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Hypothesis testing for normal distributions:
a unified framework and new developments
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Hypothesis testing for normal distributions is one impor-
tant problem in statistics and related fields including man-
agement science, engineering science and medical science.
In this paper, from a very unique perspective, we propose
a unified framework to comprehensively review the existing
literature on the one- and two-sample testing problems of
normal distributions. The unified framework has integrated
the literature in a way that it includes most commonly used
tests as special cases, including the one-sample mean test,
the one-sample variance test, the two-sample mean test, the
two-sample variance test, and the Behrens-Fisher test. The
unified framework has also put forward two new hypothesis
tests that are rarely studied in the literature. To complete
the puzzle, we propose two likelihood ratio test statistics
to solve those new testing problems. Simulation studies and
real data examples are also provided to demonstrate that
our proposed test statistics are appropriate for practical im-
plementation.

Keywords and phrases: Hypothesis test, Likelihood ra-
tio test, Normal distribution, Unified framework.

1. INTRODUCTION

The normal distribution, also known as the Gaussian
distribution, is one of the most important distributions in
statistics and probability. Hypothesis testing for one or two
normal distributions have been extensively studied in the lit-
erature for more than 100 years. Among the available tests,
testing equality of two normal distributions is one frequently
encountered problem and it has wide applications in var-
ious fields, including management science, engineering sci-
ence and medical science. Such a test is needed, for instance,
to assess the acceptability of a new design or treatment to
some standard medicine or to proceed the quality control of
a new product to the existing ones.

Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym} be two
independent random samples from the normal distributions
N(μ1, σ

2
1) and N(μ2, σ

2
2), respectively. Recall that a normal

distribution is completely determined by its two parameters:
the mean value and the variance. To test equality of two
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normal distributions, it is hence equivalent to testing the
following hypothesis:

H0 : μ1 = μ2 and σ2
1 = σ2

2(1)

versus H1 : μ1 �= μ2 or σ2
1 �= σ2

2 .

In 1930, Pearson and Neyman proposed a likelihood ratio
test (LRT) for hypothesis (1) with the test statistic given
by

Λn,m

=

(∑n
i=1(Xi − X̄)2/n

)n
2
(∑m

j=1(Yj − Ȳ )2/m
)m

2

{(∑n
i=1(Xi − μ̂)2 +

∑m
j=1(Yj − μ̂)2

)
/(n+m)

}n+m
2

,

where X̄, Ȳ and μ̂ are the sample means of the X sample,
the Y sample and the pooled sample, respectively. For sim-
plicity, we refer to the above LRT test as the P&N test and
the corresponding hypothesis as the P&N hypothesis. Un-
der the null hypothesis, the limiting distribution of the test
statistic Λn,m follows a uniform distribution on the interval
[0, 1] when n and m are both large. While for finite n and m,
Pearson (1930) proposed to approximate the exact distribu-
tion of Λn,m by a beta distribution. In addition, [45] and [4]
proposed other methods for testing the P&N hypothesis.

Due to the complexity in the P&N test and its variants,
hypothesis (1) is often overlooked or may not even be in-
troduced in most introductory statistics textbooks. In con-
trast, one often prefer to introduce some simpler hypothesis
tests in the textbooks, e.g., testing whether the two popu-
lation means are equal, or whether the two population vari-
ances are equal. In this paper, according to whether (or to
what extent) the prior knowledge of means and variances is
available, we propose a unified framework to integrate the
existing literature so that it includes most commonly used
tests as special cases, including the one-sample mean test,
the one-sample variance test, the two-sample mean test, and
the two-sample variance test.

To present the main idea of our unified framework, we
treat “Means” as the row variable and “Variances” as the
column variable in Table 1, each with 4 different levels of
assumptions. To start with, we make no assumption or have
no prior knowledge on the population means and variances.
Then to test equality of two normal distributions, we have
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Table 1. A unified framework of hypothesis testing for normal
distributions. (I): two-sample mean test; (II): two-sample

variance test; (III): one-sample mean test, (IV): one-sample
variance test; (V): the equality test of two normal

distributions with one mean known; (VI): the equality test of
two normal distributions with one variance known. In

addition, the P&N test denotes the equality test of two
normal distributions, and the K&S test denotes the equality
test of one normal distribution with a reference distribution

no simple choice but to deal with the composite hypothesis
in (1). In this setting, some sophisticated test procedures,
such as the P&N test, are needed.

Now we take a step forward. If the two population vari-
ances are assumed or known to be equal, then to test hy-
pothesis (1), we need no longer to take into account the
term σ2

1 = σ2
2 in the null hypothesis. As a consequence, the

original test is simplified as a two-sample mean test:

H
(I)
0 : μ1 = μ2 versus H

(I)
1 : μ1 �= μ2.(2)

On the contrary, if the two population variances are unequal,
then the null hypothesis in (1) is false and it will be rejected
automatically. Given, however, that the two normal distri-
butions are not the same, in many applications one may
still be interested in testing hypothesis (2). Under such a
scenario, it results in the famous Behrens-Fisher problem
[5, 18, 24, 51].

On the other side, if the two population means are as-
sumed or known to be equal, then the term μ1 = μ2 will be
removed from the null hypothesis in (1). This leads to the
two-sample variance test as follows:

H
(II)
0 : σ2

1 = σ2
2 versus H

(II)
1 : σ2

1 �= σ2
2 .(3)

Conversely, if the two population means are unequal, then
the null hypothesis of (1) will be rejected automatically. In
this setting, however, one may still perform the two-sample
variance test in (3).

To achieve the two-sample tests in (2) and (3), we have
imposed assumptions only on the population variances or
only on the population means. In what follows, we will im-
pose assumptions on both means and variances in order

to draw connections between hypothesis (1) and the one-
sample tests. In the extreme case, if we assume that μ1 = μ2

and σ2
1 = σ2

2 , then the null hypothesis in (1) is true and
no further test is needed. In contrast, if either μ1 �= μ2

or σ2
1 �= σ2

2 is assumed, then the null hypothesis in (1) is
false, and once again, no further test is needed. These ex-
treme cases correspond to the four middle entries in Table
1, marked with “No test”.

To derive the one-sample mean test, we assume that one
population mean is known. Without loss of generality, let the
mean of the second population be known, denoted by μ2 =
μ0. With this prior knowledge, if we further assume that
the two variances are equal (or unequal), then hypothesis
(1) reduces to the one-sample mean test as follows:

H
(III)
0 : μ1 = μ0 versus H

(III)
1 : μ1 �= μ0.(4)

Accordingly, if the variance of the second population is
known (denoted by σ2

2 = σ2
0) and the two population means

are equal (or unequal), then hypothesis (1) reduces to the
one-sample variance test as follows:

H
(IV)
0 : σ2

1 = σ2
0 versus H

(IV)
1 : σ2

1 �= σ2
0 .(5)

If, instead, the mean and variance of the second popu-
lation are both known as μ0 and σ2

0 , then hypothesis (1)
becomes a simultaneous test of the mean and variance of a
normal distribution:

H
(KS)
0 : μ1 = μ0 and σ2

1 = σ2
0(6)

versus H
(KS)
1 : μ1 �= μ0 or σ2

1 �= σ2
0 .

Hypothesis (6) was first introduced in [25] and [58]. For sim-
plicity, we refer to it as the K&S test in Table 1.

Apart from the aforementioned tests, there are still two
interesting settings in Table 1 remaining unvisited: one is
located in the bottom-left corner and the other is located in
the top-right corner. Specifically, if we assume μ2 = μ0 is
known but make no assumption on the population variances,
then hypothesis (1) yields the hypothesis test in the bottom-
left corner:

H
(V)
0 : μ1 = μ0 and σ2

1 = σ2
2(7)

versus H
(V)
1 : μ1 �= μ0 or σ2

1 �= σ2
2 .

In contrast, if we assume σ2
2 = σ2

0 is known but make no
assumption on the population means, then we have the hy-
pothesis test in the top-right corner:

H
(VI)
0 : μ1 = μ2 and σ2

1 = σ2
0(8)

versus H
(VI)
1 : μ1 �= μ2 or σ2

1 �= σ2
0 .

To the best of our knowledge, hypotheses (7) and (8) have
rarely been studied in the literature. Although not very com-
mon in practice, we propose to derive two likelihood ratio
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tests for the new testing problems, and hence complete the
puzzle that we have laid out in Table 1.

The rest of the paper is organized as follows. In Section
2, we provide a review on the commonly used one- and
two-sample tests from the perspective of LRT. In Section
3, we propose two likelihood ratio tests for the new test-
ing problems and derive their exact and approximate null
distributions, respectively. In Section 4, we conduct simula-
tion studies to assess the performance of our proposed test
statistics. In Section 5, two real data examples are analyzed
and they demonstrate the practical values of our proposed
test statistics. Finally, we conclude the paper in Section 6
and postpone the derivations to the Appendix.

2. A REVIEW: ONE- AND TWO-SAMPLE
TESTS

2.1 Two-sample tests

Following the notation in Section 1, let X̄ =
∑n

i=1 Xi/n
be the sample mean, and S2

1 =
∑n

i=1(Xi−X̄)/(n−1) be the
sample variance from theX sample; and let Ȳ =

∑m
i=1 Yi/m

be the sample mean, and S2
2 =

∑m
i=1(Yi − Ȳ )/(m − 1) be

the sample variance from the Y sample. Let also μ̂ = (nX̄+
mȲ )/(n+m) be the pooled sample mean, and S2

pool = {(n−
1)S2

1+(m−1)S2
2}/(n+m−2) be the pooled sample variance.

2.1.1 Two-sample mean tests

This section reviews the two-sample mean tests for hy-
pothesis (2). We first consider the scenario of equal variances
with σ2

1 = σ2
2 = σ2. When σ2 is known, the LRT statistic is

given as

Z
(I)
1 =

X̄ − Ȳ

σ
√

1
n + 1

m

.

Under the null hypothesis, Z
(I)
1 follows a standard normal

distribution. This test is well known as the Z-test. When σ2

is unknown, the LRT statistic is

T
(I)
1 =

X̄ − Ȳ

Spool

√
1
n + 1

m

,(9)

where Spool = (S2
pool)

1/2 is the pooled sample standard de-

viation. Under the null hypothesis, T
(I)
1 follows a Student’s

t distribution with n+m− 2 degrees of freedom. This test
is referred to as the two-sample pooled t-test.

Now we consider the scenario that the two variances are
unequal. When σ2

1 and σ2
2 are known, the LRT statistic is

given as

Z
(I)
2 =

X̄ − Ȳ√
σ2
1

n +
σ2
2

m

.

Under the null hypothesis, Z
(I)
2 follows a standard normal

distribution and it results in the Z-test. When the two vari-
ances are unequal and unknown, the pooled sample variance
in the test statistic (9) will be less meaningful. As an alter-
native, one may prefer the following “plug-in” test statistic:

T
(I)
2 =

X̄ − Ȳ√
S2
1

n +
S2
2

m

.

Under the null hypothesis, however, the test statistic T
(I)
2

does not follow a Student’s t distribution. This is widely
known as the Behrens-Fisher problem [5, 18].

[62] proposed an approximate solution for the Behrens-

Fisher problem. In his method, T
(I)
2 is assumed to follow an

approximate t distribution with ν degrees of freedom un-
der the null hypothesis, where ν is estimated by the Welch-
Satterthwaite equation [53, 54]:

ν̂ =

{
(S2

1/n)
2

n− 1
+

(S2
2/m)2

m− 1

}−1 (
S2
1

n
+

S2
2

m

)2

.

This test is referred to as Welch’s t-test. Other methods in
this direction include but not limited to the following: [63],
[19], [12], [41], [38], [27], [49], [50], [29], [59], [24], [51] and
[36].

2.1.2 Two-sample variance tests

This section reviews the two-sample variance tests for
hypothesis (3). The LRT statistic for this test is given as

F
(II)
1 =

S2
1

S2
2

.

Note that (n−1)S2
1/σ

2
1 follows a chi-square distribution with

n− 1 degrees of freedom, (m− 1)S2
2/σ

2
2 follows a chi-square

distribution with m − 1 degrees of freedom, and the two
terms are independent of each other. Under the null hypoth-

esis, F
(II)
1 follows an F distribution with n − 1 and m − 1

degrees of freedom. For more properties of this F -test, one
may refer to, for example, [9], [46] and [23].

Note, however, that the classic F -test is very sensitive to
the assumption that the data are normally distributed. For
robust testing of hypothesis (3), [48] proposed a Wald test
with the test statistic as

χ
(II)
1 =

(S2
1 − S2

2)
2

2S4
1/(n+ 1) + 2S4

2/(m+ 1)
.

Under the null hypothesis, it follows an asymptotic chi-
square distribution with one degree of freedom. For more
test methods including Bartlett’s test, Levene test and Boot-
strap test, one may refer to, for example, [3], [28], [10], [21],
[13], [8] and [68].
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2.1.3 Equality tests of two normal distributions

In this section, we review the equality tests of two normal
distributions specified in hypothesis (1). As mentioned in
Section 1, [42] constructed an LRT statistic as

Λn,m

=

(∑n
i=1(Xi − X̄)2/n

)n
2
(∑m

j=1(Yj − Ȳ )2/m
)m

2

{(∑n
i=1(Xi − μ̂)2 +

∑m
j=1(Yj − μ̂)2

)
/(n+m)

}n+m
2

.

Under the null hypothesis, the limiting distribution of the
test statistic Λn,m follows a uniform distribution on the in-
terval [0,1] when n and m are both large. While for finite n
and m, [42] proposed to approximate the exact distribution
of Λn,m by a beta distribution with the density function

f(x) =
Γ(p+ q)

Γ(p)Γ(q)
xp−1(1− x)q−1,

where p = −a(a2 − a + b)/b and q = (a − 1)(a2 − a + b)/b
with

a = E(Λn,m) =
( (n+m)n+m

nnmm

) 1
2 Γ( 2n−1

2 )Γ( 2m−1
2 )

Γ( 2(n+m)−1
2 )

×
Γ(n+m−1

2 )

Γ(n−1
2 )Γ(m−1

2 )

and

b = Var(Λn,m) =
(n+m)n+m

nnmm

Γ( 3n−1
2 )Γ( 3m−1

2 )

Γ( 3(n+m)−1
2 )

×
Γ(n+m−1

2 )

Γ(n−1
2 )Γ(m−1

2 )
− a2.

To name a few other popular methods for testing hy-
pothesis (1), [45] applied Fisher’s method to combine two
separated hypotheses: one is for the equality of two means
and the other is for the equality of two variances. Recently,
[4] proposed a test statistic based on the maximum likeli-
hood estimator of Weitzman’s overlapping coefficient. Note
that the Weitzman’s overlapping coefficient is defined as
Δ =

∫
min{f1(x), f2(x)}dx, where f1(x) and f2(x) are the

density functions of two normal distributions.

2.2 One-sample tests

In this section, we review the one-sample tests listed
in Table 1, including the one-sample mean tests, the one-
sample variance tests, and the equality tests of one normal
distribution with a reference distribution. Without loss of
generality, we assume that the second population is known.
All other notations and assumptions are the same as in Sec-
tion 2.1.

2.2.1 One-sample mean tests

The one-sample mean tests for hypothesis (4) are com-
monly introduced in elementary statistics textbooks, see, for
example, [14] and [57]. When σ2

1 = σ2
0 is known, the LRT

statistic is

Z
(III)
1 =

√
n(X̄ − μ0)

σ0
.

Under the null hypothesis, Z
(III)
1 follows a standard normal

distribution and the test leads to a Z-test.
When σ2

1 is unknown, the LRT statistic is given as

T
(III)
1 =

√
n(X̄ − μ0)

S1
.

Under the null hypothesis, T
(III)
1 follows a Student’s t distri-

bution with n− 1 degrees of freedom. This test is known as
the one-sample t-test. [33] and [34] further studied its power
and the type II error, respectively. For more tests of hypoth-
esis (4), one may refer to [64], [30], [16], and the references
therein.

2.2.2 One-sample variance tests

For the one-sample variance tests of hypothesis (5), the
LRT statistic is given as

χ
(IV)
1 =

(n− 1)S2
1

σ2
0

.

Under the null hypothesis, χ
(IV)
1 follows a chi-square distri-

bution with n− 1 degrees of freedom. This test is known as
the χ2-test.

Note that the usual (equal-tail) procedure for the above
χ2-test is to reject the null hypothesis at the significance
level of α if (n − 1)s21/σ

2
0 ≤ χ2

n−1,α/2 or (n − 1)s21/σ
2
0 ≥

χ2
n−1,1−α/2, where s

2
1 is the observed value of S2

1 and χ2
v,β is

the upper β percentile of the chi-square distribution with v
degrees of freedom. Nevertheless, such a procedure may lead
to a biased test ([26]). For more choices of the critical region
and the unbiased tests in the literature, one may refer to,
for example, [35], [17], [55], [47], [61] and [37].

2.2.3 Equality tests of one normal distribution with a refer-
ence distribution

In many practical situations, it is desired to make a de-
cision on the mean μ and the variance σ2 simultaneously,
e.g., in constructing the joint confidence intervals for μ and
σ2. This results in the K&S test in the bottom-right corner
of Table 1 ([25, 58]). For testing (6), many methods have
been developed in the literature. Among them, [2] proposed
an asymptotic LRT statistic as

χ
(KS)
1 =

(S2
1

σ2
0

)n/2

exp
{
− nS2

1

2σ2
0

−
∑n

i=1(Xi − μ0)
2

2σ2
0

}
.
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Under the null hypothesis, −2 logχ
(KS)
1 follows an asymp-

totic chi-square distribution with 2 degrees of freedom.
More recently, [11] revisited the exact LRT statistic as

T
(KS)
1 =

( e

n

)n/2

U
n/2
1 exp{−(U1 + U2)/2},

where U1 = nS2
1/σ

2
0 and U2 = n(X̄−μ0)

2/σ2
0 . They derived

the exact distribution of T
(KS)
1 and also reported the critical

values for the first time in the literature. For other tests of
the K&S hypothesis, one may refer to, for example, [66],
[65], [15], [52], [20], [67], [39], [22] and [40].

3. NEW DEVELOPMENTS

In this section, we consider the hypothesis testing prob-
lems with partial information known on the population
means and variances. The situation where one variance is
known was first studied in [31] in the framework of two-
sample mean tests. They developed a Welch type test statis-
tic to account for the information in the known variance,
and then proposed to approximate the null distribution by
Student’s t distribution. [43] further improved their approx-
imate null distribution by providing an unbiased estimator
for the degrees of freedom. To complete the puzzle, we pro-
pose some new LRT statistics for the unsolved testing prob-
lems presented in the bottom-left and top-right corners of
Table 1.

3.1 Likelihood ratio test with one mean
known

To our knowledge, there is little work in the literature on
testing equality of two normal distributions with one mean
known. Without loss of generality, we assume μ2 = μ0 is
known. In what follows, we develop an LRT statistic for
hypothesis (7):

H
(V)
0 : μ1 = μ0 and σ2

1 = σ2
2

versus H
(V)
1 : μ1 �= μ0 or σ2

1 �= σ2
2 .

We also derive its exact and approximate null distributions.

Under the null hypothesis H
(V)
0 , it is evident that μ1 =

μ2 = μ0 is known and σ2
1 = σ2

2 = σ2 is unknown. This yields
the likelihood function as

L(σ2|x, y) =
( 1

2πσ2

)n+m
2

exp
{
−

∑n
i=1(xi − μ0)

2

2σ2

−
∑m

j=1(yj − μ0)
2

2σ2

}
.

Accordingly, under H
(V)
0

⋃
H

(V)
1 , the likelihood function is

L(μ1, σ
2
1 , σ

2
2 |x, y) =

σ−n
1 σ−m

2

(2π)(n+m)/2
exp

{
−

∑n
i=1(xi − μ1)

2

2σ2
1

−
∑m

j=1(yj − μ0)
2

2σ2
2

}
.

By maximizing the above likelihood functions, we can de-
rive their maximum likelihood estimators (MLEs), respec-
tively. Further, we have the LRT statistic for hypothesis (7)
as

Λ1

=

{∑n
i=1(Xi − X̄)2/n

}n
2
{∑m

j=1(Yj − μ0)
2/m

}m
2

{(∑n
i=1(Xi − μ0)2 +

∑m
j=1(Yj − μ0)2

)
/(n+m)

}n+m
2

.

For an exact test for hypothesis (7), we need to derive
the exact distribution of Λ1 under the null hypothesis. In
Appendix A1, we show that for any λ > 0, the exact null
distribution of the test statistic Λ1 is

F (λ) = P (Λ1 ≤ λ) = 1− P (Λ1 > λ)

= 1−
∫ r2

r1

dw1

∫ 1−w1

λn/mnn/mm

(n+m)(n+m)/mw
n/m
1

f(w1, w2)dw2,

where r1 and r2 (r1 < r2) are the two roots of the function

g(w1) = 1 − w1 − λ2/mnn/mm

(n+m)(n+m)/mw
n/m
1

and f(w1, w2) is the

probability density function of the two-dimensional Dirichlet
distribution.

Apart from the exact test, we also propose an approxi-
mate null distribution for the test statistic. Following Pear-
son and Neyman (1930), for finite sample sizes, we approxi-
mate the null distribution of Λ1 as a beta distribution with
the probability density function

f(x, p1, q1) =
Γ(p1 + q1)

Γ(p1)Γ(q1)
xp1−1(1− x)q1−1,

where p1 = −a1(a
2
1−a1+ b1)/b1 > 0 and q1 = (a1−1)(a21−

a1+ b1)/b1 > 0 are the two parameters of the beta distribu-
tion, determined by matching the first two moments with

a1 = E(Λ1) =
(n+m)(n+m)/2

nn/2mm/2

Γ(n+m
2 )Γ( 2n−1

2 )Γ(m)

Γ(n−1
2 )Γ(m2 )Γ(n+m)

and

b1 = Var(Λ1) =
(n+m)(n+m)

nnmm

Γ(n+m
2 )Γ( 3n−1

2 )Γ( 3m2 )

Γ(n−1
2 )Γ(m2 )Γ(

3(n+m)
2 )

− a21.

Note that a smaller value of Λ1 supports the alternative

hypothesis H
(V)
1 . As a decision rule, we reject the null hy-

pothesis H
(V)
0 at the significance level α if p = F (λ1) < α

or p = Beta(λ1, p1, q1) < α, where λ1 is the observed value
of Λ1, F (λ1) is the distribution function of Λ1 evaluated at

λ1, and Beta(λ1, p1, q1) =
∫ λ1

0
f(x, p1, q1)dx.

3.2 Likelihood ratio test with one variance
known

As mentioned above, there is little work in the litera-
ture on testing equality of two normal distributions with
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one variance known. Assuming that σ2
2 = σ2

0 is known, we
are interested in testing the hypothesis:

H
(VI)
0 : μ1 = μ2 and σ2

1 = σ2
0

versus H
(VI)
1 : μ1 �= μ2 or σ2

1 �= σ2
0 .

We will propose an LRT statistic for this new hypothesis,
and derive its null distribution by the exact and approximate
methods, respectively.

Under the null hypothesis H
(VI)
0 , σ2

1 = σ2
2 = σ2

0 is known
and μ1 = μ2 = μ is unknown. This yields the likelihood
function as

L(μ|x, y) =
( 1

2πσ2
0

)n+m
2

exp
{
−

∑n
i=1(xi − μ)2

2σ2
0

−
∑m

j=1(yj − μ)2

2σ2
0

}
.

Correspondingly, under H
(VI)
0 ∪H

(VI)
1 , the likelihood func-

tion is

L(μ1, μ2, σ
2
1 |x, y) =

σ−n
1 σ−m

0

(2π)(n+m)/2
exp

{
−

∑n
i=1(xi − μ1)

2

2σ2
1

−
∑m

j=1(yj − μ2)
2

2σ2
0

}
.

By maximizing the above likelihood functions, we can
obtain the MLEs for the unknown parameters. Then by the
MLEs, the LRT statistic is given as

Λ2 =
{∑n

i=1(Xi − X̄)2

nσ2
0

}n
2

exp
{n

2

−
∑n

i=1(Xi − X̄)2 + n(X̄ − μ̂)2 +m(Ȳ − μ̂)2

2σ2
0

}
.

In Appendix A2, we show that, for any λ > 0, the exact null
distribution of Λ2 is

F (λ) = P (Λ2 ≤ λ) = 1− P (Λ2 > λ)

= 1−
∫ r2

r1

dt1

∫ n(1−logn)+n log t1−t1−2 log λ

0

f(t1, t2)dt2,

where r1 and r2 (r1 < r2) are the two roots of n(1 −
logn) + n log t1 − t1 − 2 log λ = 0 and f(t1, t2) =

t
(n−3)/2
1 t

−1/2
2 exp{−(t1 + t2)/2}/{Γ(n−1

2 )Γ( 12 )2
n/2}.

Apart from the exact null distribution, we also develop
an approximate null distribution for finite sample sizes. As
in Section 2.1, we approximate the null distribution of Λ2

as a beta distribution with the probability density function

f(x, p2, q2) =
Γ(p2 + q2)

Γ(p2)Γ(q2)
xp2−1(1− x)q2−1,

where p2 = −a2(a
2
2−a2+b2)/b2 > 0 and q2 = (a2 − 1)(a22−

a2+ b2)/b2 > 0 are the two parameters of the beta distribu-
tion with

a2 =
( e

2n

)n
2 Γ(n− 1

2 )

Γ(n−1
2 )

and

b2 = 3−
3n
2

(2e
n

)nΓ( 3n−1
2 )

Γ(n−1
2 )

− a22.

The null hypothesis H
(VI)
0 is rejected at the significance

level α if p = F (λ2) < α or p = Beta(λ2, p2, q2) < α,
where λ2 is the observed value of Λ2, F (λ2) is the distribu-
tion function of Λ2 evaluated at λ2, and Beta(λ2, p2, q2) =∫ λ2

0
f(x, p2, q2)dx.

4. SIMULATION STUDIES

4.1 The test with one mean known

To evaluate the performance of our proposed tests and
compare them with the P&N test, we consider two simu-
lation studies. One is to assess whether the proposed tests
are valid so that the type I errors are well controlled under
the significance level, and the other is to assess whether our
proposed tests are more powerful than the existing method.

To assess the type I error under various settings,
without loss of generality, we assume that the samples
X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym} are both in-
dependently generated from N(0, 1). We consider three
different combinations of the sample sizes: (n,m) =
(30, 10), (100, 100) and (300, 100), and three different sig-
nificance levels at α = 0.01, 0.05 and 0.1, respectively.

We repeat the simulation 10,000 times for each setting
and report their average type I errors in Table 2. From the
results, we note that our proposed test with the exact null
distribution provides the smallest type I errors in most set-
tings, no matter whether the sample sizes of two populations
are small or not. Overall, our proposed test with the exact
null distribution provides a more accurate control for the
type I error.

To assess the statistical power of the tests, we simulate
the samples X = {X1, . . . , Xn} independently from N(0, 1),
and Y = {Y1, . . . , Ym} independently from N(1, 1.52).
Other settings are kept the same as before. For each set-
ting, we repeat the simulation 10,000 times and report the
average power in Table 3. Simulation results indicate that
both of our tests are more powerful than the P&N test in
most settings. In particular, the proposed test with the exact
null distribution performs the best.

4.2 The test with one variance known

To evaluate the performance of the proposed test, we also
conduct two simulation studies where the first one is to as-
sess the type I errors and the second one is to assess the
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Table 2. Average type I errors of our proposed test with one
mean known under the exact null distribution (EX) and the

approximate null distribution (AP) and the P&N test.

Method Significance level α
0.1 0.05 0.01

n = 30,m = 10
EX 0.1009 0.0490 0.0104
AP 0.1031 0.0525 0.0107
P&N 0.1008 0.0499 0.0104

n = m = 100
EX 0.0985 0.0467 0.0094
AP 0.1014 0.0502 0.0115
P&N 0.1011 0.0504 0.0109

n = 300,m = 100
EX 0.0967 0.0490 0.0089
AP 0.0987 0.0492 0.0108
P&N 0.1033 0.0482 0.0092

Table 3. Average power of our proposed test with one mean
known under the exact null distribution (EX) and the
approximate null distribution (AP) and the P&N test.

Method Significance level α
0.1 0.05 0.01

n = 30,m = 10
EX 0.9994 0.9981 0.9848
AP 0.9982 0.9950 0.9732
P&N 0.6655 0.5687 0.3592

n = m = 100
EX 0.8230 0.6899 0.3455
AP 0.6959 0.5501 0.2660
P&N 0.4378 0.3228 0.1258

n = 300,m = 100
EX 0.9994 0.9981 0.9848
AP 0.9982 0.9950 0.9732
P&N 0.6655 0.5687 0.3592

Table 4. Average type I errors of our proposed test with one
variance known under the exact null distribution (EX) and the

approximate null distribution (AP) and the P&N test.

Method Significance level α
0.1 0.05 0.01

n = 30,m = 10
EX 0.0925 0.0413 0.0059
AP 0.1027 0.0532 0.0109
P&N 0.1008 0.0499 0.0104

n = m = 100
EX 0.0964 0.0446 0.0064
AP 0.1007 0.0486 0.0099
P&N 0.1011 0.0504 0.0109

n = 300,m = 100
EX 0.0430 0.0410 0.0395
AP 0.0699 0.0312 0.0060
P&N 0.1043 0.0498 0.0116

Table 5. Average power of our proposed test with one
variance known under the exact null distribution (EX) and the

approximate null distribution (AP) and the P&N test.

Method Significance level α
0.1 0.05 0.01

n = 30,m = 10
EX 0.9560 0.8993 0.6555
AP 0.9141 0.8449 0.6286
P&N 0.6655 0.5687 0.3592

n = m = 100
EX 0.9998 0.9997 0.9941
AP 0.9998 0.9996 0.9931
P&N 0.9563 0.9237 0.8087

n = 300,m = 100
EX 0.9222 0.9790 0.9934
AP 1.0000 1.0000 1.0000
P&N 0.9943 0.9907 0.9694

statistical power. We also compare them with the P&N test.
For the purpose of transparency, we follow the same simu-
lation settings as in Section 3.1. We repeat the simulation
10,000 times for each setting and report their average type
I errors and average power in Tables 4 and 5, respectively.

In comparison with the P&N test, our proposed test with
the exact null distribution provides the best control for the
type I errors in most settings. Meanwhile, our proposed test
method is more powerful than the P&N test in most set-
tings, no matter whether the exact null distribution or the
approximate null distribution is applied. In conclusion, our
proposed test with the exact null distribution provides the
best test for hypothesis (8).

5. CASE STUDIES

In this section, we consider two real data examples to
illustrate the applications of our proposed tests. One is
to determine whether a nutrient is effective in increasing
the height of five-year-old boys, which is from the website:
www.real-statistics.com. The other is to test whether there
is the difference in the batch viscosity resulting from the
process change, which is from [32]. The data has also been
used by [31] to interpret the application of two sample t-test
with one variance unknown.

Example 1. The data is from a survey to determine
whether some nutrient is effective in increasing the height of
five-year-old boys. The average height of five-year-old boys
in a certain country is known to be normally distributed
with mean 95 cm. A firm is selling a nutrient, which it claims
will significantly increase the height of children. In order to
demonstrate its claim, it selects 60 random samples of four-
year-old boys, half of whom are given the nutrient for one
year and half of whom are not. Given that the height of the
boys at the age of five is given as follows, determine whether
the nutrient is effective in increasing the height.
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Figure 1. The normal Q-Q plots and boxplots for the data
used in Example 1 and Example 2, respectively.

Nutrient: 106.18, 95.47, 117.51, 100.86, 108.66, 115.64,
129.85, 83.32, 97.22, 100.30, 117.64, 131.04, 87.56, 96.90,
101.58, 96.87, 66.46, 103.80, 112.57, 87.80, 111.99, 148.36,
115.52, 119.34, 131.62, 102.34, 95.10, 114.60, 97.01, 107.62;

Control: 82.67, 89.03, 109.13, 90.11, 94.51, 81.59, 89.20,
93.32, 94.99, 119.15, 89.26, 101.34, 83.01, 110.36, 104.82,
93.61, 92.52, 106.92, 88.42, 112.87, 80.50, 97.02, 64.05,
106.31, 126.11, 80.06, 85.46, 127.96, 74.13, 103.69.

We treat ‘Nutrient’ and ‘Control’ as the X and Y sam-
ples, respectively. From the Q-Q plots in the top panel of
Figure 1, the normality assumptions for both samples are
verified. As the data were randomly collected, we treat the
two samples are independent of each other. From the data,
we know that the true mean of the Y sample be known at
μ2 = μ0 = 95. Then by the test statistic Λ1, the observed
value of the test statistic is λ1 = 0.000446. This yields the p-
value of the exact test as F (λ1) = 0.00289, and the p-value of
the approximate test as Beta(λ1, 0.9666, 1.0000) = 0.00057,
respectively. For both tests, we reject the null hypothesis

H
(V)
0 at the significance level α = 0.05, that is, there is

significantly effective in the nutrient creasing the height of
five-year-old boys. Finally, we plot the boxplots of the two
samples in Figure 1 and that also supports our decision.

Example 2. A polymer is manufactured in a batch chem-
ical process. Viscosity measurements are normally made on
each batch, and long experience with the process has indi-

cated that the variability in the process is fairly stable with
σ = 20. Fifteen batch viscosity measurements are given as
follows (called ‘Viscosity before change’):

724, 718, 776, 760, 745, 759, 795, 756, 742, 740, 761, 749,
739, 747, 742.

A process change is made which involves switching the
type of catalyst used in the process. Following the process
change, eight batch viscosity measurements are taken (called
‘Viscosity after change’):

735, 775, 729, 755, 783, 760, 738, 780.

Based on the data, test whether there is the difference in
the batch viscosity resulting from the process change.

We treat ‘Viscosity after change’ and ‘Viscosity before
change’ as the X and Y samples, respectively. From the Q-
Q plots in the bottom panel of Figure 1, we do not see any
severe departure from the normality assumption for both
samples. Following the design, we can treat the two samples
as independence of each other. From the data example, we
know that the true variance of the sample Y is known at
σ2
2 = σ2 = 202. Then by the test statistic Λ2, the observed

value of the test statistic is λ2 = 0.7477. This yields the p-
value of the exact test as F (λ2) = 0.7668, and the p-value of
the approximate test as Beta(λ2, 0.8830, 0.9996) = 0.7734,
respectively. For both tests, we accept the null hypothesis

H
(VI)
0 at the significance level α = 0.05. That is, we conclude

that there is no significant difference in the batch viscosity
resulting from the process change.

6. CONCLUSION

In this paper, we proposed a unified framework of hypoth-
esis testing for two normal distributions from a very unique
perspective. The unified framework has integrated the ex-
isting literature by including most commonly used tests as
special cases. Following the unified framework, we compre-
hensively reviewed the one- and two-sample tests from the
likelihood ratio test perspective, including the one-sample
mean test, the one-sample variance test, the two-sample
mean test, the two-sample variance test, and the equality
test of one or two normal distributions. And more impor-
tantly, the unified framework has also put forward two new
hypothesis tests that are rarely studied in the literature.

To solve the new testing problems in the unified frame-
work, we proposed two likelihood ratio test statistics and
derived their exact and approximate null distributions. To
evaluate the finite sample performance of the proposed tests,
we also conducted two simulation studies to assess the type
I errors and the statistical power, and compared them with
the benchmark P&N test. Simulation results indicated that
our proposed tests perform better than the P&N test in a
wide range of settings, especially for the proposed likelihood
ratio tests with the exact null distribution. Finally, we also
applied our new tests to two real data examples to demon-
strate their usefulness in practice.
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Note that hypothesis (1) is only for testing equality of
two univariate normal populations. Statistically, our unified
framework can also be extended to the testing problem for
multivariate normal data. Assume that X and Y are two
independent random vectors from the multivariate normal
distributions Np(μ1,Σ1) and Np(μ2,Σ2) respectively, where
μ1 and μ2 are two p-dimensional mean vectors, and Σ1 and
Σ2 are two p × p covariance matrices. To test equality of
two multivariate normal distributions, it is then equivalent
to testing the hypothesis:

H0 : μ1 = μ2 and Σ1 = Σ2(10)

versus H1 : μ1 �= μ2 or Σ1 �= Σ2.

The likelihood ratio tests for this hypothesis have been pro-
posed by [60] and [44]. If the two covariance matrices are
assumed or known to be equal, then this leads to test equal-
ity of two mean vectors [6, 1]. If the two mean vectors are
assumed or known to be equal, it leads to test equality of
two covariance matrices [7, 56, 1]. If we further assume that
one mean vector is known or one covariance matrix is known,
then it yields two new testing problems for multivariate nor-
mal data as in Section 3, and which may deserve further
research.

APPENDIX A

The appendix is organized as follows. In Appendix A1, we
derive the LRT statistic and its exact null distribution for
hypothesis (7). In Appendix A2, we derive the LRT statistic
and its exact null distribution for hypothesis (8).

A.1 Likelihood ratio test with one mean
known

In this section, we consider an LRT for hypothesis (7).
The main result includes the following theorem.

Theorem A.1. Assume that the mean μ2 = μ0

is known. The likelihood ratio test statistic for testing

H
(V)
0 versus H

(V)
1 is given as

Λ1

=

{∑n
i=1(Xi − X̄)2/n

}n
2
{∑m

j=1(Yj − μ0)
2/m

}m
2

{(∑n
i=1(Xi − μ0)2 +

∑m
j=1(Yj − μ0)2

)
/(n+m)

}n+m
2

.

Furthermore, for any λ > 0, the exact null distribution of
Λ1 is denoted as

F (λ) = P (Λ1 ≤ λ) = 1− P (Λ1 > λ)

= 1−
∫ r2

r1

dw1

∫ 1−w1

λn/mnn/mm

(n+m)(n+m)/mw
n/m
1

f(w1, w2)dw2,

where r1 and r2 (r1 < r2) are the two roots of the function

g(w1) = 1 − w1 − λ2/mnn/mm

(n+m)(n+m)/mw
n/m
1

and f(w1, w2) is the

probability density function of the two-dimensional Dirichlet
distribution.

Proof. Let xi and yj be the observed values of the Xi and
Yj samples for i = 1, . . . , n and j = 1, . . . ,m, respectively.
Let x̄ and ȳ be observed values of the sample means X̄
and Ȳ , respectively. For the two independent samples, the
likelihood function is denoted as
L(μ1, μ2, σ

2
1 , σ

2
2 |x, y)

=

n∏
i=1

fX(xi)

m∏
j=1

fY (yj)

=
( 1

2πσ2
1

)n
2
( 1

2πσ2
2

)m
2

exp
{
−

∑n
i=1(xi − μ1)

2

2σ2
1

−
∑m

j=1(yj − μ2)
2

2σ2
2

}
,

where fX(x) and fY (y) are the density functions of the X
and Y samples, respectively. Note that

n∑
i=1

(xi − μ1)
2 =

n∑
i=1

(xi − x̄)2 + n(x̄− μ1)
2,

and

m∑
j=1

(yj − μ2)
2 =

m∑
j=1

(yj − ȳ)2 +m(ȳ − μ2)
2.

Under H
(V)
0 , μ1 = μ2 = μ0 is known and σ2

1 = σ2
2 = σ2

is unknown. This yields the likelihood function as

L(σ2|x, y) =
( 1

2πσ2

)n+m
2

exp
{
−

∑n
i=1(xi − μ0)

2

2σ2

−
∑m

j=1(yj − μ0)
2

2σ2

}
.

Taking the derivative of the log-likelihood function with re-
spect to σ2 and setting it to zero, we have

d

dσ2
logL(σ2|x, y) = −m+ n

2

1

σ2
+
{∑n

i=1(xi − μ0)
2

2

+

∑m
j=1(yj − μ0)

2

2

} 1

σ4
= 0

Then, we get

σ̂2 =

∑n
i=1(xi − μ0)

2 +
∑m

j=1(yj − μ0)
2

n+m
.

Note that σ̂2 makes the likelihood function achieve the max-
imum. Thus, we have

sup
H

(V)
0

L(σ̂2|x, y)(11)

=
( 1

2π

)n+m
2

exp(−n+m

2
)
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×
{ n+m∑n

i=1(xi − μ0)2 +
∑m

j=1(yj − μ0)2

}n+m
2

.

Under H
(V)
0 ∪H

(V)
1 , μ2 = μ0 is known, but μ1, σ

2
1 and σ2

2

are unknown. This yields the likelihood function as

L(μ1, σ
2
1 , σ

2
2 |x, y) =

σ−n
1 σ−m

2

(2π)(n+m)/2
exp

{
−

∑n
i=1(xi − μ1)

2

2σ2
1

−
∑m

j=1(yj − μ0)
2

2σ2
2

}
.

Taking the partial derivative of the log-likelihood function
with respect to each unknown parameter and setting it to
zero, we have

∂ logL(μ1, σ
2
1 , σ

2
2 |x, y)

∂μ1
=

∑n
i=1(xi − μ1)

σ2
1

= 0,

∂ logL(μ1, σ
2
1 , σ

2
2 |x, y)

∂σ2
1

= − n

2σ2
1

+

∑n
i=1(xi − μ1)

2

2σ4
1

= 0,

∂ logL(μ1, σ
2
1 , σ

2
2 |x, y)

∂σ2
2

= − m

2σ2
2

+

∑m
j=1(yj − μ0)

2

2σ4
2

= 0.

Thus, we obtain

μ̂1 =
1

n

n∑
i=1

xi = x̄,

σ̂2
1 =

1

n

n∑
i=1

(xi − x̄)2, σ̂2
2 =

1

m

m∑
j=1

(yj − μ0)
2.

Then, we have
sup

H
(V)
0 ∪H

(V)
1

L(μ̂1, σ̂
2
1 , σ̂

2
2 |x, y)

=
{ n

2π
∑n

i=1(xi − x̄)2

}n
2
{ m

2π
∑m

j=1(yj − μ0)2

}m
2

(12)

× exp
(
− n+m

2

)
.

Combined with (11) and (12), the LRT statistic is given
as

Λ1 =

sup
H

(V)
0

L(σ̂2|X,Y )

sup
H

(V)
0 ∪H

(V)
1

L(μ̂1, σ̂2
1 , σ̂

2
2 |X,Y )

=

{
1
n

∑n
i=1(Xi − X̄)2

}n
2
{

1
m

∑m
j=1(Yj − μ0)

2
}m

2

{
1

n+m

(∑n
i=1(Xi − μ0)2 +

∑m
j=1(Yj − μ0)2

)}n+m
2

.

In what follows, we study the exact null distribution
of Λ1. Note that

∑n
i=1(Xi − μ0)

2 +
∑m

j=1(Yj − μ0)
2 =∑n

i=1(Xi − X̄)2 +
∑m

j=1(Yj − μ0)
2 + n(X̄ − μ0)

2. Let U1 =∑n
i=1(Xi − X̄)2/σ2, U2 =

∑m
j=1(Yj − μ0)

2/σ2 and U3 =

n(X̄ − μ0)
2/σ2. Then, U1 ∼ χ2

n−1, U2 ∼ χ2
m, U3 ∼ χ2

1, and
U1, U2 and U3 are mutually independent. Thus, the LRT
statistic Λ1 is rewritten as

Λ1 =
(U1/n)

n
2 (U2/m)

m
2

{(U1 + U2 + U3)/(n+m)}n+m
2

.

Let W1 = U1

U1+U2+U3
, W2 = U2

U1+U2+U3
and W3 = U1 + U2 +

U3. Then, the test statistic Λ1 is further written as

Λ1 =
(n+m)

n+m
2

n
n
2 m

m
2

W
n
2
1 W

m
2

2 .

Following the mentioned above, we derive the joint density
function of U = (U1, U2, U3) as

fU (u1, u2, u3) =
1

2
n+m

2 Γ( 12 )Γ(
n−1
2 )Γ(m2 )

u
n−3
2

1 u
m
2 −1
2 u

− 1
2

3

× exp(−u1 + u2 + u3

2
).

Note that U1 = W1W3, U2 = W2W3 and U3 = (1 −
W1 − W2)W3. Then, the joint density function of W =
(W1,W2,W3) is

fW (w1, w2, w3)

= fU (u1, u2, u3) | J |
= fU (w1w3, w2w3, (1− w1 − w2)w3) | J |

=
Γ(n+m

2 )

Γ(n−1
2 )Γ(m2 )Γ(

1
2 )

w
n−3
2

1 w
m
2 −1
2 (1− w1 − w2)

− 1
2

× 1

2
n+m

2 Γ(n+m
2 )

w
n+m

2 −1
3 exp(−w3

2
),

where w1 > 0, w2 > 0, w3 > 0 and w1 + w2 < 1. There-
fore, (W1,W2) andW3 are independent, and (W1,W2) is dis-
tributed as the two-dimensional Dirichlet distribution with
the density function

f(w1, w2) =
Γ(n+m

2 )

Γ(n−1
2 )Γ(m2 )Γ(

1
2 )

w
n−3
2

1 w
m
2 −1
2 (1− w1 − w2)

− 1
2 .

Then, for any λ > 0, the exact null distribution of Λ1 is
denoted as

F (λ) = P (Λ1 ≤ λ) = 1− P (Λ1 > λ)

= 1−
∫ ∫

D1

f(w1, w2)dw1dw2

= 1−
∫ r2

r1

dw1

∫ 1−w1

λn/mnn/mm

(n+m)(n+m)/mw
n/m
1

f(w1, w2)dw2,

where D1 = {(w1, w2) : w1 > 0, w2 > 0, w1 + w2 <

1, (n+m)
n+m

2

n
n
2 m

m
2

w
n
2
1 w

m
2
2 > λ}, and r1 and r2 (r1 < r2) are the

two roots of the function g(w1) = 1−w1− λ2/mnn/mm

(n+m)(n+m)/mw
n/m
1

.

This completes the proof of theorem.

176 Y. Zhou et al.



A.2 Likelihood ratio test with one variance
known

In the section, we derive the LRT statistic and its exact
null distribution for hypothesis (8). The result is presented
in the following theorem.

Theorem A.2. Assume that the variance σ2
2 = σ2

0

is known. The likelihood ratio test statistic for testing

H
(VI)
0 versus H

(VI)
1 is given as

Λ2 =
{∑n

i=1(Xi − X̄)2

nσ2
0

}n
2

exp
{n

2

−
∑n

i=1(Xi − X̄)2 + n(X̄ − μ̂)2 +m(Ȳ − μ̂)2

2σ2
0

}
.

Furthermore, for any λ > 0, the exact null distribution of
Λ2 is denoted as

F (λ) = P (Λ2 ≤ λ) = 1− P (Λ2 > λ)

= 1−
∫ r2

r1

dt1

∫ n(1−logn)+n log t1−t1−2 log λ

0

f(t1, t2)dt2,

where r1 and r2 (r1 < r2) are the two roots of n(1 −
logn) + n log t1 − t1 − 2 log λ = 0 and f(t1, t2) =

t
(n−3)/2
1 t

−1/2
2 exp{−(t1 + t2)/2}/{Γ(n−1

2 )Γ( 12 )2
n/2}.

Proof. Under H
(VI)
0 , σ2

1 = σ2
2 = σ2

0 is known and μ1 = μ2 =
u is unknown. This yields the likelihood function as

L(μ|x, y) =
( 1

2πσ2
0

)n+m
2

exp
{
−

∑n
i=1(xi − μ)2

2σ2
0

−
∑m

j=1(yj − μ)2

2σ2
0

}
.

Let d
dμ logL(μ|x, y) = 0. Then, we get

μ̂ =
1

n+m

( n∑
i=1

xi +
m∑
j=1

yj

)
.

Note that μ̂ maximizes the likelihood function. Therefore,
we have
sup
H

(VI)
0

L(μ̂|x, y)

= exp
{
−

∑n
i=1(xi − μ̂)2

2σ2
0

−
∑m

j=1(yj − μ̂)2

2σ2
0

}
(13)

×
( 1

2πσ2
0

)n+m
2

.

Corresponding, under H
(VI)
0 ∪H

(VI)
1 , the likelihood func-

tion is

L(μ1, μ2, σ
2
1 |x, y) =

σ−n
1 σ−m

0

(2π)(n+m)/2
exp

{
−

∑n
i=1(xi − μ1)

2

2σ2
1

−
∑m

j=1(yj − μ2)
2

2σ2
0

}
.

Taking the partial derivative of the log-likelihood function
with respect to each unknown parameter and setting it to
be zero, we have

μ̂1 =
1

n

n∑
i=1

xi = x̄, μ̂2 =
1

m

m∑
j=1

yj = ȳ,

σ̂2
1 =

1

n

n∑
i=1

(xi − x̄)2.

Note that μ̂1, μ̂2 and σ̂2
1 make the likelihood function reach

the maximum. Hence, we have
sup

H
(VI)
0 ∪H

(VI)
1

L(μ̂1, μ̂2, σ̂
2
1 |x, y)

=
( 1

2π

)n+m
2

( 1

σ2
0

)m
2
{∑n

i=1(xi − x̄)2

n

}−n
2

(14)

exp
{
− n

2
−

∑m
j=1(yj − ȳ)2

2σ2
0

}
.

Combined with (13) and (14), the LRT statistic is de-
noted as

Λ2 =

sup
H

(VI)
0

L(μ̂|X,Y )

sup
H

(VI)
0 ∪H

(VI)
1

L(μ̂1, μ̂2, σ̂2
1 |X,Y )

= exp
{n

2
−

∑n
i=1(Xi−X̄)2 + n(X̄ − μ̂)2 +m(Ȳ − μ̂)2

2σ2
0

}

×
{∑n

i=1(Xi − X̄)2

nσ2
0

}n
2

.

Let T1 =
∑n

i=1(Xi − X̄)2/σ2
0 , T2 = (n(X̄ − μ̂)2 +m(Ȳ −

μ̂)2)/σ2
0 . Then, it is easy to confirm that T1 ∼ χ2

n−1, T2 ∼ χ2
1

and T1, T2 are mutually independent. Therefore, the joint
density function of (T1, T2) is denoted as

f(t1, t2) =
1

Γ(n−1
2 )Γ( 12 )2

n
2

t
n−3
2

1 t
− 1

2
2 exp(− t1 + t2

2
).

Meanwhile, the test statistic Λ2 is represented as

Λ2 =
( e

n

)n
2

T
n
2
1 exp(−T1 + T2

2
).

Then, for any λ > 0, the exact null distribution of Λ2 is

F (λ) = P (Λ2 ≤ λ) = 1− P (Λ2 > λ)

= 1−
∫ ∫

D2

f(t1, t2)dt1dt2

= 1−
∫ r2

r1

dt1

∫ n(1−logn)+n log t1−t1−2 log λ

0

f(t1, t2)dt2,
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where D2 = {(t1, t2) : t1 > 0, t2 > 0, ( e
n )

n/2t
n/2
1 ×

exp(− t1+t2
2 ) > λ}, and r1 and r2 (r1 < r2) are the two roots

of n(1 − log n) + n log t1 − t1 − 2 log λ = 0. This completes
the proof of theorem.

ACKNOWLEDGMENTS

The authors thank the editor, the associate editor, and
three reviewers for their constructive comments that have
led to a substantial improvement of the paper. Yuejin Zhou’s
research was supported in part by Natural Science Founda-
tion of Anhui (No. KJ2017A087), Doctoral Foundation of
Anhui University of Science and Technology (No. ZY514),
and National Natural Science Foundation of China (No.
61703005). Tiejun Tong’s research was supported in part
by Hong Kong Baptist University grants (FRG1/17-18/045,
FRG2/17-18/020, Century Club Sponsorship Scheme, and
Initiation Grant for Faculty Niche Research Areas), General
Research Fund (No. HKBU12303918), and National Natural
Science Foundation of China (No. 11671338).

Received 14 May 2019

REFERENCES

[1] Anderson, T. W. (2003). An introduction to multivariate statis-
tical analysis, 3rd Edition. John Wiley and Sons, Hoboken, New
Jersey. MR1990662

[2] Arnold, B. C. and Shavelle, R. M. (1998). Joint confidence sets
for the mean and variance of a normal distribution. The American
Statistican 52 133-140. MR1628439

[3] Bartlett, M. S. (1937). Properties of sufficiency and statistical
tests. Proceedings of the Royal Society, Series A 160 268-282.

[4] Bayoud, H. A. (2016). Testing the similarity of two normal pop-
ulations with application to the bioequivalence problem. Journal
of Applied Statistics 43 1322-1334. MR3473773

[5] Behrens, W. U. (1929). A contribution to error estimation with
few observations. Landwirtschaftliche Jahrbücher 68 807-837.
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