Σ = I−1(β0) + I−1(β0)E

{
1− πq(δ1, δ2)

πq(δ1, δ2)
{l∗(β0,Λ0;O)}⊗2

}
× I−1(β0) ,

where v⊗2 = vvT for a vector v, and I(β) and l∗(β0,Λ0;O)
denote the information matrix and efficient score for β, re-
spectively, based on a single observation and given in the
Appendix.

The proof of the theorems above will be sketched in the
Appendix. To use the results above, as before, we need to
estimate the covariance matrix of β̂n, for which it would be
difficult to derive a reasonable, consistent estimator. Thus
again as before, we suggest to employ the weighted boot-
strap procedure of Ma and Kosorok (2005), which is easy to
be implemented and works reasonably well as seen below.
Specifically, let B, {ub

1, . . . , u
b
n} and the wb

i = ub
iwi’s be de-

fined as before, and θ̂bn = (β̂b
n, Λ̂

b
n) denote the estimator of

θ defined above based on the new weights wb
i ’s. Then one

can estimate the asymptotic covariance matrix of β̂n by the
sample covariance matrix of the β̂b

n’s.
For the implementation of the estimation approach pro-

posed above, also note that there are some restrictions on
the parameters due to the nonnegativity and monotonic-
ity of the baseline cumulative hazard function Λ(t). How-
ever, they can be easily removed by using some reparam-
eterization. For example, a commonly used method is to
reparameterize {φ0, · · · , φm} by the cumulative sums of

{exp(φ∗
0), · · · , exp(φ∗

m)}. On the restriction
m∑

k=0

|φk| ≤ Mn,

it can be usually ignored sinceMn = O(na) is needed mainly
for technical reasons and can be chosen reasonably large for
a fixed sample size in practice. For the determination of θ̂n,
many existing optimization methods can be used, includ-
ing the interior-point algorithm and the Newton-Raphson
method. For the numerical studies below, the interior-point
algorithm in Matlab, given in fmincon used. In addition,
one needs to choose or determine the degree m of Bernstein
polynomials, which controls the smoothness of the approx-
imation. For this, as suggested by other authors, one could
consider several different values of m and choose the value
based on the AIC criterion that minimizes

AIC = −2 lwn (θ̂n) + 2(p+m+ 1) .

4. A SIMULATION STUDY

Now we report some results obtained from a simulation
study conducted to assess the finite sample performance of
the two estimation procedures proposed in the previous sec-
tions. In the study, we considered two covariate situations
with one being that there exists only one covariate Zi gen-
erated from the Bernoulli distribution with the probability
of success 0.5. For the other situation, it was assumed that
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there exists two covariates, one being discrete like in the first
situation and the other being continuous and following the
uniform distribution over (0, 1). Given Zi, the failure time
Ti was then generated from model (1) with the cumulative
baseline hazard function Λ(t) = 0.5t2 or Λ(t) = t. For the
generation of the observed interval-censored data, we mim-
icked biomedical follow-up studies and assumed that there
existed a sequence of observation time points for each sub-
ject. Specifically, let e1, . . . , ek denote the k equally space
time-points over the interval (0, τ), where τ represents the
stopping time of the study. Then for each subject, define a
new sequence of time points {e∗j}kj=1 by setting e∗j to be ei
plus a random number generated from the uniform distribu-
tion over (−τ/3(k + 1), τ/3(k + 1)) and assuming that the
subject was observed at each e∗j with probability ς, indepen-
dent of the examination results at other time-points.

For subject i, given the sequence of real observation time
points, if the generated Ti is less than the smallest obser-
vation time point, we set Ui to be the smallest observation
time and Vi = τ , and if the generated Ti is larger than
largest observation time point, we took Ui = 0 and Vi to
be the largest observation time point. Otherwise, Ui and
Vi were taken to be the two consecutive observation time
points bracketing the generated Ti. For the results given be-
low, we set k = 8 and ς = 0.8 and determined τ according
to the desired percentages of the subjects with δ1 = 1 and
δ2 = 1. For the proportion of the observed failure events, we
considered the situation with p = 0.05 or p = 0.1 and for
the generation of the subcohort, we adopt the independent
Bernoulli sampling with the selection probability q = 0.2.
The results given below are based on n = 1000 or 2000 with
1000 replications.

Tables 1 and 2 present the results obtained on estimation
of the regression parameter β with one covariate, the true
value of β being 0.2, 0.5 or log(2), Λ(t) = 0.5t2, and p = 0.1
and 0.05, respectively. The results include the estimated bias
(Bias) of the proposed estimators β̂IPW and β̂n given by the
average of the estimates minus the true value, the sample
standard error of the estimates (SSE), the average of the es-
timated standard errors (ESE) and the 95% empirical cov-
erage probability (CP). Here for the variance estimations
of the two proposed estimators, we generated the random
sample {ub

1, ..., u
b
n} from the exponential distribution with

B = 100. One can see from the tables that both proposed
estimators seem to be unbiased and the variance estima-
tion procedures also appear to work well. Furthermore the
results on the CP indicate that the normal approximation
to the distributions of the proposed estimators seem to be
appropriate too and as expected, the results became better
when the sample size or the proportion of the failure event
increased.

In addition, the two tables suggest that as discussed
above, the pseudo likelihood-based estimation procedure
yielded more efficient estimation than the estimating
equation-based estimation procedure. On the other hand,

as pointed out before, the former may be less stable or ro-
bust than the latter. To see this, we repeated the simulation
study above and Table 3 gives the results obtained on es-
timation of β under the same set-up giving Table 2 except
Λ(t) = t. As one can see, although the estimating equation-
based method still gave similar performance as in Table 2,
the pseudo likelihood-based method did not seem to perform
as well as above, especially for the situation with n = 1000,
maybe because of the need of estimating the baseline cumu-
lative hazard function Λ(t).

The results obtained on estimation of the regression pa-
rameter β with two covariates are given in Table 4 with
n = 2000, the true value of β being (0.2, 0.5), (0.5, 0.5) or
log(2), 0.5) and the other set-up being the same as in Ta-
ble 2. It can be seen that they gave similar conclusions as
above and again indicate that both proposed estimation pro-
cedures seem to work well. We also considered other set-ups
and obtained similar results and conclusions.

5. AN APPLICATION

To illustrate the methodology proposed in the previ-
ous sections, we apply it to an epidemiological follow-up
study, the Atherosclerosis Risk in Communities study (Zhou
et al., 2017). It started in 1987 and involves the partici-
pants with ages between 45 to 64 at the beginning and re-
cruited from four locations in the US, Forsyth County of
North Carolina, Jackson of Mississippi, Minneapolis sub-
urbs of Minnesota and Washington County of Maryland.
During the study, the participants were scheduled to be ex-
amined several times and at each examination, the med-
ical, social and demographic data were collected. As ex-
pected, some participants missed some scheduled revis-
its or were examined at times different from the sched-
uled times. In consequence, only interval-censored data
were observed on the occurrence of a disease such as dia-
betes. In addition to the location where a participant was
recruited, other available covariates include high-density
lipoprotein cholesterol level, total cholesterol level, body
mass index, smoking status and age. For the analysis be-
low, we will focus on the 2814 white women younger than
55 years at the beginning of the study and among them,
210 were observed to have developed diabetes during the
study.

To construct the interval-censored case-cohort sample,
we selected a simple random sample of the cohort by the
Bernoulli sampling with the selection probability of q = 0.05
or 0.1. For the application of the proposed estimation proce-
dures, define the failure time T to be the occurrence time of
diabetes and let the covariates Z to include the five covari-
ates described above plus the two dimensional location indi-
cators. For the location, we use Location-F ((0,1)), Location-
J ((1,1)), Location-M ((0,0)) and Location-W ((1,0)) to de-
note four places with treating Location-M as the reference.
Tables 5 and 6 present the results on the estimated covari-
ate effects given by the proposed two estimation methods
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Table 1. Simulation results on estimation of β with p = 0.05 and Λ(t) = 0.5t2

n True value Parameter Bias SSE ESE CP

1000 β = 0.2 β̂IPW 0.0044 0.5824 0.5685 0.9500

β̂n 0.0005 0.0696 0.0667 0.9400

β = 0.5 β̂IPW -0.0253 0.8894 0.8758 0.9530

β̂n 0.0046 0.1086 0.1087 0.9370

β = log 2 β̂IPW -0.0325 1.0405 1.0528 0.9540

β̂n 0.0012 0.1326 0.1233 0.8900

2000 β = 0.2 β̂IPW 0.0015 0.3962 0.3972 0.9430

β̂n 0.0012 0.0459 0.0470 0.9590

β = 0.5 β̂IPW 0.0059 0.6028 0.6129 0.9480

β̂n 0.0043 0.0747 0.0763 0.9550

β = log 2 β̂IPW -0.0313 0.7324 0.7353 0.9570

β̂n -0.0018 0.0932 0.0923 0.9400

Table 2. Simulation results on estimation of β with p = 0.1 and Λ(t) = 0.5t2

n True value Parameter Bias SSE ESE CP

1000 β = 0.2 β̂IPW -0.0130 0.3571 0.3611 0.9430

β̂n -0.0011 0.0621 0.0636 0.9480

β = 0.5 β̂IPW -0.0633 0.4330 0.4645 0.9640

β̂n 0.0051 0.0938 0.0964 0.9560

β = log 2 β̂IPW -0.0710 0.5255 0.5447 0.9560

β̂n 0.0042 0.1161 0.1106 0.9160

2000 β = 0.2 β̂IPW -0.0153 0.2460 0.2519 0.9510

β̂n -0.0003 0.0454 0.0445 0.9440

β = 0.5 β̂IPW -0.0396 0.3313 0.3234 0.9440

β̂n 0.0049 0.0674 0.0675 0.9470

β = log 2 β̂IPW -0.0614 0.3724 0.3806 0.9370

β̂n 0.0039 0.0813 0.0816 0.9450

along with the estimated standard errors (ESE) and the
p-values for testing no covariate effect for each of the covari-
ates for the selection probability q = 0.05 and 0.1, respec-
tively.

One can see from the two tables above that the pseudo
likelihood-based method with both q values indicates that
none of the covariates had significant effects on the devel-
opment of diabetes, while the estimating equation-based
method with q = 0.05 gave similar conclusions but the same
method with q = 0.1 suggests that total cholesterol, age
and Location-W may have some significant effects on the
onset of diabetes. To further investigate this, we repeated
the analysis above by employing the pseudo likelihood-based
approach with the use of the full cohort and give the esti-
mation results in Table 7 with both B = 100 and 1000 in
order to assess the effect of the bootstrap sample size B
on the estimation. It is apparent that the results here are
consistent with those given in Tables 5 and 6 and again sug-
gest that none of the covariates was significantly related to
the onset of diabetes. In contrast, the estimating equation-
based procedure seems to be sensitive to q or the size of the
subcohort.

6. DISCUSSION AND CONCLUDING
REMARKS

In this paper, we considered the estimation of the ad-
ditive hazards model, one of the most commonly used re-
gression models in failure time data analysis, when one
observes interval-censored case-cohort data. As discussed
above, there exists a great deal of literature on either the
analysis of interval-censored data or the analysis of case-
cohort studies but it did not seem to exist an established
estimation procedure when one faces both interval censor-
ing and case-cohort design together. For the problem, two
estimation procedures were proposed and the asymptotic
properties of the resulting estimators of regression param-
eters were established. In addition, the numerical studies
were performed for the assessment of their performance in
practice and suggested that both methods seem to work
well. On the other hand, one can also see through the nu-
merical studies that the estimating equation-based approach
is generally less efficient than the pseudo likelihood-based
approach but unlike the former, the latter involves or re-
quires estimation of the cumulative baseline hazard func-
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Table 3. Simulation results on estimation of β with p = 0.1 and Λ(t) = t

n True value Parameter Bias SSE ESE CP

1000 β = 0.2 β̂IPW 0.0194 1.2670 1.2332 0.9510

β̂n 0.0462 0.2188 0.1944 0.8790

β = 0.5 β̂IPW -0.0296 1.4888 1.4918 0.9400

β̂n 0.0058 0.2820 0.2352 0.8050

β = log 2 β̂IPW -0.0772 1.4720 1.4785 0.9460

β̂n -0.0418 0.2715 0.2449 0.8520

2000 β = 0.2 β̂IPW 0.0059 0.8681 0.8650 0.9420

β̂n 0.0055 0.1759 0.1815 0.9550

β = 0.5 β̂IPW -0.0469 1.0128 1.0351 0.9580

β̂n 0.0052 0.2169 0.1984 0.9010

β = log 2 β̂IPW -0.0597 1.0297 1.0319 0.9450

β̂n -0.0058 0.2019 0.1883 0.8650

Table 4. Simulation results on estimation of β with p = 0.1 and Λ(t) = 0.5t2

True value Parameter Bias SSE ESE CP

β = (0.2, 0.5) β̂1,IPW -0.0201 0.3919 0.3780 0.9400

β̂1,n -0.0044 0.0721 0.0705 0.9240

β̂2,IPW -0.0591 0.6439 0.6495 0.9500

β̂2,n -0.0201 0.1148 0.1130 0.9460

β = (0.5, 0.5) β̂1,IPW -0.0513 0.4980 0.4804 0.9400

β̂1,n -0.0028 0.0978 0.0976 0.9530

β̂2,IPW -0.0518 0.8264 0.8232 0.9460

β̂2,n -0.0284 0.1350 0.1298 0.9270

β = (log 2, 0.5) β̂1,IPW -0.0875 0.5258 0.5245 0.9480

β̂1,n 0.0046 0.1081 0.1096 0.9300

β̂2,IPW -0.0561 0.8837 0.9037 0.9620

β̂2,n -0.0250 0.1392 0.1361 0.9410

tion and thus may need large sample sizes for better perfor-
mance.

As mentioned above, the focus here has been on interval-
censored data generated from case-cohort studies that can
be described by two observation time points. In practice, two
other types of interval-censored data may arise and it would
be useful to generalize the proposed estimation procedures
to these situations (Sun, 2006). One is the so-called current
status data, meaning that each subject is observed only once
and thus the failure time of interest is either left- or right-
censored. The other is the case K interval-censored data
where there exists a sequence of observation times for each
subject. Although the proposed methods can be adopted
for the case K interval-censored data, one may prefer to
develop some approaches that could make full use of the
information on the observation process. Another direction
for future research is that instead of the additive hazards
model (1), sometimes one may prefer a different model such
as the proportional odds model or the linear transformation
model. It is apparent that it would be helpful to derive some
estimation procedures for these or other models.

APPENDIX A. PROOFS OF THEOREMS 1–3

In this Appendix, we will sketch the proof of Theorems 1,

2 and 3. For this, we need the following regularity conditions.

(A1) Assume that Λ(τ1) < ∞, Λ(τ2) < ∞, and there

exists a positive constant η such that P (V − U > η) > 0.

The union of the supports of U and V is contained in the

interval [r1, r2] with 0 < r1 < r2 < +∞.

(A2) The following matrics

B1 = E

(∫ τ1

0

{
Z∗
i (t)−

s
(1)
w,1β(t, β)

s
(0)
w,1,β(t, β)

}⊗2

I(Ui ≥ t)exp {−Λ(t)− β′Z∗
i (t)} dt

)
,

B2 = E

(∫ τ2

0

{
Z∗
i (t)−

s
(1)
w,2,β(t, β)

s
(0)
w,2,β(t, β)

}⊗2

I(Ui < t ≤ V )exp {−Λ(t)− β′Z∗
i (t)} dt

)
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Table 5. Estimated covariate effects on the occurrence time of diabetes with q = 0.05

Covariate β̂n ESE p-value β̂IPW ESE p-value

High-density lipoprotein cholesterol -0.0331 0.1822 0.8558 -0.0733 0.1694 0.6654

Total cholesterol 0.0209 0.1939 0.9142 0.2058 0.2672 0.4412

Body mass index 0.0687 0.2288 0.7640 0.0631 0.1752 0.7187

Current smoking status 0.0040 0.0522 0.9393 0.0063 0.0214 0.7669

Age -0.0512 0.3618 0.8876 -1.0749 0.6827 0.1154

Location-F 0.0021 0.0407 0.9587 -0.0201 0.0314 0.5233

Location-W -0.0030 0.0177 0.8638 -0.0028 0.0188 0.8806

Table 6. Estimated covariate effects on the occurrence time of diabetes with q = 0.1

Covariate β̂n ESE p-value β̂IPW ESE p-value

High-density lipoprotein cholesterol -0.0480 0.1999 0.8100 -0.0303 0.1294 0.8150

Total cholesterol 0.0322 0.2393 0.8897 0.2531 0.1395 0.0697

Body mass index 0.0682 0.2293 0.7660 0.1843 0.1589 0.2462

Current smoking status 0.0007 0.0615 0.9915 0.0197 0.0142 0.1658

Age -0.0552 0.4192 0.8953 -1.3952 0.4822 0.0038

Location-F 0.0002 0.0486 0.9964 -0.0281 0.0191 0.1396

Location-W -0.0032 0.0291 0.9115 -0.0299 0.0140 0.0327

are positive define, where s
(k)
w,1,β and s

(k)
w,2,β denote the limits

of S
(k)
w,1,β and S

(k)
w,2,β , respectively, k = 0, 1, 2.

(A3) The distribution of Z has bounded support and
is not concentrated on any proper subspace of R

p. Also,
E{var(Z|U)} and E{var(Z|V )} are positive definite.

(A4) There exists a constant q such that 0 < q ≤
πq(δ1, δ2) ≤ 1.

(A5) The function Λ0 ∈ M is continuously differentiable
up to order r in [r1, r2], with the first derivative being strictly
positive, and satisfies α−1 < Λ0(r1) < Λ0(r2) < α for some
positive constant α. Also, β0 is an interior point of B ∈ R

p.

(A6) The conditional density g(u, v|z) of (u, v) given z
has bounded partial derivatives with respect to u and v,
and the bounds of these partial derivatives do not depend
on (u, v, z).

Proof of Theorem 1.

Consistency of β̂IPW : Note that according to Theorem
5.9 in Van der Vaart (1998), any sequence of estimators

β̂IPW such that UIPW (β̂IPW ) = 0 converges in probability
to β0. This suggests that we only need to verify that

(1)

sup
β∈B

||UIPW (β)− E(UIPW (β))|| p→ 0,

where B is a compact neighborhood of the true param-
eter β0.

(2)

inf
β:|β−β0|≥ε

||E(UIPW (β))|| > 0.

Obviously, {ωi, i = 1, . . . , n} and {Zi
∗(t), i = 1, . . . , n}

are Euclidean classes. By Lemma 5 in Sherman (1994) and

Lemma 2.14 in Pakes and Pollard (1989), it is easy to see

that

ε11 =

{∫ τ1

0

ωiZi
∗(t)dN

(1)
i (t), i = 1, . . . , n

}
,

ε12 =

{∫ τ1

0

ωi

S
(1)
w,1,β(t, β)

S
(0)
w,1,β(t, β)

dN
(1)
i (t), i = 1, . . . , n

}
,

ε21 =

{∫ τ2

0

ωiZi
∗(t)dN

(2)
i (t), i = 1, . . . , n

}
,

ε22 =

{∫ τ2

0

ωi

S
(1)
w,2,β(t, β)

S
(0)
w,2,β(t, β)

dN
(2)
i (t), i = 1, . . . , n

}

are Euclidean classes for their envelop functions,

(τ1 sup |Z|)/ε0, {supt,β{
s
(1)
w,1,β(t, β)

s
(0)
w,1,β(t, β)

}}τ1
ε0
, (τ2 sup |Z|)/ε0,

{supt,β{
s
(1)
w,2,β(t, β)

s
(0)
w,2,β(t, β)

}}τ2
ε0
, respectively. Therefore,

ε1 =

{[∫ τ1

0

ωi

{
Zi

∗(t)−
S
(1)
w,1,β(t, β)

S
(0)
w,1,β(t, β)

}
dN

(1)
i (t)

+

∫ τ2

0

ωi

{
Zi

∗(t)−
S
(1)
w,2,β(t, β)

S
(0)
w,2,β(t, β)

}
dN

(2)
i (t)

]
, β ∈ B

}

is a Euclidean class with an integrable envelope function.
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Table 7. Estimated covariate effects on the occurrence time of diabetes based on the full cohort

B = 100 B = 1000

Covariate β̂n ESE p-value β̂n ESE p-value

High-density lipoprotein cholesterol -0.0395 0.1364 0.7723 -0.0395 0.1435 0.7833

Total cholesterol 0.0272 0.1560 0.8614 0.0272 0.1619 0.8664

Body mass index 0.0765 0.1761 0.6641 0.0765 0.1865 0.6819

Current smoking status 0.0016 0.0622 0.9801 0.0016 0.0647 0.9809

Age -0.0639 0.3690 0.8625 -0.0639 0.3637 0.8605

Location-F 0.0011 0.0420 0.9787 0.0011 0.0478 0.9812

Location-W -0.0029 0.0262 0.9108 -0.0029 0.0372 0.9371

Hence, we have

sup
β∈B

||UIPW (β)− E(UIPW (β))|| p→ 0.

Meanwhile, we have that

inf
β:|β−β0|≥ε

||E(UIPW (β))||

= inf
β:|β−β0|≥ε

||E(UIPW (β))− E(UIPW (β0))||

= inf
β:|β−β0|≥ε

∥∥∥∥∥E
{∫ τ1

0

ωi

{
S
(1)
w,1,β(t, β0)

S
(0)
w,1,β(t, β0)

−
S
(1)
w,1,β(t, β)

S
(0)
w,1,β(t, β)

}
dN

(1)
i (t)

+

∫ τ2

0

ωi

{
S
(1)
w,2,β(t, β0)

S
(0)
w,2,β(t, β0)

−
S
(1)
w,2,β(t, β)

S
(0)
w,2,β(t, β)

}
dN

(2)
i (t)

}∥∥∥∥∥
= infβ:|β−β0|≥ε

∥∥∥∥∥E
{∫ τ1

0

ωi

{
S
(1)
w,1,β(t, β0)

S
(0)
w,1,β(t, β0)

−
(
S
(1)
w,1,β(t, β0)

S
(0)
w,1,β(t, β0)

)⊗2
⎫⎬
⎭ dN

(1)
i (t)

+

∫ τ2

0

ωi

⎧⎨
⎩S

(2)
w,2,β(t, β0)

S
(0)
w,2,β(t, β0)

−
(
S
(1)
w,2,β(t, β0)

S
(0)
w,2,β(t, β0)

)⊗2
⎫⎬
⎭ dN

(2)
i (t)

⎫⎬
⎭
∥∥∥∥∥

||β − β0||+ o(1)
p→ Ωwε > 0.

This proves the consistency of β̂IPW .
Asymptotic normality of β̂IPW : First note that by the

Taylor series expansions of UIPW (β̂IPW ) around β0, we have
that

UIPW (β̂IPW ) = UIPW (β0) +
∂UIPW (β)

∂β′ |β=β0(β̂IPW − β0)

+ op(1) .

Thus, by the consistency of βIPW for any β satisfying
|β̂IPW − β| = op(1) and Taylor expansion, we have

√
n(β̂IPW − β0) = (Ω̂w)

−1n− 1
2UIPW (β0),

where

n− 1
2UIPW (β0)

=

n∑
i=1

∫ τ1

0

ωi

{
Zi

∗(t)−
s
(1)
w,1,β(t, β̂IPW )

s
(0)
w,1,β(t, β̂IPW )

}
dM

(1)
i (t)

+

∫ τ2

0

ωi

{
Zi

∗(t)−
s
(1)
w,2,β(t, β̂IPW )

s
(0)
w,2,β(t, β̂IPW )

}
dM

(2)
i (t)+op(1),

with

M
(1)
i (t) = N

(1)
i (t)−

∫ t

0

I(Ui ≥ s)exp{−Λ(s)− β′Z∗
i (s))}ds,

M
(2)
i (t)=N

(2)
i (t)−

∫ t

0

I(Ui<s≤Vi)exp{−Λ(s)−β′Z∗
i (s)}ds.

Here, s
(k)
w,l,β(t, β0) denote the limits of S

(k)
w,l,β(t, β0) for l =

1, 2, k = 0, 1, 2.

Therefore, the asymptotic covariance matrix of√
n(β̂IPW − β0) can be consistently estimated by

Ω̂−1
w Γ̂wΩ̂

−1
w .

Proof of Theorem 2.

In this following, we will prove Theorems 2 and 3 by
employing the empirical process theory and nonparamet-
ric techniques. First define Pf =

∫
f(x)dP (x), and Pnf =

n−1
n∑

i=1

f(Xi) for a function f, a probability function P and

a sample X1, . . . , Xn.

To prove Theorem 2, we will first define the covering num-
ber of the class Ln = {lw(θ;Oξ) = wl(θ;O) : θ ∈ Θn} and
establish two lemmas. For ε > 0, define the covering number
N(ε,Ln, L1(Pn)) as the smallest value of κ for which there
exists {θ(1), . . . , θ(κ)} such that

min
j∈{1,...,κ}

1

n

n∑
i=1

|lw(θ,Oξ)− lw(θ(j), Oξ)| < ε

for all θ ∈ Θn, where θ
(j) = (β(j)′,Λ(j))′ ∈ Θn, j = 1, . . . , κ.

We will define N(ε,Ln, L1(Pn)) = ∞ if no such κ exists.

Additive hazards regression for case-cohort studies with interval-censored data 189



Lemma 1. Assume that Conditions (A1), (A3)–(A6) hold.
Then the covering number of the class Ln = {lw(θ;Oξ) : θ ∈
Θn} satisfies

N(ε,Ln, L1(Pn)) ≤ KM (m+1)
n ε−(p+m+1).

Lemma 2. Assume that Conditions (A1), (A3)–(A6) hold.
Then,

sup
θ∈Θn

|Pnl
w(θ;Oξ)− Plw(θ;Oξ)| → 0

Proof of Lemma 1 and 2. The proof is similar to that of
Zhou et al. (2017) and Hu et al. (2017) and thus omitted.

Let M(θ,Oξ) = −l(θ,Oξ) and define Kε = {θ : d(θ, θ0) ≥
ε, θ ∈ Θn} for any ε > 0 and

ζ1n = sup
θ∈Θn

|PnM(θ,Oξ))− PM(θ,Oξ)|,

ζ2n = PnM(θ0, O
ξ))− PM(θ0, O

ξ).

Then we can show that

inf
Kε

PM(θ,Oξ) = inf
Kε

{PM(θ,Oξ)− PnM(θ,Oξ)

+PnM(θ,Oξ)} ≤ ζ1n + inf
Kε

PnM(θ,Oξ),

if θ̂n ∈ Kε, then we have

inf
Kε

PnM(θ,Oξ) = PnM(θ̂n, O
ξ) ≤ PnM(θ0, O

ξ)

= ζ2n + PM(θ0, O
ξ).

Define δε = infKε PM(θ,Oξ)) − PM(θ0, O
ξ). Then accord-

ing to Lemma 5 of Hu et al. (2017), we have

inf
Kε

PM(θ,Oξ) ≤ ζ1n + ζ2n + PM(θ0, O
ξ)

= ζn + PM(θ0, O
ξ)

with ζn = ζ1n + ζ2n. Hence we can obtain that ζn ≥ δε and
furthermore θ̂n ∈ Kε implies ζn ≥ δε. By Lemma 2 and
the Strong Law of Large Numbers we have ζ1n = o(1) and

ζ2n = o(1) almost surely. Therefore, ∪∞
k=1∩∞

n=k {θ̂n ∈ Kε} ⊆
∪∞
k=1∩∞

n=k{ζn ≥ δε}, which proves that d(θn, θ0) → 0 almost
surely.

To establish the convergence rate, for any η > 0,
define the class Fη = {lw(θn0, Oξ) − lw(θ,Oξ) : θ ∈
Θn, d(θ, θn0) ≤ η} with θn0 = (β0,Λn0). Following the cal-
culation of Shen and Wong (1994, P.597), we can establish
that logN[](ε,Fη, ‖ . ‖2) ≤ CN log(η/ε) with N = m + 1,
where N[](ε,Fη, d) denotes the bracketing number (see the
Definition 2.1.6 in Van Der Vaart and Wellner, 1996) with
respect to the metric or semi-metric d of a function class F .
Moreover, some algebraic calculations lead to ||lw(θn0, Oξ)−
lw(θ,Oξ)||22 ≤ Cη2 for any lw(θn0, O

ξ) − lw(θ,Oξ) ∈ Fη.

Therefore, by Lemma 3.4.2 of Van Der Vaart and Wellner
(1996), we obtain

Ep‖n1/2(Pn − P )‖Fη(S)

≤ CJη(ε,Fη, ‖ . ‖2)
{
1 +

Jη(ε,Fη, ‖ . ‖2)
η2n1/2

}
,

where J[](η,Fη, ‖ . ‖2) =
∫ η

0
{1+logN[](ε,Fη, ‖ . ‖2)}1/2dε ≤

CN1/2η. The right-hand side of (S) yield φn(η) =
C(N1/2η + N/n1/2). It is easy to see that φn(η)/η de-
creases in η, and r2nφn(1/rn) = rnN

1/2+r2nN/n1/2 < 3n1/2,
where rn = N−1/2n1/2 = n(1−v)/2 with 0 < v < 0.5.
Hence, n(1−v)/2d(θ̂ − θn0) = Op(1) by Theorem 3.2.5 of
Van Der Vaart and Wellner (1996). This, together with
d(θn0, θ0) = Op(n

−rv) (Lemma A1 in Lu et al. (2007)),

yields that d(θ̂, θ0) = Op(n
−(1−v)/2 + n−rv).

Proof of Theorem 3.
Now we prove the asymptotic normality of β̂n. Notice

that w = ξ
πq(δ1,δ2)

is bounded and does not depend on the

parameters (β,Λ) and E{w|O} = 1. Following the proof of
Theorem 2 in Zhang et al. (2010) and Zhou et al. (2017),
one can obtain that

√
n(β̂n − β0) = I−1(β0)n

−1/2
n∑

i=1

wil
∗(β0,Λ0;Oi) + op(1)

where l∗(β0,Λ0;O) and I(β), the efficient score and infor-
mation for β based on O = {U, V, δ1, δ2, Z}, are defined in
Zhang et al. (2010, p. 344), with our parameters (β,Λ) cor-
responding to their {θ, exp(φ)}. Note that

var{wl∗(β0,Λ0;O)} = var[E{wl∗(β0,Λ0;O)|O}]
+E[var{wl∗(β0,Λ0;O)|O}]

= var{l∗(β0,Λ0;O)}+ E

[
var(ξ|O)

l∗(β0,Λ0;O)
⊗2

π2
q (δ1, δ2)

]

= I(β0) + E

[
1− πq(δ1, δ2)

πq(δ1, δ2)
{l∗(β0,Λ0;O)}⊗2

]
.

Thus we have

√
n(β̂n − β0) → N(0,Σ), n → ∞

in distribution, where

Σ = I−1(β0) + I−1(β0)E

{
1− πq(δ1, δ2)

πq(δ1, δ2)
{l∗(β0,Λ0;O)}⊗2

}
× I−1(β0).

This completes the proof of Theorem 3.
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