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Sampling high dimensional tables with
applications to assessing linkage disequilibrium∗

Robert D. Eisinger, Xiao Su, and Yuguo Chen
†,‡

We propose a sequential importance sampling strategy to
sample high dimensional tables with fixed one way margins.
The proposal distribution for the method is constructed by
adapting an approximation to the total number of tables
available in the literature. We apply the method to estimat-
ing the total number of tables and assessing linkage disequi-
librium in multimarker genetic data with the table repre-
senting haplotype count data. We demonstrate efficient and
accurate performance in these practical, real-world exam-
ples. The method may be applied in any situation in which
uniformly sampling high dimensional tables with fixed one
way margins is of interest. Detailed derivations are provided
in the appendix.
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1. INTRODUCTION

We are interested in the problem of sampling high dimen-
sional tables uniformly from the set of all possible tables
with fixed one way margins. This problem has a number
of applications, including assessing linkage disequilibrium in
multimarker genetic data. A marker site is represented by
one dimension of a high dimensional table and alleles at a
specific marker site are the rows of that margin. The one way
marginal sums represent the number of individuals that have
a specific allele at a given marker site. This marginal con-
tains no information about recombination between marker
sites, so we condition on the marginal sums when assessing
linkage disequilibrium. We employ volume measures, which
require us to sample high dimensional tables with fixed one
way margins uniformly from the set of all possible high di-
mensional tables. We are also interested in estimating the
total number of tables with fixed one way margins.

Several methods exist for these problems. A method for
exact enumeration of all tables consistent with general con-
straints for high dimensional tables has been provided in
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Dobra and Fienberg [5], and a general method for evaluat-
ing the number of tables fulfilling a general set of constraints
was provided in Barvinok [1]. Chen et al. [2] developed an
importance sampling method for this problem using a uni-
form proposal distribution for each cell and based on the
ideas of computational commutative algebra, however, this
method encounters difficulties when sampling large sparse
tables with fixed one way margins. Markov chain Monte
Carlo (MCMC) methods based on Diaconis and Sturmfels
[4] are possible, but it is often difficult to design irreducible
Markov chains in high dimensional cases, and they can take
a long time to explore the space of possible tables. Lazzeroni
and Lange [10] developed an MCMCmethod for testing link-
age and Hardy-Weinberg equilibrium in multidimensional
contingency tables.

We will employ the method of importance sampling to
sample contingency tables with fixed one way margins. Ta-
bles are sampled from a distribution that is close to uniform
and then the tables are weighted to correct for the bias.
This method allows for the estimation of both the num-
ber of tables and the distribution under the null hypothesis
of a uniform distribution for any test statistic of interest.
We leverage an approximation to the number of tables from
Good [8] to develop the proposal distribution for sequen-
tial importance sampling (SIS) and demonstrate that the
SIS procedure performs well in the task of estimating tables
and in genetic applications.

This paper is organized in the following way. Section 2
introduces the basics of SIS, with the proposal distribution
for SIS based on the approximation of Good [8] developed
in Section 2.2. Section 2.4 describes the problem of assess-
ing linkage disequilibrium in multimarker genetic data when
there are more than two alleles at each marker. Section 3
demonstrates results, including estimating the number of
tables and the volume measure for assessing linkage dise-
quilibrium. Section 4 provides concluding remarks.

2. MATERIALS AND METHODS

2.1 Sequential importance sampling

Denote by X = {X1, . . . , Xk}, a vector of k random vari-
ables cross-classified in a k dimensional table, T , where
Xi takes values in {1, . . . , Ii}. Let Σ denote the set of
all I1 × · · · × Ik tables T , with entries ti1...ik and with
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pre-specified one way marginal sums n
[ij ]
j , j = 1, . . . , k,

ij = 1, . . . , Ij , i.e.,∑
il:l �=j

ti1...ij−1ijij+1...ik = n
[ij ]
j ,

for j = 1, . . . , k, and ij = 1, . . . , Ij .

(1)

Denote by nj = {n[1]
j , . . . , n

[Ij ]
j } the set of one way margins

summing over all but dimension j. Let M =
I1∑
i=1

n
[i]
1 = · · · =

Ik∑
i=1

n
[i]
k be the overall table sum. Let π(T ) = 1/|Σ| be the

uniform distribution over Σ, where |Σ| is the total number
of tables with the specified dimension and marginal sums.

We are interested in estimating Eπ[f(T )], where f(T ) is
a function of table T (see an example of f in (19)). Sam-
pling from the uniform distribution π(T ) is difficult, but if a
high dimensional table, T , can be sampled from a proposal
distribution, q(·), that is easy to sample from and includes
Σ in its support, then Eπ[f(T )] can be estimated using the
weighted average,
(2)

μ̂ =

N∑
i=1

f(T )(π(Ti)/q(Ti))

N∑
i=1

(π(Ti)/q(Ti))

=

N∑
i=1

f(T )(1{Ti∈Σ}/q(Ti))

N∑
i=1

(1{Ti∈Σ}/q(Ti))

,

where T1, . . . , TN are independent, identically distributed
(iid) samples from q(T ), and π(Ti)/q(Ti) is the importance
weight.

Additionally, the total number of tables |Σ| can be writ-
ten as

(3) |Σ| =
∑
T∈Σ

1

q(T )
q(T ) = Eq

[
1{T∈Σ}
q(T )

]
,

and estimated using

(4) |̂Σ| = 1

N

N∑
i=1

1{Ti∈Σ}
q(Ti)

.

The efficiency of the estimator can be assessed using a
straightforward application of the Δ-method,

se(μ̂) ≈√
varq(

f(T )π(T )
q(T ) ) + μ2varq(

π(T )
q(T ) )− 2μcovq(

f(T )π(T )
q(T ) , π(T )

q(T ) )

N
,

(5)

or using the effective sample size, ESS = N/(1+cv2), where
the coefficient of variation (cv) is

(6) cv2 =
varq(π(T )/q(T ))

E2
q (π(T )/q(T ))

.

The effective sample size approximates how many iid sam-
ples are equivalent to the N weighted SIS samples. The cv2

is simply the χ2 distance between the target and proposal
distributions, where the sample version of cv2 is used to
evaluate the performance of SIS in practice.

2.2 Sampling high dimensional tables

Sampling tables from Σ is a high dimensional problem,
so the strategy is to decompose the table into lower dimen-
sional components and sample sequentially using a suitable
proposal distribution. Choosing a proposal distribution that
is close to our target distribution for each component will
result in an efficient procedure.

The proposal for an entire table q(T ) is constructed se-
quentially cell by cell,

q(T ) =q(t11...1)q(t21...1|t11...1) . . .
. . . q(tI1I2...Ik |t11...1, . . . , t(I1−1)I2...Ik).

(7)

The cell (1, 1, . . . , 1) is sampled first, conditional on the ob-
served table margins {n1,n2, . . . ,nk}. Then the margins are
updated and the cell (2, 1, . . . , 1) is sampled next, condi-
tional on the realization of the first cell. After the first cell
has been sampled, the margins n

[1]
j , j = 1, . . . , k, are up-

dated by subtracting the value of the sampled cell,

n
∗[1]
j = n

[1]
j − t11...1,

and the remaining margins are unchanged, so the updated

margins are n∗
j = {n∗[1]

j , n
[2]
j . . . , n

[Ij ]
j } for j = 1, . . . , k.

To motivate the development of the proposal distribution,
we begin by writing the true marginal distribution for the
first cell t11...1,

(8) p(t11...1 = a11...1) =
|Σ∗|
|Σ| ,

where Σ∗ denotes the number of tables with marginals
{n∗

1, . . . ,n
∗
k} and a structural zero in the first cell t11...1.

Both the numerator and denominator of this expression are
difficult to calculate, but Good [8] provided an approxima-
tion for high dimensional tables with fixed one way margins.

Good’s Approximation. [8] Let I [−j] =
∏

i:i �=j

Ii =

I1I2 · · · Ij−1Ij+1 · · · Ik. Then,

|Σ| ≈ ΔG ≡
I1∏

i1=1

(n[i1]
1 +I[−1]−1

n
[i1]
1

) I2∏
i2=1

(n[i2]
2 +I[−2]−1

n
[i2]
2

)
· · ·

IK∏
ik=1

(n[ik]

k +I[−k]−1

n
[ik]

k

)
(
M+I1I2×···×Ik−1Ik−1

M

)k−1
.

(9)

This approximation has an informative combinatorial in-
terpretation that will be used to our advantage to construct
the sequential importance sampling proposal. Here ΔG is
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the product of the number of ways to arrange each marginal
sum divided by the number of I1 × · · · × Ik tables with sum
M , k − 1 times. So in the uniform probability space on all
possible tables with table sum M , it is the product of the
probabilities that the jth marginal sum equals nj times the
total number of k dimensional tables with the prescribed
dimensions.

Using a similar approach as the one used to sample two
way tables [6], we will leverage this approximation to con-
struct our proposal distribution, denoted by SIS-G. The
derivation of this proposal is provided in the appendix.

Proposal 1. The proposal for the first cell t11...1, con-
structed based on the approximation of Good [8] to |Σ|, is

(10) q(t11...1 = a11...1) ∝

k∏
j=1

(n[1]
j −a11...1+I[−j]−2

n
[1]
j −a11...1

)
(
M−a11...1+I1×···×Ik−2

M−a11...1

)k−1
,

and the support of this distribution is the set of values that
the first cell of all tables in Σ can take.

The first cell will be sampled according to this distri-
bution using multinomial sampling with normalized prob-
abilities. The subsequent cells will be sampled in a similar
way, updating the margins and forcing the sampled entries
to be structural zeroes. The structural zeros are handled
in the approximation (10) by leveraging the combinatorial
interpretation, subtracting from I [−j] the number of cells
that have been sampled in the relevant margin. The prod-
uct I1×· · ·×Ik in the denominator is updated by subtracting
the total number of cells in the overall table that have al-
ready been sampled. More precisely, the cell ti1...ik will be
sampled according to

(11) q(ti1...ik = ai1...ik) ∝

k∏
j=1

(n∗[ij ]
j −ai1...ik

+I[−j]−S
[ij ]

j −1

n
∗[ij ]
j −ai1...ik

)
(M∗−ai1...ik

+I1×···×Ik−S−1
M∗−ai1...ik

)k−1
,

whereM∗ and n
∗[ij ]
j are the updated table sum and marginal

sums before sampling cell ti1...ik , S
[ij ]
j is the number of struc-

tural zeros in the ij-th layer of margin j, corresponding to
the total number of cells in the relevant layer that have al-
ready been sampled by the importance sampling procedure,
and S is the total number of cells in the overall table that
have already been sampled. Similar to the proposal for the
first cell, the support of the proposal (11) is the set of values
that the cell ti1...ik of all tables in Σ can take. We will show
in the next section that the proposal (11) is well-defined.

2.3 Calculation of bounds

Sampling by cell requires us to calculate a set of entries
to sample from that includes the support of the true con-
ditional distribution of the cell. This can be a difficult and

computationally intensive problem. In situations where the

support of the cells are intervals, the sequential interval

property is said to hold, and instead of calculating a set

of viable entries, we may calculate the true lower and up-

per bounds, sample an integer between these two values and

guarantee 100% valid entries.

Even when the support of the cells are not intervals, we

can still calculate the lower and upper bounds, extend the

support of the distribution in (10) to the interval determined

by the lower and upper bounds, and sample from the in-

terval between the two bounds using multinomial sampling

with normalized probabilities. Because the interval contains

invalid values for the cell when the sequential interval prop-

erty does not hold, the sampling may generate invalid tables.

Those invalid tables will receive zero importance weights

(because they are not in the support of π(T )) and will not

contribute to the importance sampling estimate. The sam-

pling procedure is still valid because importance sampling

allows the proposal distribution to have a larger support

than the target distribution π(T ).

In the case of two way tables with fixed row and col-

umn sums, the lower and upper bounds are easy to calcu-

late for each cell and the sequential interval property holds.

For higher dimensional tables, there is generally not an easy

way to calculate the bounds, and we must resort to more

computationally intensive methods. There are a number of

methods for calculating the lower and upper bounds for the

cell entries in high dimensional tables. The first of these is

integer programming, which always gives the exact integer

bounds, but is very slow to implement. Another method is

linear programming, implemented in the R package lpSolve.

This method must be implemented carefully, as it is possi-

ble for linear programming to return wider intervals than

the true bounds. Linear programming is computationally

intensive, but generally provides accurate results, generat-

ing 100% valid tables in each of the tables examined. We

suspect, based on this result and extensive testing of a wide

range of high dimensional tables with fixed one way margins,

that the sequential interval property holds in this situation.

The computation time of integer and linear programming,

along with empirical results in favor of the sequential inter-

val property, leads us to pursue a method that calculates

bounds for a cell extremely quickly. Although these bounds

may be wider than the true bounds and thus risk sampling

a value that does not correspond to a valid high dimen-

sional table, the gain in computational efficiency makes the

method attractive in practice.

These bounds will be developed by extending standard

bounds for high dimensional tables available in the litera-

ture. These are the Fréchet bounds for k-way tables with

fixed one way margins examined in [7, 9, 13, 15], and repro-

Sampling high dimensional tables with applications to assessing linkage disequilibrium 159



duced below for cell (i1, i2, . . . , ik),

max

(
0,

k∑
j=1

n
[ij ]
j −(k − 1)M

)
≤ ti1...ik ≤

min

(
n
[i1]
1 , n

[i2]
2 , . . . , n

[ik]
k

)
.

(12)

These bounds need to be extended to the case where a se-
quence of cells has already been sampled. If n

∗[ij ]
j denotes

the updated margin after sequentially sampling, and M∗

denotes the updated overall table sum, then a natural ex-
tension of the Fréchet bounds are

max

(
0,

k∑
j=1

n
∗[ij ]
j −(k − 1)M∗

)
≤ ti1...ik ≤

min

(
n
∗[i1]
1 , n

∗[i2]
2 . . . , n

∗[ik]
k

)
.

(13)

These bounds are denoted by [lf , uf ], and may be used in a
sequential importance sampling procedure, but will generate
a certain percentage of invalid tables. An additional, more
strict bound is obtained when iz = Iz for any z = 1, . . . , k,
the derivation of which is provided in the appendix. Com-
bining these two bounds yields the following general bounds
for ti1...ik ,
(14)

[l, u] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
max

(
0, n

∗[ik]
k −

∑
j �=k

Ij∑
i′j=ij+1

n
∗[i′j ]
j

)
, uf

]
,

if iz = Iz for any z = 1, . . . , k, or

n
∗[iz+1]
z = · · · = n

∗[Iz ]
z = 0, for any

z = 1, . . . , k,

[lf , uf ], otherwise.

Now we show that the proposal distribution (11) is
well-defined within the above bound [l, u]. For any integer
ai1...ik ∈ [l, u], we have

ai1...ik ≤ uf = min

(
n
∗[i1]
1 , n

∗[i2]
2 . . . , n

∗[ik]
k

)
≤ n

∗[ij ]
j

for j = 1, . . . , k.

(15)

Since S
[ij ]
j denotes the total number of cells that have al-

ready been sampled in the current layer of margin j, we

have S
[ij ]
j is at most I [−j] − 1. Therefore

n
∗[ij ]
j − ai1...ik + I [−j] − S

[ij ]
j − 1 ≥ n

∗[ij ]
j − ai1...ik

for j = 1, . . . , k.
(16)

Combining (15) and (16) together we have(
n
∗[ij ]
j − ai1...ik + I [−j] − S

[ij ]
j − 1

n
∗[ij ]
j − ai1...ik

)
> 0 for j = 1, . . . , k,

which means the binomial coefficients in the numerator of
the right hand side of (11) are strictly positive. Similarly, we
can also show that the binomial coefficient in the denomina-
tor of the right hand side of (11) is also positive. Thus, the
proposal distribution (11) is well-defined within the above
bound [l, u].

These bounds (14) may be wider than the true bounds
and thus generate a small percentage of invalid tables, but
the gain in method efficiency over other methods of cal-
culating bounds is dramatic, especially for large, high di-
mensional tables. Extensive simulations indicate that the
adapted bounds described in (14) are generally 2 to 3 times
more efficient than competing methods. The difference in
computation becomes even larger as the dimension of the
table increases, and for extremely large tables, linear pro-
gramming takes too much time to run in practice. Unless
otherwise stated, the bounds in (14) will be used for sam-
pling and the percentage of invalid tables will be reported
as necessary.

2.4 Linkage disequilibrium

Linkage disequilibrium refers to the association between
quantitative random variables corresponding to alleles at
different loci on a chromosome. We say the loci are in link-
age disequilibrium if the observed frequency of a particular
combination of alleles is different from the expected for ran-
dom association. Measuring linkage disequilibrium assists in
testing genetic hypotheses, mapping the genome and under-
standing genome structure. A number of measures exist for
assessing linkage disequilibrium for pairs of biallelic markers
(markers with only two possible alleles at a specific locus),
and several of these measures have been extended to as-
sess linkage disequilibrium for pairs of multiallelic markers
[3, 12]. Chen et al. [3] extended methods for assessing linkage
disequilibrium in biallelic markers to the multiallelic marker
case using volume measures. We will extend this method fur-
ther to encompass the case where there are more than two
multiallelic markers.

The basic idea of volume measure is that given some
quantity that measures the divergence between the observed
table S and the table expected under linkage equilibrium, a
volume measure is defined as the proportion of tables T ∈ Σ
that lead to a smaller divergence value. The volume mea-
sure will be zero if all other tables have larger divergences,
and the volume measure will be close to one if the observed
divergence is the largest possible [14].

We first give a brief discussion of linkage disequilibrium
for two markers where each marker can take one of two
possible alleles, following Chen et al. [3]. The haplotype dis-
tribution, ρ, of two markers with alleles {A, a} and {B, b}
is

B b
A x p− x p
a q − x 1− p− q + x 1− p

q 1− q 1

.
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If the marginals are fixed, ρ is determined by the proba-
bility x, and the magnitude of the disparity between ρ and
linkage equilibrium can be quantified by x − pq. Various
standardized measures of this quantity have been proposed
and examined, such as

D = x− pq and r2 =
D2

pq(1− p)(1− q)
.

Generally, these measures of linkage disequilibrium are de-
fined on ρ, but this population distribution is usually un-
known. A practical and effective solution to this problem
that also allows us to examine multiple markers with more
than two alleles at each polymorphic site is provided by vol-
ume measures [3]. Volume measures naturally account for
sample size, have a simple intuitive interpretation and can
be readily applied to this situation [14].

To apply volume measures, we evaluate the total num-
ber of tables out of all possible tables with fixed margins
that have a smaller divergence from linkage equilibrium than
what was observed. Since ρ is unknown, volume measures
are defined on the sample haplotype data, and we evaluate
the proportion of high dimensional tables that have a lower
level of divergence than what was observed in our data. The
one way margins are fixed because this quantity corresponds
to the total number of individuals that have a specific allele
at a given marker site. This quantity provides no informa-
tion about the amount of recombination, so we condition
on these marginals [14]. If all other tables have larger diver-
gences, the volume measure will be zero, and if the observed
divergence is one of the largest possible, the volume measure
will be near one.

The volume measure Mvol was defined for pairs of mark-
ers in Chen et al. [3], and can be readily extended to the
case where there are more than two markers. Mvol is

(17) Mvol(S ) =
1

|Σ|
∑
T∈Σ

1{M(T )<M(S)},

where

(18) M (T ) =
∑

i1,...,ik

(ti1...ik −
k∏

j=1

n
[ij ]
j /Mk−1)2

k∏
j=1

n
[ij ]
j /Mk−1

,

and M is the table sum and k is the dimension of the table.
If all markers with multiple alleles are independent (link-

age equilibrium), then the divergence M(S) for the observed
table S tends to be small, which will lead to a volume mea-
sure Mvol(S) that is close to 0. If there is strong linkage dis-
equilibrium among all markers, the divergence M(S) tends
to be large, which will lead to a volume measure Mvol(S)
that is close to 1. In the case of two way tables, the volume
measure Mvol is one minus the p-value for the χ2 test of
independence.

Similar to the traditional linkage disequilibrium measure
r2, the volume measure Mvol also takes values between 0
and 1, with larger values indicating strong linkage disequilib-
rium. However, unlike D and r2, the volume measure Mvol
does not require the knowledge of the population haplotype
distribution ρ (which is usually unknown). In addition, the
extended version of Mvol can handle multiple markers with
multiple alleles at each polymorphic site, which is more gen-
eral than D and r2.

However, assessing Mvol requires examining all tables in

Σ, the set of all I1 × · · · × Ik tables with margins n
[ij ]
j ,

j = 1, . . . , k, and ij = 1, . . . , Ij . This is generally not feasi-
ble, so instead we use our proposal SIS-G to sample tables
T1, . . . , TN from Σ, assign each sampled table an importance
weight, and estimate Mvol by (2) with

(19) f(T ) = 1{M(T )<M(S)}.

Results for assessing linkage disequilibrium for real genetic
data is provided in Section 3.2.

3. NUMERICAL RESULTS

3.1 Estimating the number of tables

The number of high dimensional tables with fixed one way
margins is difficult to calculate, and exhaustive enumeration
is generally infeasible. The sequential sampling algorithm
proposed in Section 2 can be used to estimate |Σ|. In all
examples in this section, we sample high dimensional tables
cell by cell as illustrated in (7). For each cell ti1...ik , we first
calculate the lower and upper bounds for that cell using (14),
and then sample a value for that cell from the proposal dis-
tribution based on Good’s approximation in (10). We keep
track of the sampling probability for each cell to compute
the proposal q(T ) after the whole table T is sampled. Fi-
nally |Σ| can be estimated using (4). We demonstrate the
performance in a few examples. All simulation was done on
a MacBook Pro with a 2.6 GHz processor with coding per-
formed in R.

First, we examine some small high dimensional tables
with equal margins. The first is a 3×3×3 table with all one
way margins equal to 3, and the second is a 3× 3× 3 table
with all one way margins equal to 20. We also examine a
3× 3× 5 table with all one way margins equal to 30 or 50.
The simulation results based on 1,000 importance samples
are presented in Table 1. The number following the ± sign
denotes the standard error. The estimated number of tables
are close to the true number of tables for the first two ex-
amples, which are 22,620 and 642,635,414,923,248, respec-
tively, calculated using LattE [1]. However LattE is much
slower than the sequential sampling algorithm. For the third
example, it is not feasible to calculate the true number of
tables using LattE, but SIS-G can give an estimate in a few
seconds.
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Table 1. Results for estimating the number of small high
dimensional tables

Estimated number of tables cv2 Time (sec)

3× 3× 3 table with margins = 3
(2.2259± 0.0474)× 104 0.4548 0.7

3× 3× 3 table with margins = 20
(6.5931± 0.1827)× 1014 0.7728 1.0

3× 3× 5 table with margins = 30, 50
(5.3472± 0.1643)× 1032 0.9444 1.8

Table 1 also shows that the cv2 is smaller than 1 for all
three tables, which indicates that the proposal distribution
is quite close to the target uniform distribution in terms of
the χ2 distance. It also implies that the effective sample size
of the 1,000 importance samples is quite large. For example,
the cv2 of the first table is 0.4548, so the effective sample
size is about 1000/(1 + 0.4548) ≈ 687, which means the
1, 000 importance samples from the proposal distribution
are roughly equivalent to 687 iid samples from the target
distribution. The percentage of valid tables is 100% for all
three tables.

We also examined a few more challenging high dimen-
sional tables. They are a 5 × 5 × 5 × 5 table with mar-
gins {4, 4, 3, 1, 2}, {4, 3, 3, 2, 2}, {4, 3, 3, 2, 2}, {1, 1, 2, 4, 6}, a
3 × 3 × 3 × 3 × 2 × 2 × 2 × 2 table with margins {11, 3, 2},
{8, 4, 4}, {8, 4, 4}, {8, 4, 4}, {9, 7}, {9, 7}, {8, 8}, {11, 5}, a
5×3×3×4×3×2 table with margins {2, 2, 2, 2, 2}, {3, 3, 4},
{2, 4, 4}, {3, 3, 3, 1}, {2, 4, 4}, {5, 5}, and finally an eight-
dimensional 2× 2× 2× 2× 2× 2× 3× 2 table with margins
{10, 10}, {7, 13}, {12, 8}, {9, 11}, {10, 10}, {8, 12}, {6, 7, 7},
{6, 14}. The simulation results based on 1, 000 importance
samples are presented in Table 2.

Table 2. Results for estimating the number of challenging
high dimensional tables

Estimated number of tables cv2 Time (sec)

5× 5× 5× 5 table
(2.5223± 0.1132)× 1017 2.0129 14.7

3× 3× 3× 3× 2× 2× 2× 2 table
(1.3323± 0.0696)× 1025 2.7256 43.7

5× 3× 3× 4× 3× 2 table
(5.2420± 0.1818)× 1015 1.8006 32.9

2× 2× 2× 2× 2× 2× 3× 2 table
(2.2704± 0.1046)× 1025 2.1241 15.8

We continue to observe in Table 2 that the number of
tables are estimated well based on the standard error and
the cv2. The sequential sampling algorithm can obtain the
estimate in less than a minute in all cases, while it is not
feasible to use LattE to calculate the true number of tables
with these margins. The percentage of valid tables is 100%
for all four high dimensional tables.

3.2 Linkage disequilibrium

We apply the volume measures described in Section 2.4 to
assess linkage disequilibrium for multimarker genetic data.
The data are 157 phase-known non-transmitted chromo-
somes 2 of parents of BP-I persons from Costa Rica’s Central
Valley. The chromosomes were genotyped with 85 mark-
ers [11]. We examine all possible sets of marker triplets
for the first ten markers along the chromosome, and use
Mvol to evaluate the level of disequilibrium among these
marker triplets. For convenience, we denote the ten markers
by {1, 2, . . . , 10}, and denote the number of different ob-
served alleles at marker j by Ij , j = 1, . . . , 10. For a marker
triplet (i, j, h), we compute the volume measure Mvol for
the Ii × Ij × Ih contingency table using (17).

Representing the volume measures for all marker triplets
(i, j, h) would require a 3 dimensional figure, which is not
easy to display. Instead, in Figure 1, we present each slice
of the 3 dimensional figure which corresponds to the volume
measures of marker triplets (i, j, h) with h fixed. So the x-
axis represents the index for marker i, the y-axis represents
the index for marker j, and the title of the plot represents
the index of marker h. For example, the value with x-axis
equal to 6 and y-axis equal to 3 in plot 5 denotes the volume
measure for marker triplet (6, 3, 5). Note that in plot h, the
value h does not appear in the x-axis and y-axis because we
are considering three different markers. Also in each plot,
we did not compute the volume measures for the diagonal
because they correspond to i = j. We only presented nine
plots because the volume measure for triplet (i, j, 10) is the
same as the volume measure for (10, i, j) which is already
reported in the first nine plots.

For all sets of three markers, we used 1, 000 importance
samples which took less than an hour. In the course of sam-
pling, no invalid tables were generated. These results in Fig-
ure 1 indicate marker triplets that have high levels of Mvol,
suggesting dependency and linkage disequilibrium. The re-
sults are consistent with previous analyses of these data [3],
and also identify additional regions with high levels of link-
age disequilibrium, suggesting high levels of recombination
and a larger distance between the marker sites [14].

4. DISCUSSION

We have developed a sequential importance sampling
strategy for sampling high dimensional tables with fixed
one way margins based on an approximation of Good [8].
Applications to estimating the number of tables and assess-
ing linkage disequilibrium have been examined and effective
performance has been demonstrated.

The table may be sampled in any order. The best per-
formance is usually obtained by first arranging the dimen-
sion size in decreasing order, and then ordering the marginal
sums from the highest to lowest in each dimension. This or-
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Figure 1. Measures of linkage disequilibrium using Mvol between all possible multiallelic marker triplets for ten markers. The
markers are denoted by {1, 2, . . . , 10}. The x-axis represents the index for marker i, the y-axis represents the index for marker
j, and the title of the plot represents the index of marker h. So the value with x-axis equal to i and y-axis equal to j in plot h

denotes the volume measure for marker triplet (i, j, h).

dering has the advantage of often resulting in a relatively

small cv2 and standard error. The ordering may also affect

the percentage of invalid tables. We obtained 100% valid

tables in all simulation studies. In the case of the genetic

data described in Section 3.2, there were no invalid tables

generated when the marginal sums are arranged in increas-

ing order. If the columns are arranged in decreasing order,

the percentage of invalid tables can be greater than zero,

but is generally very small. Further research on the effect of

ordering will be useful.

APPENDIX A

A.1 Derivation of Proposal 1

Recall the approximation to |Σ| is

|Σ| ≈ ΔG ≡
I1∏

i1=1

(n[i1]
1 +I[−1]−1

n
[i1]
1

) I2∏
i2=1

(n[i2]
2 +I[−2]−1

n
[i2]
2

)
· · ·

Ik∏
ik=1

(n[ik]

k +I[−k]−1

n
[ik]

k

)
(
M+I1I2×···×Ik−1Ik−1

M

)k−1
.

(20)

The approximation to |Σ∗| is obtained by using the combi-

natorial interpretation of ΔG. The new margins are given by

n∗
j , and instead of I [−1] places for the margin with sum n

[i]
j ,

there are now I [−1]− 1. So a natural approximation ΔG∗ to

|Σ∗| is
(21)

|Σ∗| ≈ ΔG∗ ≡

k∏
j=1

(n[1]
j −a11...1+I[−j]−2

n
[1]
j −a11...1

) k∏
j=1

Ij∏
i=2

(n[i]
j +I[−j]−1

n
[i]
j

)
(
M−a11...1+I1×···×Ik−2

M−a11...1

)k−1
.
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Consequently, our proposal for the first cell is

(22)

q(t11...1 = a11...1) ∝
ΔG∗

ΔG
∝

k∏
j=1

(n[1]
j −a11...1+I[−j]−2

n
[1]
j −a11...1

)
(
M−a11...1+I1×···×Ik−2

M−a11...1

)k−1
.

A.2 Derivation of bounds

Recall Σ is the set of all k dimensional tables with dimen-

sions I1 × · · · × Ik and one way margins n
[ij ]
j , j = 1, . . . , k,

ij = 1, . . . , Ij , and nj = {n[1]
j , . . . , n

[Ij ]
j }. Also recall M∗ and

n
∗[ij ]
j are the updated table sum and marginal sums after

sampling up to cell (i1, . . . , ik).

We define Ĩj = max{1 ≤ i′j ≤ Ij : n
∗[i′j ]
j > 0}. If any

ij ≥ Ĩj , the lower bound in (13) can be made more strict.

For the case ij > Ĩj , then n
∗[̃ij ]
j = 0, which indicates that

the upper bound uf in (13) is 0, so ti1...ik has to be 0.

For the case ij = Ĩj , we are interested in calculating

bounds for the cell (i1, . . . , Ĩj , . . . , ik). There are k− 1 addi-

tional lower bounds, the first of which is obtained consider-

ing the remaining marginal sum to be sampled in the first

dimension with index i1, n
∗[i1]
1 ,

n
∗[i1]
1 =

Ik∑
i′k=ik+1

Ik−1∑
i′k−1=1

· · ·
I2∑

i′2=1

ti1i′2...i′k

+

Ik−1∑
i′k−1=ik−1+1

Ik−2∑
i′k−2=1

· · ·
I2∑

i′2=1

ti1i′2...i′k−1ik
+

...

+

Ij+1∑
i′j+1=ij+1+1

Ij∑
i′j=1

· · ·
I2∑

i′2=1

ti1i′2...i′j+1ij+2...ik

+

Ij∑
i′j=Ĩj+1

Ij−1∑
i′j−1=1

· · ·
I2∑

i′2=1

ti1i′2...i′jij+1...ik

+

Ij−1∑
i′j−1=ij−1+1

Ij−2∑
i′j−2=1

· · ·
I2∑

i′2=1

ti1i′2...i′j−1Ĩj ...ik
+

...

+

I2∑
i′2=i2+1

ti1i′2i3...ik + ti1...ik .(23)

Since n
∗[i′j ]
j = 0 for i′j = Ĩj + 1, . . . , Ij , we have

Ij∑
i′j=Ĩj+1

Ij−1∑
i′j−1=1

· · ·
I2∑

i′2=1

ti1i′2...i′jij+1...ik = 0. When i′k > ik, we

have

n
∗[i′k]
k =

I1∑
i′1=1

I2∑
i′2=1

· · ·
Ik−1∑

i′k−1=1

ti′1...i′k−1i
′
k

=
∑
i′1 �=i1

I2∑
i′2=1

· · ·
Ik−1∑

i′k−1=1

ti′1i′2...i′k−1i
′
k
+

I2∑
i′2=1

· · ·
Ik−1∑

i′k−1=1

ti1i′2...i′k−1i
′
k
,

so

(24)

I2∑
i′2=1

· · ·
Ik−1∑

i′k−1=1

ti1i′2...i′k−1i
′
k
≤ n

∗[i′k]
k .

The first component on the right hand side of (23) can be
bounded above using (24),

(25)

Ik∑
i′k=ik+1

Ik−1∑
i′k−1=1

· · ·
I2∑

i′2=1

ti1i′2...i′k ≤
Ik∑

i′k=ik+1

n
∗[i′k]
k .

Employing a very similar approach for the remaining terms
of (23) yields

n
∗[i1]
1 ≤

Ik∑
i′k=ik+1

n
∗[i′k]
k + · · ·+

Ij+1∑
i′j+1=ij+1+1

n
∗[i′j+1]

j+1

+

Ij∑
i′j=Ĩj+1

n
∗[i′j ]
j +

Ij−1∑
i′j−1=ij−1+1

n
∗[i′j−1]

j−1 + . . .

+

I2∑
i′2=i2+1

n
∗[i′2]
2 + ti1...ik .

From the definition of Ĩj , we have
Ij∑

i′j=Ĩj+1

n
∗[i′j ]
j = 0. So a

lower bound for ti1...ik is

n
∗[i1]
1 −

Ik∑
i′k=ik+1

n
∗[i′k]
k − · · · −

Ij+1∑
i′j+1=ij+1+1

n
∗[i′j+1]

j+1 −

Ij−1∑
i′j−1=ij−1+1

n
∗[i′j−1]

j−1 − · · · −
I2∑

i′2=i2+1

n
∗[i′2]
2 ≤ ti1...ik .

A similar procedure may be used to obtain
bounds based on the remaining marginal sums for

{n∗[i2]
2 , . . . , n

∗[ij−1]
j−1 , n

∗[ij+1]
j+1 , . . . , n

∗[ik]
k }. There are k − 1 of

these bounds in total:

n
∗[i1]
1 −

I2∑
i′2=i2+1

n
∗[i′2]
2 − · · · −

Ij−1∑
i′j−1=ij−1+1

n
∗[i′j−1]

j−1 −
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Ij+1∑
i′j+1=ij+1+1

n
∗[i′j+1]

j+1 − · · · −
Ik∑

i′k=ik+1

n
∗[i′k]
k ,

n
∗[i2]
2 −

I1∑
i′1=i1+1

n
∗[i′1]
1 − · · · −

Ij−1∑
i′j−1=ij−1+1

n
∗[i′j−1]

j−1 −

Ij+1∑
i′j+1=ij+1+1

n
∗[i′j+1]

j+1 − · · · −
Ik∑

i′k=ik+1

n
∗[i′k]
k ,

...

n
∗[ij−1]
j−1 −

I1∑
i′1=i1+1

n
∗[i′1]
1 − · · · −

Ij−2∑
i′j−2=ij−2+1

n
∗[i′j−2]

j−2 −

Ij+1∑
i′j+1=ij+1+1

n
∗[i′j+1]

j+1 − · · · −
Ik∑

i′k=ik+1

n
∗[i′k]
k ,

n
∗[ij+1]
j+1 −

I1∑
i′1=i1+1

n
∗[i′1]
1 − · · · −

Ij−1∑
i′j−1=ij−1+1

n
∗[i′j−1]

j−1 −

Ij+2∑
i′j+2=ij+2+1

n
∗[i′j+2]

j+2 − · · · −
Ik∑

i′k=ik+1

n
∗[i′k]
k ,

...

n
∗[ik]
k −

I1∑
i′1=i1+1

n
∗[i′1]
1 − · · · −

Ij−1∑
i′j−1=ij−1+1

n
∗[i′j−1]

j−1 −

Ij+1∑
i′j+1=ij+1+1

n
∗[i′j+1]

j+1 − · · · −
Ik−1∑

i′k−1=ik−1+1

n
∗[i′k−1]

k−1 ,(26)

which can be written more concisely as

n∗[iz ]
z −

∑
m �=j,z

Im∑
i′m=im+1

n
∗[i′m]
m

for z = 1, . . . , j − 1, j + 1, . . . , k.

Next we show that the last one of these bounds (26),

denoted by l, is the sharpest. Note that M∗ =
Ik∑

i′k=ik

n
∗[i′k]
k .

Since M∗ =
Iz∑

i′z=1

n
∗[i′z ]
z , we know M∗ ≥

Iz∑
i′z=iz

n
∗[i′z ]
z for all z,

so
Ik∑

i′k=ik

n
∗[i′k]
k ≥

Iz∑
i′z=iz

n
∗[i′z ]
z , and rearranging yields

(27)

n
∗[ik]
k −

∑
m �=j,k

Im∑
i′m=im+1

n
∗[i′m]
m ≥ n∗[iz ]

z −
∑

m �=j,z

Im∑
i′m=im+1

n
∗[i′m]
m .

So when ij = Ĩj , the sharpest lower bound is n
∗[ik]
k −

∑
m �=j,k

Im∑
i′m=im+1

n
∗[i′m]
m . If we are currently sampling ik =

Ĩk, then the sharpest lower bound is given by n
∗[ik−1]
k−1 −∑

m �=j,k−1

Im∑
i′m=im+1

n
∗[i′m]
m . If ip = Ĩp for more than one p, the

bound will be the same since summing over any dimension
in which ip = Ĩp, will not contribute anything to the sum-

mation
∑

m �=j,k

Im∑
i′m=im+1

n
∗[i′m]
m .

Next, we show that l ≥ lf , so when ij = Ĩj , the Fréchet
bound is not as strict as l. Recall

l = n
∗[ik]
k −

I1∑
i′1=i1+1

n
∗[i′1]
1 − · · · −

Ij−1∑
i′j−1=ii−1+1

n
∗[i′j−1]

j−1 −

Ij+1∑
i′j+1=ij+1+1

n
∗[i′j+1]

j+1 − · · · −
Ik−1∑

i′k−1=ik−1+1

n
∗[i′k−1]

k−1 .

Since
Iz∑

i′z=iz

n
∗[i′z ]
z ≤ M∗ and n

∗[ij ]
j ≤ M∗ we have

I1∑
i′1=i1

n
∗[i′1]
1 + · · ·+

Ij−1∑
i′j−1=ij−1

n
∗[i′j−1]

j−1 + n
∗[ij ]
j +

Ij+1∑
i′j+1=ij+1

n
∗[i′j+1]

j+1 + · · ·+
Ik−1∑

i′k−1=ik−1

n
∗[i′k−1]

k−1 ≤ (k − 1)M∗.

That means

I1∑
i′1=i1+1

n
∗[i′1]
1 + · · ·+

Ij−1∑
i′j−1=ij−1+1

n
∗[i′j−1]

j−1

+

Ij+1∑
i′j+1=ij+1+1

n
∗[i′j+1]

j+1 + · · ·+
Ik−1∑

i′k−1=ik−1+1

n
∗[i′k−1]

k−1

≤(k − 1)M∗ − n
∗[i1]
1 − n

∗[i2]
2 − · · · − n

∗[ik−1]
k−1 ,

which leads to

n
∗[ik]
k −

I1∑
i′1=i1+1

n
∗[i′1]
1 − · · · −

Ij−1∑
i′j−1=ij−1+1

n
∗[i′j−1]

j−1

−
Ij+1∑

i′j+1=ij+1+1

n
∗[i′j+1]

j+1 − · · · −
Ik−1∑

i′k−1=ik−1+1

n
∗[i′k−1]

k−1

≥n
∗[i1]
1 + n

∗[i2]
2 + · · ·+ n

∗[ik]
k − (k − 1)M∗.

Therefore l ≥ lf . Putting these together yields the bounds
in (14).
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