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Reference Bayesian analysis for the generalized
lognormal distribution with application to survival
data
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This paper proposes a reference Bayesian approach for
the estimation of the parameters of the generalized lognor-
mal distribution in the presence of survival data. It is shown
that the reference prior leads to a proper posterior distribu-
tion while the Jeffreys prior leads to an improper posterior.
Simulation studies were performed to analyze the frequentist
properties of credible intervals from the reference posterior
distribution, considering complete and censored data. The
proposed methodology is illustrated using two real datasets.
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1. INTRODUCTION

The lognormal distribution has been used in many dif-
ferent aspects of life sciences to model positive skewness
data. Most aspects include, for example, reliability and sur-
vival analysis [14, 11, 8, 9, 2]. However, when the data come
from a distribution with tails having a significant degree of
positive skewness, the lognormal distribution does not suf-
ficiently model the data. A good alternative is to consider
models with more flexible tails relative to the lognormal
distribution, such as the generalized lognormal distribution
(logGN), which includes the lognormal distribution as a spe-
cial case [19].

The logGN distribution is considered a tool for obtain-
ing robust estimates and it represents a viable alternative
to analyze data that adhere to a lognormal distribution,
due to its flexibility [18]. This distribution has been used in
different contexts, with different parameterizations, but the
inferential procedures for the parameters of the distribution
present problems. In the classical context, the parameter-
ization that considers the threshold or location parameter
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introduces an unusual feature in the likelihood function. Hill
[14] showed that the threshold parameter tends to the small-
est observed value of the response variable and that the max-
imum likelihood estimates of the remaining parameters are
inconsistent. Other references to the estimation problems in
the classical context include [13, 10, 23, 17].

In the Bayesian context, the methods presented in the
literature for the estimation of the parameters of the logGN
distribution are restricted and applied to particular cases.
Hill [14] considered subjective priors. Upadhyay and Pesh-
wani [25] used the Jeffreys first rule as a noninformative
prior. However, Jeffreys himself criticized his first rule (see
Kass and Wasserman [16]) since the proposed prior is in-
variant only to power transformations and is not obtained
by formal rules. Mart́ın and Pérez [18] considered an invari-
ant Jeffreys prior to perform inference on the parameters of
interest. Despite the fact that the Jeffreys prior is not ad-
equate in many situations and can lead to marginalization
paradoxes and strong inconsistencies (see Bernardo [5, pg.
41] and the references therein), the authors did not prove
that the posterior obtained is proper (see Ramos et al. [21]
for a detailed discussion). Here, we show that the posterior
obtained using the Jeffreys prior is improper and should not
be used in a Bayesian analysis.

To overcome this problem, we consider estimation of pa-
rameters using reference priors introduced by Bernardo [4]
and [3, 5]. This method describes a way to find an objective
prior that maximizes the lack of information. In this case,
the estimation process depends only on the distribution used
and the observed data. The reference prior produces a poste-
rior reference distribution with important properties such as
generality, invariance, consistent marginalization and con-
sistent sampling properties [5]. We prove that the reference
posterior obtained is proper and can be used to obtain pos-
terior estimates. Finally, while the above references consider
estimation for only complete data, we extend the proposed
inference for censored data.

This paper is organized as follows. Section 2 presents
the logGN distribution, its survival and hazard functions,
and likelihood function for complete data. Sections 3 and 4
present prior reference distributions and Jeffreys priors, re-
spectively, for the logGN distribution. Section 5 considers
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the presence of censored data. In Section 6, some model se-
lection criteria are presented. Sections 7 and 8 present a
simulation study and some applications to real datasets, re-
spectively.

2. GENERALIZED LOGNORMAL
DISTRIBUTION

The logGN distribution was introduced by Vianelli [27,
28] as a family of distributions having multiplicative errors
of order r. Other parameterizations can be found in the
literature; see, for example, Hill [14] and Chen [8]. Here,
the logGN distribution is obtained through the exponential
transformation of a random variable that follows the gener-
alized normal distribution studied by Nadarajah [19].

It is understood that the random variable X has a logGN
distribution if its probability density function (pdf) is given
by

(1) f(x|μ, τ, s) = s

2x τΓ
(
1
s

) exp{− ∣∣∣∣ log x− μ

τ

∣∣∣∣s}
with x > 0, μ ∈ �, τ, s > 0. The logGN distribution is the
distribution of X = exp(Y ) when Y is a random variable
following the generalized normal distribution.

The logGN distribution contains the lognormal distribu-
tion as a particular case when s = 2 and τ is replaced by√
2 τ . The log-Laplace distribution is the particular case for

s = 1.

Mart́ın and Pérez [18] argued that the logGN distribu-
tion presents better fits to data relative to the lognormal
distribution when s ∈ (1, 2) ∪ (2, 3). The logGN distribu-
tion allows for more flexible kurtosis than the lognormal
distribution. Furthermore, the capacity of the logGN distri-
bution to provide a precise fit to the data depends on its
shape.

Zhu and Zinde-Walsh [29] proposed a reparameterization
of the asymmetric exponential power distribution that al-
lows one to observe the effect of the shape parameter. Using
a similar reparameterization, σ = τ Γ

(
1 + 1

s

)
, the logGN

distribution in (1) can be written as
(2)

f(x|θ) = 2−1 x−1 σ−1 exp

{
−
(
Γ
(
1 + 1

s

)
| log(x)− μ|
σ

)s}
,

where x > 0, μ ∈ �, σ, s > 0. The corresponding survival
and hazard functions are

S(x|θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1−

Γ

(
1
s ,

(
Γ(1+ 1

s )(μ−log(x))

σ

)s)
2 sΓ(1+ 1

s )
, if 0 < x ≤ eμ,

Γ

(
1
s ,

(
Γ(1+ 1

s )(log(x)−μ)

σ

)s)
2 sΓ(1+ 1

s )
, if x > eμ,

Figure 1. (a) Density function; (b) Survival function;
(c) Hazard function.

and

h(x|θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s Γ
(
1+ 1

s

)
exp

⎧⎨⎩−

⎛⎝ Γ
(
1+ 1

s

)
| log(x)−μ|
σ

⎞⎠s⎫⎬⎭
xσ

⎧⎨⎩2sΓ
(
1+ 1

s

)
−Γ

⎛⎝ 1
s
,

⎛⎝ Γ
(
1+ 1

s

)
(μ−log(x))

σ

⎞⎠s⎞⎠⎫⎬⎭
, if 0<x ≤ eμ,

s Γ
(
1+ 1

s

)
exp

⎧⎨⎩−

⎛⎝ Γ
(
1+ 1

s

)
| log(x)−μ|
σ

⎞⎠s⎫⎬⎭
x σ Γ

⎛⎝ 1
s
,

⎛⎝ Γ
(
1+ 1

s

)
(log(x)−μ)

σ

⎞⎠s⎞⎠ , if x > eμ,

respectively, where Γ(·, ·) denotes the upper incomplete
gamma function.

Figure 1 plots the density function in (2), the survival
function and the hazard function for different values of s,
assuming μ = 0 and σ = 1.

2.1 Likelihood for complete data

Let x = {x1, x2, . . . , xn} be a random sample from the
distribution in (2). The likelihood function is given by
(3)

L(θ|x) =2−n exp

{
−

n∑
i=1

(
Γ
(
1 + 1

s

)
| log(xi)− μ|
σ

)s}

× σ−n
n∏

i=1

x−1
i .

The log-likelihood function is given by

(4)

logL(θ|x) =−n log 2− n log σ −
n∑

i=1

log(xi)

−
n∑

i=1

(
Γ
(
1 + 1

s

)
| log(xi)− μ|
σ

)s

.

The first-order derivatives of the log-likelihood function for
a single observation are

(5)

∂ logL

∂μ
=
sΓ

(
1 + 1

s

)
σ

(
Γ
(
1 + 1

s

)
| log(x)− μ|
σ

)s−1

× sign(log(x)− μ),

(6)
∂ logL

∂σ
= − 1

σ
+

s

σ

(
Γ
(
1 + 1

s

)
| log(x)− μ|
σ

)s
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and
(7)

∂ logL

∂s
=−

[
log

(
Γ
(
1 + 1

s

)
| log(x)− μ|
σ

)
−

Ψ
(
1 + 1

s

)
s

]

×
(
Γ
(
1 + 1

s

)
| log(x)− μ|
σ

)s

,

where Ψ(s) = Γ
′
(s)

Γ(s) denotes the digamma function.

The Fisher information matrix is obtained by the score
function. This matrix is useful to get the reference priors for
the model parameters. The elements of the Fisher informa-
tion matrix for the distribution in (4) are obtained by the
following proposition.

Proposition 2.1. Let I(θ) denote the Fisher information
matrix, with θ = (θ). The elements of the Fisher informa-
tion matrix,

Iij(θ) = −E

(
∂2 log f(x|θ)

∂θi∂θj

)
= E

(
∂ log f(x|θ)

∂θi

∂ log f(x|θ)
∂θj

)
,

where i, j = 1, 2, 3, with Iij(θ) = Iji(θ) and θj the jth ele-
ment of θ are given by

I11(θ) = E

[(
∂ logL

∂μ

)2
]
=

nΓ
(
1
s

)
Γ
(
2− 1

s

)
σ2

,

I12(θ) = E

[(
∂ logL

∂μ

)(
∂ logL

∂σ

)]
= 0,

I13(θ) = E

[(
∂ logL

∂μ

)(
∂ logL

∂s

)]
= 0,

I22(θ) = E

[(
∂ logL

∂σ

)2
]
=

ns

σ2
,

I23(θ) = E

[(
∂ logL

∂σ

)(
∂ logL

∂s

)]
= − n

σs
,

I33(θ) = E

[(
∂ logL

∂s

)2
]
=

n

s3

{(
1 +

1

s

)
Ψ

′
(
1 +

1

s

)}
,

where s > 1 and Ψ′(s) = ∂
∂sΨ(s) denotes the trigamma

function. The restriction s > 1 ensures that the elements
Iij(θ) for i, j = 1, 2, 3 are finite and the information matrix
I(θ) is positive definite.

The proof is a consequence of Proposition 5 in Zhu and
Zinde-Walsh [29]. Then, the Fisher’s information matrix is
given by
(8)

I(θ) = n

⎡⎢⎢⎢⎢⎣
Γ
(
1
s

)
Γ
(
2− 1

s

)
σ2

0 0

0
s

σ2
− 1

σ s

0 − 1

σ s

1

s3

{(
1 + 1

s

)
Ψ

′ (
1 + 1

s

)}
⎤⎥⎥⎥⎥⎦.

The corresponding inverse Fisher’s information matrix is
given by
(9)

B(θ) =
1

n

⎡⎢⎢⎢⎢⎢⎣
σ2

Γ( 1
s )Γ(2−

1
s )

0 0

0 σ2

s

[
1− s

(1+s)Ψ
′ (1+ 1

s )

] σs2

−s+(1+s)Ψ
′(1+ 1

s )

0 σs2

−s+(1+s)Ψ
′(1+ 1

s )
s4

−s+(1+s)Ψ
′(1+ 1

s )

⎤⎥⎥⎥⎥⎥⎦.

3. REFERENCE ANALYSIS IN THE
MULTIPARAMETER CASE

Reference analysis was introduced by Bernardo [4] and
[3, 5]. The reference prior maximizes the lack of information
on the quantity of interest. An important characteristic of
the Berger-Bernardo method is the different treatment given
to parameters of interest and nuisance parameters. The con-
struction of the reference prior, in the presence of nuisance
parameters, must be made using an ordered parameteriza-
tion. The parameter of interest is selected and the procedure
below is followed.

Corollary 3.1. Let f(x|φ,λ), x ∈ X,λ = (λ1, . . . , λm), φ ∈
Φ,λ ∈ Λ =

∏m
j=1 Λj be a probability model with

m + 1 real-valued parameters and let φ be the quan-
tity of interest. Suppose that the posterior distribution of
(φ, λ1, . . . , λm) is asymptotically normal with covariance

matrix B(φ̂, λ̂1, . . . , λ̂m), where H = B−1, Bj is the upper
left j× j submatrix of B, Hj = B−1

j , and hjj(φ, λ1, . . . , λm)
is the lower right element of Hj. If the nuisance parame-
ter spaces Λi do not depend on {φ, λ1, . . . , λi−1}, and the
functions h11, h22, . . . , hmm, hm+1,m+1 factorize in the form

h
1
2
11(φ,λ) = f0(φ)g0(λ1, . . . , λm)

and

h
1
2
i+1,i+1(φ,λ) = fi(λi)gi(φ, λi, . . . , λi−1, λi+1, . . . , λm)

i = 1, . . . ,m, then πR(φ) ∝ f0(φ) and

πR(λi|φ, λ1, . . . , λi−1) ∝ fi(λi), i = 1, . . . ,m.

There is no need for compact approximations, even if
πR(λi|φ, λ1, . . . , λi−1) are not proper.

Under appropriate regularity conditions [5] the posterior
distribution of (φ, λ1, . . . , λm) is asymptotically normal with

mean (φ̂, λ̂1, . . . , λ̂m) and covariance matrix B(φ̂, λ̂1, . . . ,

λ̂m), where B(φ̂, λ̂1, . . . , λ̂m) = I−1(φ̂, λ̂1, . . . , λ̂m) and

B
− 1

2
11 (φ, λ1, . . . , λm) = h

1
2
11(φ, λ1, . . . , λm) and I(φ, λ1, . . . ,

λm) is the corresponding (m+1)×(m+1) Fisher information
matrix. Furthermore, H(φ, λ1, . . . , λm) = I(φ, λ1, . . . , λm)
and the reference prior may be computed from the elements
of I(φ, λ1, . . . , λm).
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3.1 Reference analysis for the distribution
parameters

The parameter vector (θ) is ordered and divided into 3
distinct groups, according to their inferential importance.
We consider here the case in which μ is the parameter of
interest and σ and s are the nuisance parameters. To obtain
a joint reference prior for the parameters μ, σ and s, the
following ordered parameterization was adopted:

πR(θ) = πR(s|μ, σ)πR(σ|μ)πR(μ).

Consider the Fisher matrix in (8), the inverse Fisher ma-
trix in (9) and Corollary 1. Let H(θ) = I(θ), it follows that

h33(θ) =
1

s3

{(
1 +

1

s

)
Ψ

′
(
1 +

1

s

)}
and

h
1
2
33(θ) =

√
1

s3

(
1 +

1

s

)
Ψ′

(
1 +

1

s

)
= f2(s)g2(μ, σ).

Then,

πR(s|μ, σ) ∝ s−
3
2

[(
1 +

1

s

)
Ψ

′
(
1 +

1

s

)] 1
2

.

Let H2(θ) = B−1
2 (θ), where B2(θ) is the upper left 2× 2

submatrix of B(θ), it follows that

h22(θ) =
1

σ2
s

[
1− s

(1 + s)Ψ′ (1 + 1
s

)]

and

h
1
2
22(θ) =

1

σ

√√√√s

[
1− s

(1 + s)Ψ′ (1 + 1
s

)] = f1(σ)g1(μ, s).

Then,

πR(σ|μ) ∝ 1

σ
.

Finally, let h11(θ) = B−1
11 (θ), it follows that

h11(θ) =
Γ
(
1
s

)
Γ
(
2− 1

s

)
σ2

and

h
1
2
11(θ) =

√
Γ
(
1
s

)
Γ
(
2− 1

s

)
σ2

= f0(μ)g0(σ, s).

Then,

πR(μ) ∝ 1.

Therefore, a joint reference prior for the ordered param-
eter is given by

(10) πR(θ) ∝ 1

σ
s−

3
2

[(
1 +

1

s

)
Ψ

′
(
1 +

1

s

)] 1
2

,

where μ ∈ �, σ ∈ �+ and s > 1.

Using the likelihood function (4) and the reference prior
(10), we obtain the joint posterior distribution for μ, σ and s,
(11)

πR(μ, σ, s|x) ∝ σ−(n+1)s−
3
2

[(
1 +

1

s

)
Ψ

′
(
1 +

1

s

)] 1
2

× exp

{
−

n∑
i=1

(
Γ
(
1 + 1

s

)
| log(xi)− μ|
σ

)s}
.

The posterior conditional probability densities are
(12)

πR(μ|σ, s,x) ∝ exp

{
−

n∑
i=1

(
Γ
(
1 + 1

s

)
| log(xi)− μ|
σ

)s}
,

πR(σ|μ, s,x)

(13)

∝ σ−(n+1) exp

{
−

n∑
i=1

(
Γ
(
1 + 1

s

)
| log(xi)− μ|
σ

)s}

and
(14)

πR(s|μ, σ,x) ∝ s−
3
2

[(
1 +

1

s

)
Ψ

′
(
1 +

1

s

)] 1
2

× exp

{
−

n∑
i=1

(
Γ
(
1 + 1

s

)
| log(xi)− μ|
σ

)s}
.

The densities in (12), (13) and (14) do not belong to any
known parametric family and the estimates of the parame-
ters of interest can only be obtained numerically. The pos-
terior densities will be evaluated by Monte Carlo simulation
in a Markov Chain (MCMC).

4. THE PROBLEM WITH THE JEFFREYS
PRIOR

The Jeffreys prior is a method used to obtain an objec-
tive prior which is invariant under injective transformations.
This method is proportional to the square root of the deter-
minant of the Fisher information matrix. Despite the prop-
erty of invariance, the Jeffreys prior may be improper and
can lead to an improper posterior.

In the multiparameter case, where θ = (θ1, . . . , θm), the
elements of the Fisher information matrix I(θ) are defined
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by

Iij(θ) = E

(
∂ log f(x|θ)

∂θi

∂ log f(x|θ)
∂θj

)
i, j = 1, . . . ,m.

The use of the Jeffreys rule in the multiparameter case is
often inadequate. The assumption of a priori independence
between parameters of different nature, and the separate use
of Jeffreys rule for the specification of marginal distributions
may give different results than what will be obtained by
the Jeffreys principle. The Jeffreys prior obtained from the
square root of the determinant of the Fisher information
matrix of (8) is
(15)

πJ(θ) ∝
[
Γ

(
1

s

)
Γ

(
2− 1

s

){(
1 +

1

s

)
Ψ

′
(
1 +

1

s

)
− 1

}] 1
2

× σ−2s−1 .

The prior in (15) leads to an improper posterior distribu-
tion. Below, we present definitions and lemmas, similar to
those in [22] in order to prove that the prior distributions
of (10) and (15) lead to a proper and improper posterior
distributions.

The prior density for (μ, σ, s) ∈ Ω = �× (0,∞)× (1,∞)
is given by

(16) π(μ, σ, s) ∝ π(s)

σa
, a ∈ �,

where a is a hyperparameter and π(s) is the marginal prior
of the shape parameter, for several choices of π(s) and a.

The Jeffreys prior and reference prior are of the form (16)
with

(17) a = 1 and πR(s) ∝ s−
3
2

[(
1 +

1

s

)
Ψ

′
(
1 +

1

s

)] 1
2

and

πJ(s)

(18)

∝ s−1

[
Γ

(
1

s

)
Γ

(
2− 1

s

){(
1 +

1

s

)
Ψ

′
(
1 +

1

s

)
− 1

}] 1
2

with a = 2.
The posterior distribution associated with the prior in

(16) is proper if and only if

(19)

∫ ∞

1

L(s|x)π(s)ds < ∞,

where L(s|x) is the integrated likelihood for s given by

(20)

∫
�

∫ ∞

0

L(μ, σ, s|x)σ−a dσ dμ.

Lemma 4.1. The marginal prior for s given in equations
(17) and (18) is a continuous function in [1,∞]. As s → ∞,
we have πR(s) = O(s−3/2) and πJ(s) = O(s−1).

Proof. A direct inspection of (17) and (18) shows continu-
ity in [1,∞]. As s → ∞, we have that Γ

(
1
s

)
= O(s) and

Ψ′ (1 + 1
s

)
→ 1.6449.

Lemma 4.2. For n > 2 − a, the likelihood for s under the
class of priors (16) is a continuous function in [1,∞] and
L(s|x) = O(1) as s → ∞.

Proof. See Appendix A.

Proposition 4.3. The reference prior given in (17) yields
a proper posterior distribution and the Jeffreys prior in (18)
leads to an improper posterior distribution.

Proof. See Appendix B.

5. PRESENCE OF CENSORED DATA

Let x denote a random sample with complete and cen-
sored survival times. The sample is divided into two sets,
xo = (x1, . . . , xr)

′ containing r uncensored observations,
and xc = (xr+1, . . . , xn)

′ containing n − r censored obser-
vations, therefore x = xo ∪ xc. The likelihood function for
μ, σ and s is given by

L(μ, σ, s|x) =
r∏

i=1

f(xi|μ, σ, s)
n∏

j=r+1

S(xj |μ, σ, s),

where f(xi|μ, σ, s) and S(xj |μ, σ, s) are the density and sur-
vival functions, respectively. Thus, the likelihood function
may be written as

L(μ, σ, s|x) =
r∏

i=1

f(xi|μ, σ, s)
n∏

j=r+1

∫ ∞

x∗
j

f(xj |μ, σ, s)dxj ,

where f(x|μ, σ, s) is given in (4).
Considering the joint reference prior distribution given in

(10), we obtain the joint posterior distribution for μ, σ and s

(21) πR(μ, σ, s|xo,xc) ∝ PoPc,

where

Po =σ−(r+1)s−
3
2

[(
1 +

1

s

)
Ψ

′
(
1 +

1

s

)] 1
2

× exp

{
−

r∑
i=1

(
Γ
(
1 + 1

s

)
| log(xi)− μ|
σ

)s}

and

Pc =

n∏
j=r+1

∫ ∞

x∗
j

f(xj |μ, σ, s)dxj .
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There is no closed form representation for the posterior
density of (21). Furthermore, the determination of the pos-
terior distribution is complicated due to the integral in Pc.
To solve this problem, xc is considered as a set of unknown
observations [26, 25].

The posterior distributions of the parameters and the
censored observations are given by

(22) πR(μ, σ, s|xo,xc) = πR(μ, σ, s|x)

and

(23) πR(xc|μ, σ, s,xo) = πR(xc|μ, σ, s),

respectively. The expression (22) corresponds to the joint
posterior distribution, given by (11), and its generation is
performed by MCMC. The expression (23) corresponds to
the joint distribution of independent censored observations,
and its generation uses the logGN distribution lower trun-
cated at the censored value; in other words, the generated
value must be greater than the observed value of the variable
censored at the time of analysis.

6. SIMULATION STUDY

This section presents some frequentist properties of
Bayesian estimators, utilizing the reference prior approach
for complete data and censored data. To consider the ap-
proach for complete data lifetimes were generated from the
logGN distribution with sample sizes n = (100, 300, 500) and
1, 000 in accordance with (4) with parameters μ = 1.5, σ =
0.5 and s = 2.5. The posterior samples were generated in
accordance with (11), by the Metropolis-Hastings technique
through the MCMC implemented in the R software. A single
chain of dimension 15,000 was considered for each parame-
ter. A burn-in of 5,000 was adopted in order to eliminate the
effect of initial values, resulting in a sample of size 10,000.
The convergence of the chain was checked by the criterion
proposed by Geweke [12]. For each set of simulated data,
an average of the estimates of the parameters, the mean
square error and the coverage probability of the 95% HPD
credibility intervals were computed.

The approach for censored data was performed in two
stages: The first step generated lifetimes and censored times.
The lifetimes denoted by xi, i = 1, . . . , n were generated
with samples sizes n = (100, 300, 500) and (1,000) in ac-
cordance with (4) with parameters μ = 1.5, σ = 0.5 and
s = 2.5. The censoring time ci for i-th individual was gener-
ated in accordance with (2) with parameters μ = α, σ = 0.5
and s = 2.5 with α controlling the percentage of censored
observations. The pair is (ti, δi), where ti = min(xi, ci) and
δi is equal to 1 if xi ≤ ci and equal to 0 if xi > ci.

The second step generated posterior samples by the
Metropolis-Hasting technique. New values for the censored
observations were generated using the expression (23), which
corresponds to the logGN distribution lower truncated at

the censored value. The posterior samples were generated
by expression (22) through the MCMC.

Similar to the complete data, each sample size was simu-
lated 1,000 times and an average of the parameter estimates,
the mean square error and the coverage probability of the
95% HPD credible intervals were computed.

Table 1. The coverage probability of the 95% HPD credible
intervals for each sample size and each parameter of the
distribution considering complete and censored data

Data Parameters
n

100 300 500 1000

μ = 1.5 92.5 93.3 94.3 94.6
Complete σ = 0.5 82.8 94.8 94.6 94.4

s = 2.5 81.6 93.0 94.0 94.0

μ = 1.5 92.6 94.7 94.5 93.7
10% of censure σ = 0.5 85.5 94.4 94.7 94.8

s = 2.5 84.3 94.8 95.3 95.5

μ = 1.5 91.7 94.5 94.4 96.0
20% of censure σ = 0.5 82.6 95.6 94.7 95.1

s = 2.5 80.8 94.8 94.6 94.2

μ = 1.5 93.4 94.4 93.4 93.2
40% of censure σ = 0.5 82.6 96.1 95.0 96.0

s = 2.5 82.8 95.5 95.8 95.5

Table 1 shows the coverage probability of the 95% HPD
credibility intervals for each sample size and parameter. The
empirical convergences are similar and close to the nominal
level when n = 300. The presence of censoring impacts neg-
atively. Figure 2 shows the variance and mean squared error
of the estimators of σ and s for different samples. As ex-
pected, as the sample size grows, the variance and the mean
squared error of estimators decrease. However, this reduc-
tion is more marked for the estimator of σ in all considered
situations.

7. APPLICATION

In this section the proposed methodology is applied to
two real datasets, considering the distribution in the pres-
ence of complete and censored data.

Complete data. In order to illustrate the methodology
presented for complete data, we consider a dataset of sur-
vival times, in months, of 184 patients with lung cancer
(Overduin [20]). The goal is to compare the fits of the logGN
and lognormal distributions.

In the Bayesian context there are a variety of criteria
that can be adopted to select the best fit between a collec-
tion of models. This paper considers the following criteria:
Deviation Information Criterion (DIC) proposed by Spiegel-
halter et al. [24], the Expected Akaike Information Criterion
(EAIC) proposed by Brooks [6] and the Expected Bayesian
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Figure 2. Variance and Mean Squared Error (MSE) of the
Bayesian estimators for different samples.

Information Criterion (EBIC) proposed by Carlin and Louis
[7]. The logGN and lognormal distributions were fitted to
data via the Bayesian reference process. The posterior sam-
ples were generated by the Metropolis-Hastings technique,
similar to the simulation study. A single chain of dimension
150,000 was considered for each parameter, discarding the
first 75,000 iterations to eliminate the effect of initial val-
ues, and to avoid correlation problems, a space with a size
of 15 was used, resulting in a final sample size 5,000. The
convergence of the chain was verified by the Geweke crite-
rion. Table 2 shows the posterior summaries for the param-
eters for both distributions and the model selection criteria.
The logGN distribution is the most suitable to represent the
data, as it displays better performance than the lognormal
distribution for all criteria used.

Table 2. Posterior mean and 95% HDP intervals for the
parameters of the model and Bayesian comparison criteria for

the data on patients with lung cancer

Model θ Mean HDP (95%) DIC EAIC EBIC

logNG
μ 2.87 (2.79; 2.94)
σ 0.55 (0.43; 0.67) 1334.0 1330.2 1334.5
s 1.62 (1.08; 2.14)

logN
μ 2.86 (2.79; 2.93) 1378.5 1377.8 1384.3
σ 0.44 (0.39; 0.49)

Figure 3 shows the predicted posterior distributions for
both distributions in the left panel. The estimated survival

Figure 3. (a) Predicted posterior distributions of the logGN
and lognormal distributions; (b) Kaplan-Meier curve with
estimated survival functions of the logGN and lognormal

distributions.

curves by Kaplan-Meier and by both models are shown in
the right panel. We observe that the logGN distribution is
the most suitable to describe the data. This is expected due
to the flexibility gained by the extra parameter.

Censored data. In order to illustrate the methodology
presented in Section 5 in the presence of censoring we con-
sider a dataset from Kalbfleisch and Prentice [15]. The data
refers to the study of two treatment regimes applied to 137
patients with advanced inoperable lung cancer. The survival
time of the patients was measured in days. The data exhibits
9 censored observations. The goal is to fit the logGN and
lognormal distributions to the dataset and to compare their
efficiencies.

The logGN and lognormal distributions were fitted to the
data via the Bayesian reference process. The posterior sam-
ples were generated by the Metropolis-Hastings technique,
similar to the simulation study. A single chain of dimension
180,000 was considered for each parameter, discarding the
first 80,000 iterations to eliminate the effect of initial val-
ues, and to avoid correlation problems, a space with a size
of 20 was used, resulting in a final sample size 5,000. The
convergence of the chain was confirmed using the Geweke
criterion.

Table 3. Posterior mean and 95% HDP intervals for the
parameters of the model and Bayesian comparison criteria for

the inoperable lung cancer data

Model θ Mean (95%) HDP DIC EAIC EBIC
μ 4.17 (4.07; 4.27)

logGN σ 1.67 (1.54; 1.81) 1500.9 1506.0 1509.8
s 1.89 (1.63; 2.15)

logN μ 4.15 (4.05; 4.25) 1553.1 1556.3 1562.1
σ 1.16 (1.10; 1.23)

Table 3 shows the posterior summaries for the parame-
ters of both distributions and the model selection criteria.
The logGN distribution is the most suitable to represent
the data, as it displays better performance than the lognor-
mal distribution considering all the criteria. Figure 4 shows
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Figure 4. Kaplan-Meier curve with estimated survival
functions of the logGN and lognormal distributions for the

inoperable lung cancer data.

the estimated survival curves by Kaplan-Meier and by both
models. The proposed distribution provides a better fit than
the lognormal distribution.

8. DISCUSSION

In this paper, we have presented the logGN distribution
from the standpoint of reference Bayesian analysis in the
presence of survival data. The Jeffreys prior and reference
prior were considered for the logGN distribution. However,
Jeffreys prior leads to an improper posterior distribution
and can not be used in a Bayesian analysis.

To overcome this problem we considered the reference
analysis that provides a general method for finding an ob-
jective prior distribution that maximizes the lack of infor-
mation. We proved that the posterior obtained is proper
and can be used to deduce posterior summaries. Since the
reference priors do not take into account the opinions of
experts, but consider the assumed distribution and the ob-
served data, the reference prior can conveniently be used as
a reference for the posterior estimates.

The approach presented is a viable alternative to fit many
types of survival data, given the flexibility of the logGN dis-
tribution and the various shapes its survival function can
assume, depending on the values of the shape parameter.
Simulation studies were performed to verify the adequacy of
the proposed inference method, considering the presence of
complete and censored data, for different sample sizes. The
simulated results showed good frequentist properties even
for moderate sample sizes. Real data applications showed
that the logGN distribution outperformed the lognormal
one, regardless of the model selection criterion.

There are a large number of possible extensions of this
current work. An objective Bayesian analysis for a gener-
alized lognormal regression model will be considered. Dif-
ferent Markov chain Monte Carlo techniques can be used
to improve the convergence of the regression model. These
techniques should be compared under different n and p. An-
other extension is a diagnostic analysis to assess goodness

of fit from the assumption of the generalized lognormal re-
gression model.

APPENDIX A: PROOF OF LEMMA 4.2

It is known that σ can be obtained analytically. Integrat-
ing σ, we obtain the integrated likelihood function for (μ, s),
(24)

L(μ, s|x) =
∫ ∞

0

L(μ, σ, s|x)π(σ)dσ ∝ s−1Γ

(
n+ a− 1

s

)

×
[

n∑
i=1

(
Γ

(
1 +

1

s

)
|log(xi)− μ|

)s
]−(n+a−1)

s

.

Considering the likelihood L(μ, s|x), we integrate μ, obtain-
ing

L(s|x) =
∫
�
L(μ, s|x)π(μ)dμ(25)

∝ s−1Γ

(
n+ a− 1

s

)
Γ

(
1 +

1

s

)−(n+a−1)

×
∫
�

[
n∑

i=1

|log(xi)− μ|s
]−(n+a−1)

s

dμ.

Assuming that Y = log(X), where Y is a gen-
eralized normal random variable, we have that∫
� [
∑n

i=1 |yi − μ|s]−(n+a−1)
dμ is limited. Thus,

yi = log(xi). We define the following functions: let

A(μ, s) = n (max |yi|+ |μ|)s

and

B(μ, s) =

{
n|y − μ∗|s, if μ ∈ L1,
n|y − μ|s, if μ ∈ L2,

where μ∗ = argminμ
∑n

i=1 |yi − μ|s , L1 = {μ ∈ � : |μ| <
|y|} and L2 = {μ ∈ � : |μ| ≥ |y|}.

It is observed that

I)
∑n

i=1 |yi − μ|s ≤
∑n

i=1(|yi| + |μ|)s ≤
∑n

i=1(max |yi| +
|μ|)s = n(max |yi|+ |μ|)s = A(μ, s).

II) The function | · |s for s ≥ 1 is convex in �. By Jensen’s
inequality, we have

n∑
i=1

|yi − μ|s ≥
∣∣∣∣∣

n∑
i=1

(yi − μ)

∣∣∣∣∣
s

= n |y − μ|s.

If μ ∈ L1 it follows that
∑n

i=1 |yi − μ|s ≥ n|y − μ∗|s. If
μ ∈ LS we have

∑n
i=1 |yi − μ|s ≥ n|y − μ|s.
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Thus,
∑n

i=1 |yi − μ|s ≥ B(μ, s). Considering I and II, it
follows that B(μ, s) ≤

∑n
i=1 |yi − μ|s ≤ A(μ, s). Therefore,

∫
�
[A(μ, s)]−

(n+a−1)
s dμ ≤

∫
�

[
n∑

i=1

|yi − μ|s
]− (n+a−1)

s

dμ

≤
∫
�
[B(μ, s)]−

(n+a−1)
s dμ.

We calculate the integral above on the left and right hand
sides. For the integral on the left hand side, we have∫

�
[A(μ, s)]−

(n+a−1)
s dμ =

∫
�
[n(max |yi|+ |μ|)s]−

(n+a−1)
s dμ

= 2n− (n+a−1)
s

∫ ∞

0

(max |yi|+ μ)−(n+a−1)dμ.

Let z = max |yi|+ μ, then dz = dμ. Thus, we have that∫
�
[n(max |yi|+ |μ|)s]−

(n+a−1)
s dμ(26)

= 2
n− (n+a−1)

s z−(n+a−2)

−(n+ a− 2)

∣∣∣∣∣
∞

max |yi|

= 2n− (n+a−1)
s [(n+ a− 2)(max |yi|)n+a−2]−1.

Therefore,∫
�
[n(max |yi|+ |μ|)s]−

(n+a−1)
s dμ = n− (n+a−1)

s f1(y),(27)

where f1(y) =
2

(n+a−2)(max |yi|)n+a−2 does not depend on s.

For the integral on the right hand side, we have

∫
�
[B(μ, s)]−

(n+a−1)
s dμ

(28)

=

∫
L1

[n|y − μ∗|s]−
(n+a−1)

s dμ+

∫
L2

[n|y − μ|s]−
(n+a−1)

s dμ

= n− (n+a−1)
s

[∫
L1

|y − μ∗|−(n+a−1)dμ

+

∫
L2

|y − μ|−(n+a−1)dμ

]
.

Therefore,∫
�
[B(μ, s)]−

(n+a−1)
s dμ = n− (n+a−1)

s f2(y),(29)

where f2(y) =
∫
L1

|y−μ∗|−(n+a−1)dμ+
∫
L2

|y−μ|−(n+a−1)dμ
does not depend on s.

Considering (26) and (28), we have
(30)

f1(y) ≤ n− (n+a−1)
s

∫
�

[
n∑

i=1

|yi − μ|s
]− (n+a−1)

s

dμ ≤ f2(y).

Therefore,

∫
�

[
n∑

i=1

|yi − μ|s
]− (n+a−1)

s

dμ = O
(
n− (n+a−1)

s

)
.(31)

It is known that yi = log(xi). Therefore,

∫
�

[
n∑

i=1

|log(xi)− μ|s
]− (n+a−1)

s

dμ = O
(
n− (n+a−1)

s

)
.(32)

The above result will allow the study of the behavior of
the integrated likelihood for s. Inserting the resulting value
from (30) into (24), we have

L(s|x) ∝ s−1Γ

(
n+ a− 1

s

)
Γ

(
1 +

1

s

)−(n+a−1)

(33)

×O
(
n− (n+a−1)

s

)
.

To study the behavior of the integrated likelihood for s,
we consider the following result: 1

Γ(z) ≈ z as z approaches

0 [1]. Therefore, as s → ∞, we have Γ
(
1
s

)
≈ s. Moreover,

considering the expansion of the first order Taylor series of
log Γ(1 + z) for values near z = 0, we have log Γ(1 + z) ≈
zΨ(1), where Ψ(1) ≈ −0.57721. Thus, Γ

(
1 + 1

s

)
≈ e

Ψ(1)
s for

large values of s. So, as s → ∞, we have Γ
(
n+a−1

s

)
≈ s

n+a−1 .
Therefore,

L(s|x) ≈ s−1 s

n+ a− 1

(
e

Ψ(1)
s

)−(n+a−1)

O
(
n− (n+a−1)

s

)(34)

≈ e
−Ψ(1)(n+a−1)

s O
(
n− (n+a−1)

s

)
= O

(
e

−(n+a−1)
s {Ψ(1)+logn}

)
= O(1).

The proof is complete.

APPENDIX B: PROOF OF
PROPOSITION 4.3

The proof will consider the condition given in (18) and
Lemmas 4.1 and 4.2.

Considering the reference prior given in Lemma 4.1,
Lemma 4.2 and condition (18), the posterior reference dis-
tribution is proper if and only if∫ ∞

1

O(1)O
(
s−

3
2

)
ds < ∞.

Thus, ∫ ∞

1

O(1)O
(
s−

3
2

)
ds =

∫ ∞

1

s−
3
2 ds = −2 < ∞.(35)
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Therefore, the reference prior leads to a proper posterior
distribution.

Considering the Jeffreys prior given in Lemma 4.1,
Lemma 4.2 and condition (18), the Jeffreys posterior dis-
tribution is proper if and only if∫ ∞

1

O(1)O
(
s−1

)
ds < ∞.

Thus, ∫ ∞

1

O(1)O
(
s−1

)
ds =

∫ ∞

1

s−1ds = ∞.(36)

Therefore, the Jeffreys prior leads to an improper posterior
distribution, completing the proof.
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