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Modeling RCOV matrices with a generalized
threshold conditional autoregressive Wishart
model
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In this article, we propose a generalized threshold condi-
tional autoregressive Wishart (GTCAW) model to analyze
the dynamics of the realized covariance (RCOV) matrices.
This model extends the idea of [29] to a threshold frame-
work. It is believed that, as in many financial time series,
the dynamic of RCOV matrices exhibits nonlinearity and
may be better explained by a threshold type model. The
noncentrality matrix and scale matrix of the Wishart dis-
tribution are piecewise linear driven by the lagged values
of RCOV matrices and retain two different sources of dy-
namics. The GTCAW model guarantees the symmetry and
positive definiteness of RCOV matrices, some simulation re-
sults on the maximum likelihood estimation are also given.
Real data examples based on daily RCOV matrices present
the nonlinear behavior in these time series and the useful-
ness of the proposed model.
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1. INTRODUCTION

Volatility is a common measure of risk in financial time
series and multivariate volatility modeling is also of vi-
tal importance in many investment decisions such as the
calculation of derivative prices, portfolio optimization and
risk management. The most popular volatility model among
practitioners is the multivariate generalized autoregressive
conditional heteroscedastic (MGARCH) model introduced
by [5], which is widely accepted to describe the properties of
financial market returns. Later, the multivariate stochastic
volatility (MSV) model proposed by [15] provides an alter-
native to GARCH models in accounting for the time-varying
and persistent volatility. Recent reviews on MGARCH and
MSV models can be found in [4] and [2], respectively. In
practice, the covariance of returns is unknown and is either
treated as measurable given past observations in the case of
MGARCH models or is assumed to be a latent quantity in
the case of MSV models.
∗Corresponding author.

Recently, an alternative approach of direct modeling co-
variance has attracted substantial interest. By using the
high-frequency returns data, one can construct the realized
covariance (RCOV) matrix as a precise estimate for the co-
variance matrix of low-frequency returns (see e.g., [1], [3]).
RCOV matrix provides a more accurate measure of daily
ex-post covariation that is observable. For instance, econo-
metric forecasting gains were demonstrated in [13], [17] and
[18] while improvements in portfolio choice can be found in
[17] and [8].

Modeling RCOV matrices offers much improvements over
conventional MGARCH and MSV models, but it should sat-
isfy the requirement that each covariance matrix must be
symmetric and positive definite at any time point in the
process. One of the most flexible methods to deal with this
requirement is to use the matrix-variate distributions with
support restricted to the set of all symmetric and positive
definite matrices. The pioneer time series models for model-
ing RCOV matrices are based on Wishart distributions. For
example, [14] introduced the Wishart autoregressive (WAR)
model which involves a Wishart distribution with a time-
varying noncentrality matrix and a constant but nonzero
scale matrix. Later, the conditional autoregressive Wishart
(CAW) model was proposed by [13], which involves a central
Wishart distribution with a time-varying scale matrix that
has the BEKK-GARCH specification of [12]. [29] general-
ized WAR and CAW models, making the noncentrality and
scale matrix of the Wishart distribution both time-varying
in two different dynamic structures.

In financial econometrics, it is well known that nonlinear-
ity is a salient feature of volatility. Therefore, nonlinear time
series modeling is worthy paying more attention to. This
class of models captures the dynamic behavior of time se-
ries including limit cycles, amplitude dependent frequencies
and jump phenomena by switching the regimes. [25] pro-
posed the self-exciting threshold autoregressive (SETAR)
model to capture nonlinear phenomena in financial data,
[20] introduced the double-threshold ARCH model and [7]
extended it to the double-threshold GARCH model to han-
dle the dynamics in the mean and variance process. During
these two decades, the high-dimensional nature of economic
and financial data leads researchers to multivariate thresh-
old modeling. [26] first proposed the testing and modeling
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procedure on multivariate threshold autoregressive models
and applied them to high-frequency financial data exam-
ples. [22] considered a regime switching dynamic correlation
model with constant correlation within a regime but dif-
ferent correlations across regimes. The recent works of [19]
proposed a threshold varying conditional correlation model
to capture the asymmetric behavior of the mean and the
variance in financial time series. For more properties and
applications, see a thorough review on the development of
the family of the threshold time series models in the finance
literature by [10].

Motivated by multivariate threshold models, we propose
a generalized threshold conditional autoregressive Wishart
(GTCAW) model to analyze the dynamics of the RCOV
matrices. This model extends the idea of [29] to a thresh-
old framework. The noncentrality matrix and scale matrix
of the Wishart distribution are both piecewise linear driven
by the lagged values of RCOV matrices and retain two dif-
ferent sources of dynamics. The GTCAW model is also in
accord with the requirement that each RCOV matrix guar-
antees the symmetry and positive definiteness as mentioned
before. The parameters can be estimated by maximum like-
lihood estimation and the model is applied to empirical data
examples to show its adequacy in terms of model fitting and
forecasting.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the generalized threshold conditional
autoregressive Wishart model. Simulation experiments are
performed in Section 3. Section 4 reports the empirical data
analysis by using the proposed model on daily RCOV ma-
trices for modelling stocks from the New York Exchange. At
last, we conclude in Section 5. Below, we largely follow the
notations in [29].

2. GENERALIZED THRESHOLD
CONDITIONAL AUTOREGRESSIVE

WISHART MODEL

2.1 Model formulation

Let Yt = (Yij,t) be a stochastic, symmetric and positive
definite RCOV matrix of n asset returns observed at time
t (t = 1, ..., T ). The matrix Yt given the past observations
Ft−1 = {Yt−1,Yt−2, ...} is assumed to follow a Wishart dis-
tribution:

(1) Yt|Ft−1 ∼ Wn(ν,Λt,Σt),

where ν > n − 1 is the degrees of freedom (DF), Λt =
(Λij,t) is the n × n symmetric and positive semi-definite
noncentrality matrix andΣt = (Σij,t) is the n×n symmetric
and positive definite scale matrix. The density function of
Yt (see [21], p.442) is given by:

f(Yt|Ft−1) = 2−νn/2π−n(n−1)/4

[
n∏

i=1

Γ

(
ν + 1− i

2

)]−1
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× (detΣt)
−ν/2(detYt)
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{
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2
tr
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Σ−1

t (Yt +Λt)
]}

× 0F1
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1

4
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t ΛtΣ
−1
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)
,

where Γ(·) is the gamma function and 0F1 is the hyperge-
ometric function of matrix argument. Let l0 < l1 < · · · <
ls−1 < ls be a partition of the real line, where l0 = −∞ and
ls = ∞. Let d be the delay parameter and rt−d be a real-
valued threshold variable. We assume that the matrices Λt

and Σt are driven by the lagged values of Yt in each regime
(j = 1, ..., s):

Λt =

Rj∑
h=1

M
(j)
h Yt−h(M

(j)
h )′,(3)
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i )′(4)

+
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A
(j)
k Yt−k(A

(j)
k )′, lj−1 < rt−d ≤ lj ,

where M
(j)
h is an n × n parameter matrix, C(j) is an

n × n lower triangular matrix, A
(j)
k = diag(α

(j)
1k , ..., α

(j)
nk )

and B
(j)
i = diag(β

(j)
1i , ..., β

(j)
ni ) are n×n diagonal parameter

matrices in the jth regime and subject to
∑Qj

k=1(α
(j)
hk )

2 +∑Pj

i=1(β
(j)
hi )

2 < 1 for h = 1, ..., n. One can see that equation
(3) accounts for the autoregressive property, equation (4)
resembles the diagonal BEKK model of [12] and captures
conditional heteroscedasticity. Besides, each RCOV matrix
of the process is guaranteed to be symmetric and positive
definite as long as the initial matrices Σ0,Σ−1, ...,Σ−Pj+1

are symmetric and positive definite. Then, we shall call
the model defined by equations (1)-(4) the jth regime
generalized threshold conditional autoregressive Wishart
(GTCAW)(Pj , Qj , Rj , s) model, j = 1, ..., s. We will assume
Yt to be stationary and ergodic with finite fourth order mo-
ments.

For simplicity, the same threshold structure of the autore-
gressive and conditional variance equations are considered.
Thus, the GTCAW(Pj , Qj , Rj , s) model will be simplified as
GTCAW(p, q, r, s) if Pj = p, Qj = q and Rj = r for any
j = 1, ..., s. Similar to [12], we suppose that the main diag-
onal elements in C(j) and the first diagonal element of each

A
(j)
k ,B

(j)
i and M

(j)
h in the jth regime are restricted to be

positive, which guarantees that the model is identifiable. It is
obvious that the GTCAW(p, q, r, s) model is an extension of
the generalized conditional autoregressive Wishart (GCAW)
model in [29] for capturing nonlinearity. Since the GCAW
model consists of the WAR model of [14] and the CAW

model of [13], we know that if M
(j)
1 = · · · = M

(j)
r = 0 (i.e.,
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r = 0), the GTCAW(p, q, r, s) model becomes the thresh-

old CAW model, denoted as TCAW(p, q, s). If A
(j)
1 = · · · =

A
(j)
q = B

(j)
1 = · · · = B

(j)
p = 0 (i.e., p = q = 0), then

the GTCAW(p, q, r, s) model reduces to the threshold WAR
model, denoted as TWAR(r, s).

To define the standardized residuals for model diag-
nostics, first we derive the vector representation of the
GTCAW(p, q, r, s) model. Denote vech(·) as the operator
that transforms a matrix by stacking the lower triangular
part including the diagonal of the matrix into a vector, and
vec(·) as the operator that stacks all columns of a matrix
into a vector. Let Ln and Dn denote the elimination and du-
plication matrix, respectively, such that for any symmetric
n×nmatrix Y , vec(Y ) = Dn(Y ) and vech(Y ) = Lnvec(Y ).
Define yt = vech(Yt), λt = vech(Λt), σt = vech(Σt) and
c(j) = vech(C(j)(C(j))′). Then the vector representations of
equations (3) and (4) turn out to be

λt =
r∑

h=1

M(j)
h yt−h,(5)

σt = c(j) +

p∑
i=1

B(j)
i σt−i +

q∑
k=1

A(j)
k yt−k,(6)

lj−1 < rt−d ≤ lj ,

where M(j)
h ,A(j)

k and B(j)
i are square matrices with dimen-

sion n(n+ 1)/2 such that

M(j)
h = Ln(M

(j)
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h )Dn,
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(j)
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(j)
i )Dn,

A(j)
k = Ln(A

(j)
k ⊗A

(j)
k )Dn,

j = 1, ..., s and ⊗ denotes the Kronecker product.
Next, we will give the conditional expectation for the jth

(j = 1, ..., s) regime GTCAW (p, q, r, s) model as follows

E(yt|Ft−1) = λt + νσt(7)

= νc(j) +

p∑
i=1

νB(j)
i σt−i +

max(q,r)∑
k=1

(νA(j)
k +M(j)

k )yt−k,

Var(yt|Ft−1)(8)

= 2D+
n [ν(Σt ⊗Σt) +Σt ⊗Λt +Λt ⊗Σt](D+

n )
′,

lj−1 < rt−d ≤ lj ,

with A(j)
k = 0 for k > q and M(j)

k = 0 for k > r, where
D+

n = Ln(In2 + Knn)/2, In2 is an n2-dimension identity
matrix and Knn is the commutation matrix such that for
any m× n matrix X, vec(X ′) = Kmnvec(X), see also [29].

2.2 Parameter estimation

Recall the notation c(j) = vech(C(j)(C(j))′), A
(j)
k =

diag(α
(j)
1k ,...,α

(j)
nk ) for k=1, ..., q andB

(j)
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for i = 1, ..., p. Let α
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k = (α

(j)
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(j)
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′ and β
(j)
i =

(β
(j)
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(j)
ni )

′ within the jth regime. For ease of presen-
tation and without loss of generality, the case of s = 2
is considered, thus there is only one threshold to be es-
timated. Then the parameter vector of GTCAW(p, q, r, s)

turns out to be φ = (ν, (c(j))′, (α
(j)
1 )′, ..., (α

(j)
q )′, (β

(j)
1 )′, ...,

(β
(j)
p )′, vec(M

(j)
1 )′, ..., vec(M

(j)
r )′, l)′ = (θ, l)′ (j = 1, 2),

which can be estimated by maximum likelihood (ML) es-
timation. Denote I1t = I(rt−d ≤ l) and I2t = I(rt−d > l)
where I(·) is the indicator function. Then by equation (2),
one can find that the conditional log-likelihood function for
the jth regime (j = 1, 2) is given by

LT (φ) =
T∑

t=1

{
− ν

2
ln detΣt +
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2
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(9)
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The ML-estimates φ̂ (except l̂) can be obtained by maximiz-
ing the conditional log-likelihood function (9) numerically.
Since LT (φ) is not differentiable with respect to the thresh-
old l, the maximization of the log-likelihood function can be
done in the following two steps in practice:

1. For each l in the appropriate set of candidates [lL, lU ],

find θ̂l such that

θ̂l = argmax
θ∈Θ

(LT (θ, l)),

where Θ is the parameter space for θ.
2. The threshold is estimated by searching over all candi-

dates

l̂ = argmaxl∈[lL,lU ](LT (θ̂l, l)),

and the final estimate for φ̂ is (θ̂l̂, l̂)
′.

Notice that to restrict ν > n − 1 and the main diago-
nal elements in C(j) and the first diagonal element of each

A
(j)
k , B

(j)
i and M

(j)
h in the jth regime to be positive as

mentioned before, we estimate
√
ν − n+ 1,

√
C

(j)
ll ,

√
A

(j)
11,k,√

B
(j)
11,i and

√
M

(j)
11,h instead. As in the threshold time se-

ries literature, the estimator of l is expected to be super-
consistent and consistency together with asymptotic nor-
mality hold for the other parameters in equations (3) and
(4), see [9].

2.3 Model selection and diagnostic checking

Once the GTCAW(p, q, r, s) model has been estimated,
we can use the Akaike information criterion (AIC) to choose
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the optimal order (p, q, r). The AIC of the GTCAW(p, q, r)
model is given by

(10) AIC = −2LT (φ̂) + 2 dim(φ),

where φ̂ is the ML-estimates of φ, LT (·) is the log-likelihood
function given in equation (9) and dim(φ) = n2(2r + 1) +
n(2p+ 2q + 1) + 2 is the number of parameters.

For model diagnostic checking, we know that the
GCAW(p, q, r) model (with the case j = 1) of [29] can
be rewritten as the vector autoregressive moving average
(max(p+ r, q), p) model:

yt =νc+

max(p+r,q)∑
l=1

(
νAl + Bl +Ml −

l−1∑
h=1

Bl−hMh

)
yt−l

−
p∑

i=1

Biat−i + at,

where at is a martingale difference subject to E(at) = 0
and E(atas) = 0 for s �= t. Following this idea, we define
the standardized residual vector for our GTCAW(p, q, r, s)
model as

(11) êt = Var(yt|Ft−1)
−1/2[yt − E(yt|Ft−1)],

where the conditional expectation and conditional variance
are given in equations (7) and (8) with φ = φ̂ respectively,
and Var(yt|Ft−1)

−1/2 is the inverse of the Cholesky factor
of matrix Var(yt|Ft−1). As we all know, if the model fits
the data correctly and captures the temporal dependence in
elements of yt adequately, the standardized residuals êij,t in
the vector êt should be approximately serially uncorrelated.
Here, we choose the portmanteau test [6] and the multivari-
ate portmanteau test [16] to check the adequacy of the fitted
models. The corresponding portmanteau test statistics are
defined as

Q1 = n2
m∑

k=1

r̂2ij,k/(n− k),

Q2 = n2
m∑

k=1

tr(Ê′
kÊ

−1
0 ÊkÊ

−1
0 )/(n− k),

where r̂ij,k =
∑T

t=k+1 êij,têij,t−k/
∑T

t=1 ê
2
ij,t is the kth

autocorrelation of the residual component êij,k, Êk =∑T
t=k+1 êtê

′
t−k is the kth residual autocovariance matrix

and m is the number of lags to be chosen appropriately.
The construction for these two test statistics are similar but
different for the DF of the χ2 distribution.

2.4 Forecasting

Given the parameter estimates, one can easily obtain the
forecasts of yt. Here, we predict the one-day-ahead covari-
ance matrix by the conditional expectation given past ob-
servations of yt. According to equation (7), it can be shown

that

ŷt(1) = E(yt+1|Ft)

= νc(j) +

p∑
i=1

νB(j)
i σt +

max(q,r)∑
k=1

(νA(j)
k +M(j)

k )yt,

lj−1 < rt−d ≤ lj .

By calculating ŷt(1), then we have the one-day-ahead fore-

casts of the RCOV matrices Ŷt(1), which are obtained by
substituting the elements of ŷt(1) into a symmetric matrix.

3. SIMULATION STUDIES

For simulating the GTCAW model, first we assume that
n = 2, s = 2 for simplicity, and the threshold structure
of the autoregressive and conditional variance equations are
the same for ease of presentation. Extension to other com-
plex cases can be done in a straightforward manner. By the
virtue of the SETAR model introduced by [25], we use the
first diagonal element of the RCOV matrix series with delay
parameter equal to one, i.e., Y11,t−1 as the threshold vari-
able.

Similar to the generation of the noncentral Wishart dis-
tribution of [29], the simulation procedure with threshold
framework is as follows:

1. Give the initial values, i.e., Y0 = Σ0 = I2 and the
threshold value l, determine the regime using the rela-
tionship between Y11,t−1 and l, calculate Λt and Σt by
equations (3) and (4).

2. Generate a ν × n random matrix Z such that its ele-
ments are uncorrelated standard normal random num-
bers.

3. Obtain the Cholesky decompositions of Λt and Σt such

that Λt = Ñ ′
tÑt and Σt = D′

tDt.
4. Construct the ν × n mean matrix as

Nt =

(
Ñt

Oν−n,n

)
,

where Oν−n,n is the (ν − n)× n zero matrix.
5. Generate the RCOV matrix as

Yt = (Nt +ZDt)
′(Nt +ZDt).

After constructing the simulated RCOV matrices, we ap-
ply the two steps estimation procedure as discussed in Sec-
tion 2.2. Since the threshold is estimated by the grid search
method over the set of candidates in [lL, lU ], the choice for
the upper bound lU as well as the lower bound lL is nec-
essary and of vital importance. A common strategy used in
practice is to replace the bounds by some numbers deter-
mined based on the data (see [11], [28]). Specifically, we fix
α1 = 0.2, α2 = 0.8 and find the empirical αith quantile for
the sorted data Y11,t−1, denoted as qi(i = 1, 2). Then the
threshold is estimated by searching over all values of Y11,t−1

80 Y. Cui, F. Zhu, and W.K. Li



Table 1. True values of the parameters used in simulation
studies

Para. Value Para. Value

Regime 1 2

A
(1)
1

0.2069
A

(2)
1

0.0621
−0.0567 −0.1606

B
(1)
1

0.2461
B

(2)
1

0.2077
−0.0145 −0.0926

C(1) 0.1060
C(2) 0.1065

0.2374 0.2978 −0.1294 0.1874

M
(1)
1

0.1232 −0.2918
M

(2)
1

0.2361 0.0565
−0.2352 0.0378 −0.0880 −0.0140

ν 10 l 0.3

Table 2. Bias and MSE for GTCAW(1,1,1,2) model as sample
size T = 200

Para. Bias Para. Bias

Regime 1 2

A
(1)
1

−0.0082
A

(2)
1

−0.0076
0.0305 0.0246

B
(1)
1

−0.0127
B

(2)
1

−0.0266
0.0004 0.0440

C(1) −0.0057
C(2) −0.0108

0.0055 −0.0495 −0.0018 −0.1050

M
(1)
1

−0.0008 0.0063
M

(2)
1

−0.0140 −0.0134
0.1374 −0.0024 −0.0196 −0.0159

ν 0.2338 l −0.0021

Para. MSE Para. MSE

Regime 1 2

A
(1)
1

0.0013
A

(2)
1

0.0015
0.0045 0.0028

B
(1)
1

0.0567
B

(2)
1

0.0345
0.0592 0.0948

C(1) 0.0003
C(2) 0.0004

0.0027 0.0098 0.0014 0.0181

M
(1)
1

0.0069 0.0013
M

(2)
1

0.0192 0.0041
0.2196 0.0108 0.1077 0.0701

ν 0.3900 l 1.1344× 10−5

in the interval [q1, q2] with estimates having the maximum

log-likelihood value. We obtain the parameter estimate θ̂l for
each given threshold l, finally select the threshold l̂ and the
corresponding φ̂l̂ which maximizes the log-likelihood func-
tion.

Here, we conduct a simulation experiment on the GT-
CAW(1,1,1,2) model with m = 100 replications of 2 by
2 RCOV matrices and we choose the sample size T =
200, 400. With the known threshold variable, there are 24
parameters to be estimated including the DF ν and the
threshold l. Each estimate is compared in terms of its bias
and mean squared error (MSE) according to the following
formulas:

bias =
1

m

m∑
i=1

(ϑ̂i − ϑ0), MSE =
1

m

m∑
i=1

(ϑ̂i − ϑ0)2,

Table 3. Bias and MSE for GTCAW(1,1,1,2) model as sample
size T = 400

Para. Bias Para. Bias

Regime 1 2

A
(1)
1

−0.0029
A

(2)
1

−0.0049
0.0240 0.0177

B
(1)
1

0.0003
B

(2)
1

−0.0231
−0.0074 0.0171

C(1) −0.0046
C(2) −0.0067

0.0123 −0.0342 −0.0052 −0.0740

M
(1)
1

0.0013 0.0061
M

(2)
1

−0.0330 −0.0016
0.1180 0.0140 0.0009 −0.0382

ν 0.1247 l −9.3948 ∗ 10−4

Para. MSE Para. MSE

Regime 1 2

A
(1)
1

0.0005
A

(2)
1

0.0010
0.0023 0.0013

B
(1)
1

0.0413
B

(2)
1

0.0225
0.0360 0.0543

C(1) 0.0002
C(2) 0.0002

0.0017 0.0040 0.0013 0.0083

M
(1)
1

0.0044 0.0006
M

(2)
1

0.0157 0.0032
0.0916 0.0050 0.0923 0.0388

ν 0.1529 l 1.8081 ∗ 10−6

where ϑ̂i is the estimate of the true parameter ϑ0 in the ith
replication. The true values of the parameters are shown in
Table 1 and the bias and MSE values of the estimates for
T = 200 and 400 are presented in Tables 2 and 3, respec-
tively. From them, we can find that the bias and MSE of
the estimate in matrices both give reasonably small values.
Furthermore, as the sample size increases, all the values of
MSE gradually decrease. In particular, the mean estimated
threshold is 0.2979 (0.2991) when T = 200 (400), very close
to the true value 0.3. In addition, the MSE for the threshold
parameter drops much more than 50% (from 1.1344× 10−5

to 1.8081× 10−6), which indicates the super-consistency of
the threshold estimator. And the obtained value of DF shows
a little larger bias and MSE, it may be due to the fact that
the convergence of DF in Wishart distribution is relatively
slower. In general, all the estimates are fairly close to the
true values.

4. REAL DATA ANALYSIS

We now apply the proposed GTCAW models to three ex-
amples of daily RCOV matrices for modeling stocks traded
at the New York Stock Exchange (NYSE) in this section.
It is well known that the stocks have very different dy-
namics in a bull or bear market. For example, the corre-
lations between stock returns will become stronger in the
down market. Therefore, we consider the piecewise linear
approach, threshold, to feasibly and easily capture such phe-
nomenon.
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Table 4. Summary statistics for the realized variances and covariances

Mean Minimum Maximum SD
Stock ×10−5 ×10−5 ×10−4 ×10−5 Skewness Kurtosis

Example (a) Realized variance
AIG 17.40 3.05 9.16 11.17 2.47 13.08
GE 5.89 0.91 1.57 3.02 1.01 3.59

Realized covariance
AIG-GE 3.86 −1.53 1.51 2.82 1.10 4.35

Example (b) Realized variance
BA 5.46 1.10 2.19 3.25 1.70 7.33
C 16.73 2.80 9.62 10.89 2.56 15.25

Realized covariance
BA-C 3.69 −1.30 1.75 3.13 1.66 6.30

Example (c) Realized variance
KO 2.69 0.42 1.10 1.73 1.81 7.22
MCD 3.08 0.42 2.68 2.57 4.34 33.46
WMT 3.23 0.48 1.61 2.34 2.53 11.61

Realized covariance
KO-MCD 0.94 −0.36 0.91 0.96 3.21 23.80
KO-WMT 0.89 −0.11 0.47 0.85 1.45 5.63
MCD-WMT 0.82 −0.69 0.44 0.80 1.40 5.50

Figure 1. Time series of the realized variances and
covariances for example (a).

Figure 2. Time series of the realized variances and
covariances for example (b).

4.1 Data

Here, we select seven stocks (after data cleaning) traded
at NYSE: American International Group (AIG), General
Electric (GE), Boeing (BA), Citigroup (C), Coca-Cola
(KO), McDonald’s (MCD) and Wal-Mart (WMT), start-
ing at 3 January 2012 and ending on 31 December 2012,
with totally 250 observations. The original data set was also
considered to deal with high-dimensional RCOV matrices

Figure 3. Time series of the realized variances and
covariances for example (c).

by using 30 stocks in [23]. The above seven stocks are di-
vided into three data set examples, that is (a) AIG and
GE, (b) BA and C and (c) KO, MCD and WMT. For ex-
ample (a), we just choose them by a random choice and
they are both multi-national corporations that include fi-
nancial service. The other two combinations of stocks have
relative high correlations. BA and C are the components of
the First National City Bank Financial Group. As for ex-
ample (c), we pick up these three stocks not only because
their brand familiarity, but also due to the fact that they
are all from consumer goods industry and have cooperation
mutually.

Then, we construct the daily RCOV matrices by using
the threshold multiscale realized volatility matrix (MRVM)
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Table 5. Goodness of fit measures for the GTCAW models of example (a)

Order dim(φ) Threshold LT (φ̂) AIC
p-value

ê11,k ê12,k ê22,k Êk

Central Wishart distribution with threshold (GTCAW(0,0,0,s))

(0,2) 8 1.5842 −238.0044 492.0089 0.06 0.00 0.00 0.00

TWAR(r, s) (GTCAW(0,0,r, s))

(1,2) 16 1.5842 −228.4030 488.8060 0.07 0.00 0.00 0.00
(2,2) 24 1.5842 −212.6215 473.2430 0.13 0.01 0.04 0.01

TCAW(p, q, s) (GTCAW(p, q, 0, s))

(0,1,2) 12 1.3044 −210.7074 445.4148 0.23 0.01 0.03 0.28
(1,1,2) 16 1.5842 −198.7482 429.4964 0.32 0.21 0.08 0.44
(1,2,2) 20 1.5842 −197.6880 435.3760 0.22 0.15 0.07 0.31
(2,1,2) 20 1.5106 −187.1481 408.2961 0.47 0.11 0.08 0.35
(2,2,2) 24 1.5106 −185.0764 418.1528 0.33 0.15 0.14 0.49
(2,3,2) 28 1.5106 −185.0042 426.0084 0.27 0.12 0.10 0.30
(3,2,2) 28 1.5106 −184.1077 424.2155 0.39 0.11 0.08 0.11
(3,3,2) 32 1.5106 −184.0850 432.1700 0.22 0.09 0.07 0.14

GTCAW(p, q, r, s)

(0,1,1,2) 20 1.8627 −207.3659 454.7317 0.18 0.00 0.01 0.10
(1,1,1,2) 24 1.5787 −197.1957 442.3915 0.29 0.14 0.05 0.38
(1,2,1,2) 28 1.5842 −195.9558 447.9117 0.23 0.13 0.06 0.38
(2,1,1,2) 28 1.5106 −186.3690 418.7381 0.25 0.04 0.04 0.26
(2,2,1,2) 32 1.5106 −184.5951 433.1902 0.29 0.08 0.07 0.28
(2,3,1,2) 36 1.5106 −184.2820 440.9639 0.28 0.09 0.07 0.30
(3,2,1,2) 36 1.5106 −183.7655 447.5310 0.18 0.05 0.03 0.05
(3,3,1,2) 40 1.5106 −183.9569 439.9139 0.18 0.05 0.03 0.05
(0,1,2,2) 28 1.8627 −199.4685 454.9370 0.19 0.01 0.05 0.13
(1,1,2,2) 32 1.5842 −195.0493 454.0985 0.15 0.10 0.03 0.24
(1,2,2,2) 36 1.5842 −194.4081 460.8162 0.13 0.09 0.03 0.24
(2,1,2,2) 36 1.5106 −181.6999 435.3998 0.13 0.05 0.04 0.18
(2,2,2,2) 40 1.5106 −180.3721 440.7443 0.13 0.07 0.04 0.19
(2,3,2,2) 44 1.5106 −180.2026 448.4052 0.14 0.07 0.04 0.19
(3,2,2,2) 44 1.5106 −179.8962 447.7924 0.07 0.03 0.02 0.02
(3,3,2,2) 48 1.5106 −179.7972 455.5943 0.08 0.03 0.02 0.02

Note: dim(φ), the number of parameters; LT (φ̂), the optimized log-likelihood; AIC, Akaike information criterion;

p-value, calculated by the portmanteau test using 20 lags of the standardized residuals.

estimator defined by [24]. Similar to [23], it generates three
set-ups of time series with 250 matrices, whose sizes are 2 by
2, 2 by 2 and 3 by 3, respectively. Since the threshold MRVM
estimator cannot guarantee positive definite property in fi-
nite samples, we have also checked that all the matrices in
the data series are positive definite.

In addition, descriptive statistics for the realized vari-
ances and covariances of each example are presented in Ta-
ble 4, and their time plots are shown in Figures 1-3, respec-
tively. From the graphs, the realized variances and covari-
ances show fluctuations and some time series have signifi-
cant outliers during the year, which may lead to heavy-tailed
cases. In fact, one can find that all realized variances and
covariances have larger kurtosises than that of the normal
distribution, exhibiting the heavy-tailed phenomena.

4.2 Model fitting

We now fit the GTCAW model to the full sample of daily
RCOVmatrices, with lag orders (p, q, r) ranging from (0,0,0)

to (3,3,2). For simplicity, we also choose the regime s = 2
and Y11,t−1 as the threshold variable. Clearly, many other
possibilities for the threshold variable exist, but our purpose
here is to illustrate the usefulness of the GTCAW models in
describing the nonlinear presence in the data. The current
choice seems to be adequate for our purpose. Notice that the
GTCAW(0,0,0,2) model represents the central Wishart dis-
tribution Wn(ν, 0,CC ′) with a threshold. When p = q = 0
and r �= 0, it turns out to be the TWAR(r,2) model. If
r = 0, it reduces to the TCAW(p, q, 2) model as mentioned
before. In each example, we report the estimated threshold
value, the maximum values of the log-likelihood function
given in (9), AIC values given in (10) and the results of
diagnostic checking on the standardized residuals êt with
20 lags as described in Section 2.3, which are shown in Ta-
bles 5-7, respectively. For comparison purposes, we also fit
non-threshold GCAW model with the optimal order of each
example to the RCOV matrices. The results can be seen in
Table 8.
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Table 6. Goodness of fit measures for the GTCAW models of example (b)

Order dim(φ) Threshold LT (φ̂) AIC
p-value

ê11,k ê12,k ê22,k Êk

Central Wishart distribution with threshold (GTCAW(0,0,0,s))

(0,2) 8 0.4230 −229.0383 474.0766 0.03 0.00 0.00 0.00

TWAR(r, s) (GTCAW(0,0,r, s))

(1,2) 16 0.4080 −206.9145 445.8291 0.02 0.03 0.00 0.00
(2,2) 24 0.4160 −195.7852 439.3703 0.06 0.00 0.02 0.06

TCAW(p, q, s) (GTCAW(p, q, 0, s))

(0,1,2) 12 0.4080 −195.0041 414.0082 0.04 0.00 0.04 0.00
(1,1,2) 16 0.3590 −183.4360 394.8721 0.97 0.90 0.91 0.42
(1,2,2) 20 0.4060 −178.9340 397.8681 0.05 0.01 0.22 0.01
(2,1,2) 20 0.4080 −179.8978 399.7957 0.51 0.47 0.82 0.15
(2,2,2) 24 0.4080 −175.2716 398.5433 0.08 0.02 0.20 0.01
(2,3,2) 28 0.4080 −174.2561 404.5122 0.05 0.01 0.15 0.00
(3,2,2) 28 0.4080 −173.2772 402.5545 0.04 0.01 0.12 0.01
(3,3,2) 32 0.4080 −172.3572 432.1700 0.04 0.01 0.12 0.00

GTCAW(p, q, r, s)

(0,1,1,2) 20 0.4080 −193.0410 426.0821 0.03 0.00 0.04 0.04
(1,1,1,2) 24 0.3600 −180.7873 405.5745 0.94 0.83 0.87 0.46
(1,2,1,2) 28 0.4080 −177.1697 410.3394 0.04 0.01 0.18 0.02
(2,1,1,2) 28 0.4080 −178.1396 412.2792 0.47 0.42 0.81 0.06
(2,2,1,2) 32 0.4080 −173.6099 411.2198 0.04 0.01 0.19 0.00
(2,3,1,2) 36 0.4080 −172.9911 417.9821 0.03 0.01 0.17 0.00
(3,2,1,2) 36 0.4080 −171.6847 415.3693 0.02 0.01 0.11 0.00
(3,3,1,2) 40 0.4080 −170.8503 421.7006 0.02 0.00 0.11 0.05
(0,1,2,2) 28 0.4080 −180.9398 417.8795 0.04 0.01 0.37 0.06
(1,1,2,2) 32 0.4080 −178.4936 420.9872 0.02 0.00 0.18 0.00
(1,2,2,2) 36 0.4080 −176.1822 424.3644 0.02 0.00 0.17 0.00
(2,1,2,2) 36 0.4080 −173.8349 419.6698 0.01 0.00 0.18 0.00
(2,2,2,2) 40 0.4080 −171.6268 423.2536 0.02 0.01 0.17 0.00
(2,3,2,2) 44 0.4080 −170.9751 429.9503 0.02 0.01 0.16 0.00
(3,2,2,2) 44 0.4080 −169.6830 427.3659 0.01 0.00 0.10 0.00
(3,3,2,2) 48 0.4080 −168.8594 433.7188 0.01 0.00 0.09 0.00

Note: dim(φ), the number of parameters; LT (φ̂), the optimized log-likelihood; AIC, Akaike information criterion;

p-value, calculated by the portmanteau test using 20 lags of the standardized residuals.

From them, we have the following findings:

1. First, we consider the diagnostic checking for each
model and all elements of the residual series passing
the portmanteau tests at the 1% significance level are in
bold. Notice that in example (c), due to the increase in
the dimension of the RCOV matrices, we only consider
the portmanteau test of [6]. In fact, as we have been
looking at many tests at the same significance level,
some of the cases that do not pass the diagnostic check-
ing are probably due to the type one error. Then based
on AIC values, we choose the best specification among
the models that pass the diagnostic checking in each ex-
ample. From Tables 5-7, one can find that the best fit-
ting models are TCAW(2,1,2), TCAW(1,1,2) and GT-
CAW(3,2,1,2) models in examples (a)-(c), respectively,
since they have the smallest AIC values. Besides, the
best performance in GTCAW(p, q, r, s) cases for exam-
ples (a)-(b) are GTCAW(2,1,1,2) and GTCAW(1,1,1,2),

respectively.
2. With the optimal order, we conduct the correspond-

ing non-threshold GCAW models. From Table 8, one
can find that many elements do not pass the diagnostic
checking. In addition, despite the GCAW models have
less parameters, they show much larger AIC values than
their threshold counterparts. This leads to a demonstra-
tion on the nonlinear dynamic presence in the RCOV
series and the usefulness of the threshold approach.

3. The ML-estimates of the preferred models for each ex-
ample are given in Tables 9-11. One can find that some
estimates show very low values and we also conduct a
likelihood ratio test (LRT) for the significance of those
estimates. More specifically, let the null hypothesis be
ϑi = 0, and we refit the model by setting those param-
eters with small estimates to zeros and then apply a
LRT to the reduced model. In summary, the preferred
models all accept the null hypothesis and we fix the cor-
responding quantities in Tables 9-11. Although these
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Table 7. Goodness of fit measures for the GTCAW models of example (c)

Order dim(φ) Threshold LT (φ̂) AIC
p-value

ê11,k ê12,k ê13,k ê22,k ê23,k ê33,k

Central Wishart distribution with threshold (GTCAW(0,0,0,s))

(0,2) 14 0.1910 1481.6959 −2935.3918 0.05 0.11 0.00 0.00 0.00 0.00

TWAR(r, s) (GTCAW(0,0,r, s))

(1,2) 32 0.1910 1548.4026 −3032.8051 0.16 0.19 0.04 0.02 0.00 0.00
(2,2) 50 0.1930 1564.6422 −3029.2846 0.42 0.25 0.08 0.02 0.00 0.00

TCAW(p, q, s) (GTCAW(p, q, 0, s))

(0,1,2) 20 0.1730 1580.4893 −3120.9785 0.08 0.00 0.00 0.00 0.00 0.20
(1,1,2) 26 0.1910 1605.3007 −3158.6015 0.24 0.01 0.00 1.00 0.00 0.21
(1,2,2) 32 0.1910 1602.9856 −3141.9712 0.22 0.08 0.00 1.00 0.74 0.05
(2,1,2) 32 0.1910 1614.3620 −3164.7240 0.19 0.01 0.00 1.00 0.51 0.15
(2,2,2) 38 0.1910 1600.3317 −3124.6633 0.27 0.08 0.00 1.00 0.18 0.04
(2,3,2) 44 0.1910 1612.9541 −3137.9083 0.09 0.13 0.00 1.00 0.01 0.03
(3,2,2) 44 0.2020 1606.4562 −3130.9123 1.00 1.00 0.74 1.00 0.97 0.12
(3,3,2) 50 0.1820 1615.3461 −3130.6921 0.03 0.07 0.00 0.02 0.00 0.02

GTCAW(p, q, r, s)

(0,1,1,2) 38 0.1580 1596.1638 −3116.3277 0.09 0.00 0.04 0.00 0.00 0.21
(1,1,1,2) 44 0.1910 1620.5998 −3153.1997 0.21 0.02 0.00 1.00 1.00 0.10
(1,2,1,2) 50 0.1910 1626.2514 −3152.5027 0.44 0.01 0.01 1.00 0.00 0.09
(2,1,1,2) 50 0.1910 1620.7963 −3141.5926 0.13 0.01 0.00 1.00 0.99 0.06
(2,2,1,2) 56 0.1910 1626.5640 −3141.1279 0.31 0.01 0.00 1.00 0.00 0.05
(2,3,1,2) 62 0.1910 1629.2613 −3134.5226 0.62 0.02 0.00 1.00 0.00 0.03
(3,2,1,2) 62 0.2040 1626.6942 −3139.3885 0.98 0.99 0.99 1.00 1.00 1.00
(3,3,1,2) 68 0.1910 1632.8585 −3129.7171 0.53 0.02 0.00 1.00 0.11 0.02
(0,1,2,2) 56 0.1580 1613.3820 −3114.7641 0.32 0.01 0.02 0.00 0.00 0.18
(1,1,2,2) 62 0.1890 1626.1696 −3128.3391 0.35 0.06 0.01 0.00 0.00 0.06
(1,2,2,2) 68 0.1910 1633.1398 −3130.2796 0.34 0.02 0.01 1.00 0.00 0.04
(2,1,2,2) 68 0.1910 1634.2738 −3132.5476 0.29 0.02 0.00 1.00 0.00 0.03
(2,2,2,2) 74 0.1910 1633.2540 −3118.5079 0.22 0.01 0.01 1.00 0.00 0.02
(2,3,2,2) 80 0.1910 1637.8375 −3115.6750 0.55 0.02 0.00 1.00 0.00 0.01
(3,2,2,2) 80 0.1950 1629.7196 −3099.4392 0.94 0.99 0.99 1.00 1.00 1.00
(3,3,2,2) 86 0.1890 1640.2279 −3108.4558 0.11 0.04 0.00 0.00 0.00 0.00

Note: dim(φ), the number of parameters; LT (φ̂), the optimized log-likelihood; AIC, Akaike information criterion;

p-value, calculated by the portmanteau test using 20 lags of the standardized residuals.

Table 8. Model fitting results for the non-threshold GCAW models with the preferred orders

Example (p, q, r) dim(φ) LT (φ̂) AIC ê11,k ê12,k ê22,k ê13,k ê23,k ê33,k

(a) (2,1,0) 10 −241.5557 503.1114 0.05 0.00 0.00 - - -
(b) (1,1,0) 8 −212.0289 440.0579 0.00 0.00 0.02 - - -
(c) (3,2,1) 31 1575.8346 −3089.6691 0.05 0.00 0.00 0.00 0.00 0.03

estimates are insignificant, the lag order (p, q, r) does

not change and therefore the preferred models are still

efficient.

4. By simply collecting the data series in each example,

we count the numbers of Y11,t in both regimes, that is

(a) 135/115, (b) 80/170 and (c) 113/137, upper number

refers to regime 1. This indicates that there are enough

observations in every regime, thus, the threshold ap-

proach is feasible and meaningful.

5. The TWAR model is the worst in terms of both the

diagnostic checking results and the AIC values among

all models. One can see that all residual series of the

TWAR models fail the multivariate portmanteau test.

This indicates that the constant scale matrix cannot

capture the dependence enough in RCOV matrices.

6. For the efficient models which pass the diagnostic

checking in examples (a)-(b), the TCAW(p, q, 2) mod-

els yield the smaller AIC values than the corresponding

GTCAW(p, q, r, 2) cases. The reason is mainly because

the TCAW(p, q, 2) model has less parameters than its

GTCAW counterpart. However, in the above three ex-

amples, we can see that for any fixed lag order (p, q), the
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Table 9. ML-estimates for TCAW(2,1,2) and
GTCAW(2,1,1,2) models of example (a)

Para. Estimate Para. Estimate

TCAW(2,1,2)(GTCAW(2,1,0,2))

Regime 1 2

A
(1)
1

0.0000
A

(2)
1

0.1531
−0.1577 0.1584

B
(1)
1

0.0293
B

(2)
1

0.0064
0.2410 0.0281

B
(1)
2

0.8928
B

(2)
2

0.0000
0.7140 0.0000

C(1) 0.0966
C(2) 0.3318

0.0657 0.0324 0.0729 0.1783
ν 11.8341 l 1.5106× 10−4

GTCAW(2,1,1,2)

Regime 1 2

A
(1)
1

0.0000
A

(2)
1

0.1509
−0.1440 0.1451

B
(1)
1

0.1653
B

(2)
1

0.0786
0.2323 0.0261

B
(1)
2

0.9023
B

(2)
2

0.0001
0.7430 0.0000

C(1) 0.0872
C(2) 0.3258

0.0569 0.0301 0.0638 0.1778

M
(1)
1

0.0000 −0.2381
M

(2)
1

0.0000 −0.3296
−0.0276 −0.2953 −0.0067 −0.2646

ν 11.8304 l 1.5106× 10−4

Table 10. ML-estimates for TCAW(1,1,2) and
GTCAW(1,1,1,2) models of example (b)

Para. Estimate Para. Estimate

TCAW(1,1,2)(GTCAW(1,1,0,2))

Regime 1 2

A
(1)
1

0.0000
A

(2)
1

0.1396
−0.1945 0.1713

B
(1)
1

0.0000
B

(2)
1

0.5961
−0.6285 0.6298

C(1) 0.2032
C(2) 0.1611

0.1284 0.1403 0.0918 0.2012
ν 10.2182 l 0.3590× 10−4

GTCAW(1,1,1,2)

Regime 1 2

A
(1)
1

0.0000
A

(2)
1

0.1387
−0.1984 0.1675

B
(1)
1

0.0000
B

(2)
1

0.6189
−0.6137 0.6483

C(1) 0.1872
C(2) 0.1571

0.1355 0.1199 0.0833 0.1899

M
(1)
1

0.3633 −0.2213
M

(2)
1

0.0529 0.0140
−0.3833 −0.1735 0.2882 0.0224

ν 10.2052 l 0.3600× 10−4

GTCAW(p, q, r, 2) models always have larger maximum
log-likelihood values than the TCAW(p, q, 2) models.

7. From the economic perspective, it seems very appealing

to model financial dynamics in terms of a threshold
model in which the expanding phase and contracting
phase are governed by different regimes. With the above
results, we conclude that our GTCAW models can fit
RCOV matrices more efficiently.

4.3 Forecasting results

To further examine the performance of the GTCAW
model, we also perform an out-of-sample forecasting exer-
cise. Here, we compute the one-day-ahead forecast of Yt in
the preferred GTCAW models and their corresponding non-
threshold GCAW counterparts for comparison.

The forecasting exercise is carried out along the follow-
ing lines: we choose the moving window sample consisting
of k days and forecast the next day, where k = 235, ..., 249.
Each model is re-estimated and the one-day-ahead forecasts
are computed based on the updated parameter estimates.
Then, we compare the forecast errors during the 15 peri-
ods between the forecasts and the ex-post realization of the
RCOV matrices Yt+1. The predictive accuracy is measured
by the spectral norm (SN) and the Frobenius norm (FN)
according to the following formulas:

SN =
1

T0

∑
t

||Yt+1 − Ŷt(1)||2

=
1

T0

∑
t

{
λmax[(Yt+1 − Ŷt(1))

H(Yt+1 − Ŷt(1))]
}1/2

,

FN =
1

T0

∑
t

||Yt+1 − Ŷt(1)||F

=
1

T0

∑
t

⎧⎨⎩∑
i,j

[
Yij,t+1 − Ŷij,t(1)

]2⎫⎬⎭
1/2

,

where T0 is the number of forecast periods and equals to 15,
λmax represents the maximum eigenvalue of the matrix and
H denotes the conjugate transpose for a matrix.

Table 12 reports the results of forecasting accuracy for
the preferred GTCAWmodels of each example together with
their non-threshold cases. In every example, one can see that
the GTCAW model yields smaller predictive errors than its
non-threshold counterpart. This indicates the necessity of
including threshold in modeling the RCOV matrices. Be-
sides, we also consider using the previous RCOV estimator
as the predictor based on martingale theory for comparison.
By calculating the above predictive accuracy SN and FN
respectively for each example, we have the results (×10−4),
(a) 0.6233 and 0.6420, (b) 0.7985 and 0.8170 together with
(c) 0.3531 and 0.3707. By contrast, we know that our GT-
CAW models can improve the forecasting accuracy.

5. CONCLUSION

The current paper extends the GCAW model [29] to its
threshold framework for investigating the asymmetric non-
linear behavior of the RCOV matrices of asset returns. The
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Table 11. ML-estimates for TCAW(3,2,2) and GTCAW(3,2,1,2) models of example (c)

Para. Estimate Para. Estimate

TCAW(3,2,2)(GTCAW(3,2,0,2))

Regime 1 2

A
(1)
1

0.0000

A
(2)
1

0.1258
−0.2073 0.1533

−0.1455 0.1911

A
(1)
2

0.1422

A
(2)
1

0.0000
0.0534 −0.0799

0.0986 0.0370

B
(1)
1

0.0000

B
(2)
1

0.5423
0.0011 0.3720

−0.4036 0.0559

B
(1)
2

0.0011

B
(2)
2

0.0037
0.0003 0.0010

0.0002 0.0021

B
(1)
3

0.0403

B
(2)
3

0.3936
−0.0028 0.6597

0.1906 0.3067

C(1)
0.1069

C(2)
0.1037

0.0414 0.1021 0.0292 0.0312
0.0390 0.0195 0.0940 0.0462 0.0638 0.0799

ν 12.1021 l 0.2020× 10−4

GTCAW(3,2,1,2)

Regime 1 2

A
(1)
1

0.0000

A
(2)
1

0.0000
−0.2157 −0.1116

−0.0991 −0.1649

A
(1)
2

0.1228

A
(2)
2

0.1165
0.0473 0.0985

0.1316 −0.0169

B
(1)
1

0.0000

B
(2)
1

0.0021
−0.0001 0.0012

−0.0027 −0.0012

B
(1)
2

0.0021

B
(2)
2

0.0032
0.0002 0.0002

0.0004 0.0065

B
(1)
3

0.0339

B
(2)
3

0.0000
0.0003 0.7957

0.1918 0.4723

C(1)
0.0894

C(2)
0.1308

0.0374 0.0956 0.0320 0.0041
0.0383 0.0243 0.0959 0.0439 0.0924 0.0057

M
(1)
1

0.6185 −0.0888 −0.0533

M
(2)
1

0.3528 −0.0637 0.1794
0.1555 0.1056 0.0358 0.0032 −0.2712 0.4120
0.0311 −0.3085 0.4127 0.0326 0.0879 0.2490

ν 11.9890 l 0.2040× 10−4

Table 12. Forecast errors for preferred GTCAW models and corresponding non-threshold cases

GTCAW model GCAW model

Example Order dim(φ) SN×10−4 FN×10−4 Order dim(φ) SN×10−4 FN×10−4

(a) (2,1,0,2) 20 0.5806 0.6161 (2,1,0) 10 0.6606 0.7115
(b) (1,1,0,2) 16 0.7142 0.7469 (1,1,0) 8 0.7597 0.7875
(c) (3,2,1,2) 62 0.2068 0.2169 (3,2,1) 31 0.2233 0.2332
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ML-estimation can be implemented by the closed form con-
ditional density function and model checking can be derived
by the conditional expectation and variance. We also study
the finite sample performance of the ML-estimation using
Monte Carlo simulation, which shows reasonable results.
For empirical applications, the GTCAW models outperform
their non-threshold counterparts in terms of fitting and fore-
casting by comparison.

For simplicity, we choose the regime s = 2, and impose
a diagonal structure on the Ak and Bi in every regime in
case that the curse of dimensionality problem appears to be
less acute for the proposed model. We will discuss the more
complex cases (s > 2) and study the asymptotic properties
of the model in the future.
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