
Statistics and Its Interface Volume 13 (2020) 151–156

Bi-level variable selection in high dimensional
Tobit models∗

Hailin Huang, Jizi Shangguan, Yuanzhang Li, and Hua Liang
†

To study variable selection for high dimensional Tobit
models, we formulate Tobit models to single-index mod-
els. We hybrid group variable selection procedures for sin-
gle index models and univariate regression methods for To-
bit models to achieve variable selection for Tobit models
with group structures taken into consideration. The proce-
dure is computationally efficient and easily implemented.
Finite sample experiments show its promising performance.
We also illustrate its utility by analyzing a dataset from an
HIV/AIDS study.
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1. INTRODUCTION

With advances in high throughput technologies, many
medical studies are complemented with information about
biomarkers of each patient. Identification of important
biomarkers can lead to better understanding of the mecha-
nism behind disease development, and thus facilitates fur-
ther clinical diagnosis and prognosis activities. Sometimes
the number of biomarkers may be larger than the num-
ber of observations, which raises high dimensional prob-
lems and brings challenges in data analysis. Even more, we
may face the situations that the response is fixed censored
due to detection limit (Haab, Dunham and Brown, 2001;
Van der Pouw Kraan et al., 1995). For instance, in measur-
ing vial load of HIV/ADIS studies, the half maximal in-
hibitory concentration (IC50) values in blood serum can
not be measured when they are below the detected limita-
tion. Conventional Tobit models (Tobin, 1958) for fixed cen-
sored responses and associated estimation methods cannot
be directly applied. In addition, among the tons of biomark-
ers/covariates investigated, maybe only a few are associated
with the response variable of interest. Thus, variable selec-
tion or dimension reduction is always recommended along
with the estimation procedure. To explore the relationship
between a fixed censored response variable and a set of high
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dimensional covariates, we propose a new method to ac-
commodate high dimensional data with fixed censored re-
sponses.

Among the many variable selection techniques devel-
oped, penalized selection methods have attracted extensive
attentions. Penalization methods put penalties on the re-
gression coefficients, which reduces model complexity and
can lead to better model fitting. In the literature, some
of the most popular work on penalization methods in-
cludes Lasso (Tibshirani, 1996), MCP (Zhang, 2010), and
SCAD (Fan and Li, 2001). These methods and their vari-
ants have also been widely used in high dimensional data
analysis (Fan and Li, 2002; Huang, Breheny and Ma, 2012;
Gui and Li, 2005). The above methods tackle variable selec-
tion problems at individual covariate levels. However, some
prior knowledge may introduce group structures as well.
For example, in biomarker analysis, biomarkers belonging
to the same functional group may perform similarly. En-
lightened by this, it may be more desirable to take into ac-
count the grouping structure in the variable selection proce-
dure. For this purpose, researchers proposed group variable
selection methods and bi-level variable selection methods
when the covariates could be grouped, where the former
type of methods focuses on selecting important groups, and
the latter type of methods targets at selecting important
groups as well as identifying important members within the
groups (Breheny and Huang, 2009). Some representative ex-
amples for these two types of methods include group Lasso,
group SCAD, group bridge Lasso, and group exponen-
tial Lasso (Yuan and Lin, 2006; Huang, Breheny and Ma,
2012; Wang, Chen and Li, 2007; Breheny and Huang, 2009;
Breheny, 2015; Huang et al., 2009). Although variable selec-
tion methods that takes group structures into consideration
have been extensively studied in various parametric, semi-
parametric and nonparametric models, the efforts for the
Tobit models are still needed. Motivated by the group Lasso
method of Yuan and Lin (2006), Liu, Wang and Wu (2013)
propose a group Lasso for Tobit models. But their method
can only work for low dimensional Tobit models and can not
separate noisy and significant covariates within a group, i.e.
fails to perform bi-level group variable selection. As far as we
know, there no methods that perform bi-level group variable
selection for high dimensional Tobit models.

In this article, we propose a bi-level variable selection
method for high dimensional Tobit (shorten as BHTobit)
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models, where variable selection procedure is performed
within and between groups. The method combines the idea
in group selection methods for single index models and uni-
variate regression methods for Tobit models. The procedure
is easy to implement and computationally efficient. The rest
of the article is organized as follows. Section 2 presents the
model. Section 3 describes the variable selection method.
Section 4 evaluates the finite-sample performance through
simulation studies. Section 5 illustrates the method by ana-
lyzing an HIV data.

2. MODEL SPECIFICATIONS

Consider the Tobit model with group structures:

Y ∗ =

J∑
j=1

Xjβj − ε,(1)

where Xj is the portion of the design matrix X formed by
the predictors in the jth group, and βj is the associated
unknown parameter vector. Let pj denote the number of
members in group j. Then Xj is an n× pj matrix. The to-
tal number of explanatory covariates is p =

∑
j pj . Write

β = (β1, · · · , βp). For each observation, due to fixed cen-
soring, Y ∗ may not be fully observed, and we can only ob-
serve (Y, δ), where Y = max(Y ∗, c), δ = I(Y ∗ > c), c is
the known lower detection limit. Without loss of generality,
we assume c = 0. The realization of ε are εi’s, instead of
making parametric distributional assumptions such as nor-
mality, here we only assume that εi’s are independently and
identically distributed (i.i.d.) from an unknown distribution
symmetric around 0 with finite variance. To facilitate the-
oretical derivations, we consider the model with error term
“−ε” instead of “ε”. Similar model setting can be found in
Huang et al. (2019a,b); Lewbel and Linton (2002).

3. BHTOBIT METHOD

The BHTobit method is inspired by considering a connec-
tion between Tobit models and single-index models given by
Proposition 1 below. This connection transfers group vari-
able selection of high dimensional Tobit models to that of
high dimensional single-index models under mild assump-
tions, and enables the selection procedure applicable us-
ing an existing procedure for high dimensional single-index
models. Let F (·) be the distribution function of ε.

Proposition 1. Assume that the latent response Y ∗ has
first ν(≥ 3) absolute moments, and the density function fε(·)
of ε is continuously differentiable and symmetric around
zero. If limε→−∞ εF (ε) = 0, then

E(Y |Xβ) =

∫ Xβ

−∞
F (ε)dε.

Proof. To prove the proposition, we proceed as follows.

E(Y |Xβ) = E{Y ∗I(Y ∗ > 0)|Xβ}

=

∫ Xβ

−∞
{Xβ − ε}f(ε)dε

= XβF (Xβ)−
∫ Xβ

−∞
εf(ε)dε

= XβF (Xβ)−
{
εF (ε)|Xβ

−∞ −
∫ Xβ

−∞
F (ε)dε

}

=

∫ Xβ

−∞
F (ε)dε.

Proposition 1 indicates that E(Y |Xβ) can be written as
an uncensored single-index model with an index parameter
β, and a link function w(u), where w(u) =

∫ u

−∞ F (ε)dε.
Therefore, any group variable selection methods for high
dimensional single-index models could be applied.

Because of the computational simplicity, we adopt the
method proposed by Wang, Xu and Zhu (2012) and fur-
ther studied by Zeng, Wen and Zhu (2017). They applied
a response variable transformation method to deal with
the unknown link function of the single index models. No
bandwidth selection is needed. To achieve bi-level vari-
able selection, we further replace the group Lasso penalty
in Zeng, Wen and Zhu (2017) by group exponential Lasso
penalty (Breheny, 2015) to achieve bi-level variable selec-
tion. Briefly speaking, the group exponential Lasso penalty
has a functional form of

∑J
j=1 f(||βj ||1), for groups j =

1, · · · , J and unknown parameter vector βj associated with
group j as specified in equation (1), where f(·) is a con-
cave exponential function and || · ||1 is L1 norm. The outer
summation of f(||βj ||1) for groups j = 1, · · · , J considers
penalization at group level and the inner L1 norm imposes
the penalty to individual level, which together could yield
sparsity at both group level and individual level (Breheny,
2015; Breheny and Huang, 2009).

Due to the identifiability issue in single index models, the
estimation method for single index models can only identify
β up to a scale constant, say βS = β/γ, similar discussion
can be found in the literature (Ichimura, 1993; Liang et al.,
2010; Härdle, Hall and Ichimura, 1993; Carroll et al., 1997;
Wang, Xu and Zhu, 2012; Zeng, Wen and Zhu, 2017). Thus,
a second step estimation is needed to recover the scale con-
stant γ. Given the initial estimator β̂S , for the second step
estimation, any univariate regression method for Tobit mod-
els can be used to recover the scale constant γ. We state the
BHTobit method as follows.

BHTobit Method:

Step 1. Find β̂S by minimizing the objective function:

1

2n
||Fn(Y )−Xβ||2 +

J∑
j=1

f(||βj ||1|λ, τ),
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Table 1. Estimation accuracy: estimated values and associated MSE based on the three methods for the four settings with
different censoring proportions. The true values are (1.5, 1.5,−1, 1, 1)

scenario (i)

Censor method Estimated values MSE

15% BHTobit 1.566 1.559 −0.958 1.015 0.89 0.386
ELasso 0.806 0.758 −0.383 0.416 0.429 2.34
GLasso 1.018 0.998 −0.564 0.592 0.501 1.253

30% BHTobit 1.477 1.492 −0.919 0.873 0.806 0.645
ELasso 0.571 0.577 −0.285 0.205 0.243 3.561
GLasso 0.792 0.776 −0.417 0.373 0.338 2.361

scenario (ii)

Censor method Estimated values MSE

15% BHTobit 1.511 1.489 −0.928 1.000 0.752 0.384
ELasso 0.775 0.762 −0.368 0.395 0.363 2.453
GLasso 1.021 0.988 −0.565 0.586 0.470 1.375

30% BHTobit 1.536 1.584 −0.910 0.943 0.791 0.537
ELasso 0.547 0.573 −0.263 0.301 0.241 3.588
GLasso 0.752 0.798 −0.441 0.436 0.309 2.304

scenario (iii)

Censor method Estimated values MSE

15% BHTobit 1.580 1.565 −0.934 0.824 0.790 0.561
ELasso 0.694 0.724 −0.348 0.342 0.390 2.601
GLasso 0.933 0.942 −0.512 0.536 0.484 1.570

30% BHTobit 1.609 1.586 −0.95 0.933 0.867 0.555
ELasso 0.531 0.545 −0.259 0.244 0.263 3.733
GLasso 0.777 0.778 −0.431 0.395 0.367 2.303

scenario (iv)

Censor method Estimated values MSE

15% BHTobit 1.61 1.558 −0.977 0.949 0.85 0.412
ELasso 0.713 0.677 −0.333 0.323 0.329 2.807
GLasso 0.938 0.955 −0.532 0.53 0.444 1.456

30% BHTobit 1.519 1.527 −0.841 0.892 0.707 0.518
ELasso 0.487 0.511 −0.204 0.213 0.205 3.922
GLasso 0.74 0.749 −0.379 0.4 0.293 2.538

where Fn(·) is defined as Fn(t) = n−1
∑n

i=1 1Yi≤t, and
f(·|λ, τ) is defined as

f(θ|λ, τ) = λ2

τ

{
1− exp(− τθ

λ )
}
, λ, τ are two positive

tuning parameters.
Step 2. Replacing βS by β̂S , we have

Y ∗
i ≈ γ ·X�

i β̂S + εi.(2)

Then, we apply least absolute deviation method
(Powell, 1984) to recover the scale parameter γ, on ac-
count of the robustness of the method. That is, we ob-
tain γ̂ by minimizing the objective function:

L̂n(γ) =
1

n

n∑
i=1

∣∣∣Yi −max(0, γ ·X�
i β̂S)

∣∣∣ .
Numerically, the algorithm is easy to implement. For

step one, the group descent algorithm for group exponential
Lasso can be directly applied to obtain estimate β̂S , with
the tuning parameters being selected by cross-validation

(Breheny, 2015). And γ̂ can be then obtained by applying
the Fitzenberger algorithm (Fitzenberger, 1997) for least ab-
solute regression.

4. SIMULATION STUDIES

We conducted simulation studies to evaluate the fi-
nite sample performance of the proposed method and
compare it with the existing ones like group Lasso
(GLasso; Yuan and Lin, 2006) and Elastic Lasso (ELasso;
Zou and Hastie, 2005). We generated Y ∗, from the follow-
ing model,

Y ∗ = X�β − ε,

where components of X are independent standard nor-
mal, with β, n and p being specified below. We consid-
ered two different families of the error: standard normal
and standard Laplace. The observed response Yi are set
as Yi = max(Y ∗

i , c) with c chosen to lead to censoring
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Table 2. Selection accuracy: the average number of the true zero groups/individuals coefficients that were correctly set to
zero (C), and the average number of the truly nonzero groups/individuals incorrectly set to zero (I) based on the three

methods for the four settings with different censoring proportions

scenario (i)

censor Method C (group) I (group) C (individual) I (individual) Inclusion of β6

15% BHTobit 3 3.5 5 4.33 0.28
ELasso 2.98 5 4.95 5.4 0.02
GLasso 3 1.15 5 6.7 1

30% BHTobit 2.98 3.83 4.95 4.58 0.22
ELasso 2.9 3.92 4.72 4.2 0
GLasso 2.98 1.27 4.97 7.3 1

scenario (ii)

15% BHTobit 3 3.73 5 4.6 0.25
ELasso 3 4.62 4.95 4.88 0
GLasso 2.98 1.3 4.97 7.45 1

30% BHTobit 2.98 4.3 4.97 5.65 0.18
ELasso 2.88 3.73 4.7 4.2 0
GLasso 2.92 1.43 4.9 8.05 1

scenario (iii)

15% BHTobit 3 6.08 5 7.3 0.22
ELasso 2.98 8.82 4.92 9.6 0.08
GLasso 2.98 3.35 4.97 17.7 1

30% BHTobit 3 3.9 4.97 4.35 0.1
ELasso 2.92 5.5 4.78 6 0
GLasso 3 1.68 5 9.35 1

scenario (iv)

15% BHTobit 3 4 5 4.5 0.18
ELasso 2.98 5.65 4.9 5.9 0.05
GLasso 3 1.98 5 10.85 1

30% BHTobit 2.98 4.08 4.97 4.5 0.15
ELasso 2.85 4.9 4.67 5.1 0.05
GLasso 2.88 0.88 4.88 5.22 1

proportion (Cens): Cen = 15% or Cen = 30%. We con-
sider the following scenarios, which extends similar scenar-
ios in Liu, Wang and Wu (2013) to high dimensional set-
tings:

(i) p=200, β=(1.5, 1.5︸ ︷︷ ︸
g1

, 1,−1︸ ︷︷ ︸
g2

, 1, 0︸︷︷︸
g3

, 0, 0, 0, 0︸ ︷︷ ︸
g4

, 0, 0, 0, 0, 0︸ ︷︷ ︸
g5

, · · ·,

0, 0, 0, 0, 0︸ ︷︷ ︸
g42

), where g denotes the predefined group struc-

tures, from g5 to g42, each group has 5 elements, n =
150, ε follows standard normal distribution.

(ii) The same setting as (i) except that ε is standard
Laplace distribution.

(iii) The same setting as (i) except that p = 400 and β =
(1.5, 1.5︸ ︷︷ ︸

g1

, 1,−1︸ ︷︷ ︸
g2

, 1, 0︸︷︷︸
g3

, 0, 0, 0, 0︸ ︷︷ ︸
g4

, 0, 0, 0, 0, 0︸ ︷︷ ︸
g5

, · · ·, 0, 0, 0, 0, 0︸ ︷︷ ︸
g82

).

(iv) The same setting as (ii) except that p = 400 and β =
(1.5, 1.5︸ ︷︷ ︸

g1

, 1,−1︸ ︷︷ ︸
g2

, 1, 0︸︷︷︸
g3

, 0, 0, 0, 0︸ ︷︷ ︸
g4

, 0, 0, 0, 0, 0︸ ︷︷ ︸
g5

, · · ·, 0, 0, 0, 0, 0︸ ︷︷ ︸
g82

).

As a comparison, the results of GLasso and ELasso
(Yuan and Lin, 2006; Zou and Hastie, 2005) are also re-

ported. To compare the performance of different methods,
we shall use two criteria; selection accuracy, which demon-
strated by number of correctly selected and incorrectly se-
lected covariates; and mean squared errors (MSE) between

β̂ and β. Tables 1 and 2 summarizes the results.
With respect to the estimation accuracy, it can be seen

that BHTobit method always has much smaller MSE than
ELasso and GLasso. More specifically, for the five non-
zero components, the estimated coefficients based on BH-
Tobit method are close to the true values, while the es-
timated coefficients based on ELasso and GLasso signifi-
cantly deviate from the true values. For selection accuracy,
BHTobit method selects more correctly identified covariates
and less falsely identified covariates compared with ELasso
and GLasso at the individual level. At the group level,
BHTobit method selects similar correctly identified groups
and slightly more falsely identified groups compared with
GLasso. It is also worthy to mention that, for β6, compared
with GLasso, BHTobit method tends to not include it in
the final model, which yields sparsity within a group and
performs bi-level variable selection, while GLasso always in-
cludes it.
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Table 3. The results for the HIV study

Selected variables Estimated coefficients Selected groups

Bcell8 −3.82 Bcells
Bcell24 −7.12 Bcells
Bcell29 −0.02 Bcells
Bcell43 −2.02 Bcells
Bcell49 −22.32 Bcells

Antibody2 7.3 Antibody
Antibody3 6.7 Antibody

With censoring proportion increases, the estimation accu-
racy and selection accuracy decrease for all methods. This
is not surprising as higher censoring indicates more infor-
mation loss. However, the magnitude of decreasing is not
remarkable for BHTobit method. Tables 1 and 2 also indi-
cate that the results corresponding to normal and Laplace
errors share a similar pattern, which may demonstrate the
robustness of BHTobit method to normal and non-normal
error distributions.

5. ANALYSIS OF AN HIV/AIDS STUDY

A main target to develop vaccine for HIV infection is
to generate protective humoral response. It has been ob-
served that some patients with HIV infection can produce
potent serum antibodies, which can neutralize HIV isolates.
To study the mechanisms of the generation of potent neu-
tralizing antibodies, an efficient strategy is to investigate
the behaviors of the B cells and Antibodies in such HIV-
infected patients, and the relationship between B cells and
Antibodies with serum antibody neutralization activity (de-
termined by IC50). In an AIDS clinical study, 42 HIV-
infected patients’ observations were obtained and one third
of their IC50 values are left censored at 20, while there are
55 biomarkers/covariates. The 55 covariates are formed into
two groups: B cells group and neutralizing serum antibody
group.

Our goal is to find the covariates and associated groups
which have significant effects on IC50. To achieve this goal,
we apply our proposed BHTobit method with the 55 covari-
ates and consider the group structures within them, with
IC50 as the response variable. All covariates were standard-
ized.

Both B cells and antibody groups are both selected. The
tuning parameters selected by 3-fold cross-validation are
λ = 0.049 and τ = 0.334. The selected covariates and asso-
ciated groups, with their estimated coefficients are listed in
Table 3. Our proposed method identified 5 covariates in the
B cells group and 2 covariates in the antibody group. In par-
ticular, it can be seen that there is a negative correlation be-
tween BCELL8 (CD19-CD20+, percentage of total B cells),
BCELL49 (IgD-B220-CD27-, percentage of IgDB cells) and
IC50, and there is a positive relationship between Antibody2
(anti-dsDNA) and IC50. These suggests that B cells exhaus-
tion may have a negative impact on the HIV neutralizing

activity, while HIV-specific antibodies can facilitate the de-
velopment of HIV neutralizing, similar findings were also
reported in the literature (Gray et al., 2009; Petrovas et al.,
1999; Haynes et al., 2005; McGranahan et al., 2016). It is
interesting that both GLasso and ELasso identify no impor-
tant biomarkers.

Received 27 April 2019

REFERENCES
Breheny, P. (2015). The group exponential lasso for bi-level variable

selection. Biometrics 71 731–740. MR3402609
Breheny, P. and Huang, J. (2009). Penalized methods for bi-

level variable selection. Statistics and Its Interface 2 369–380.
MR2540094

Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Gener-
alized partially linear single-index models. Journal of the American
Statistical Association 92 477–489. MR1467842

Fan, J. and Li, R. (2001). Variable selection via nonconcave penal-
ized likelihood and its oracle properties. Journal of the American
Statistical Association 96 1348–1360. MR1946581

Fan, J. and Li, R. (2002). Variable selection for Cox’s proportional
hazards model and frailty model. Annals of Statistics 30 74–99.
MR1892656

Fitzenberger, B. (1997). Computational aspects of censored quantile
regression. Lecture Notes-Monograph Series 171–186.

Gray, E. S., Taylor, N., Wycuff, D., Moore, P. L.,
Tomaras, G. D., Wibmer, C. K., Puren, A., DeCamp, A.,
Gilbert, P. B., Wood, B. et al. (2009). Antibody specificities asso-
ciated with neutralization breadth in plasma from human immun-
odeficiency virus type 1 subtype C-infected blood donors. Journal
of Virology 83 8925–8937.

Gui, J. and Li, H. (2005). Penalized Cox regression analysis in the
high-dimensional and low-sample size settings, with applications to
microarray gene expression data. Bioinformatics 21 3001–3008.

Haab, B. B., Dunham, M. J. and Brown, P. O. (2001). Protein mi-
croarrays for highly parallel detection and quantitation of specific
proteins and antibodies in complex solutions. Genome Biology 2
research0004–1.
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