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A test on linear hypothesis of k-sample means
in high-dimensional data∗
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In this paper, a new test procedure is proposed to
test a linear hypothesis of k-sample mean vectors in high-
dimensional normal models with heteroskedasticity. The
motivation is on the basis of the generalized likelihood ratio
method and the Bennett transformation. The asymptotic
distributions of the new test are derived under null and lo-
cal alternative hypotheses under mild conditions. Simulation
results show that the new test can control the nominal level
reasonably and has greater power than competing tests in
some cases. Moreover, numerical studies illustrate that our
proposed test can also be applied to non-normal data.
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1. INTRODUCTION

Due to the fast development of advanced technology,
high-dimensional data are appearing in more and more
fields, such as computational biology, medicine, meteorol-
ogy, finance and so on. For example, DNA and protein test
data, weather and environmental data, social survey data,
economic data and financial data are all high-dimensional.
High-dimensional data are characterized by high data di-
mensions and relatively small sample sizes. So in high-
dimensional settings, the powers or properties of classical
test statistics are not ideal, or classical test statistics are
not well-defined. Therefore, it is vital to establish statistical
theory for high-dimensional data.
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Hypothesis testing for high-dimensional means has been
a hot topic in recent years. [3] obtained a test concern-
ing a single mean vector by modifying Hotelling’s T 2 test
statistic. [19] proposed test statistics for the hypothesis of
two-sample mean vectors by using a diagonal matrix to re-
place the sample covariance matrix in Hotelling’s T 2 test
statistic. [9], [2] and [11] all used U-statistics to construct
tests for two-sample Behrens-Fisher problem. [7], [12] and
[13] proposed scale-invariant tests. [22] investigated an em-
pirical likelihood ratio test for a mean vector. [25] gave a
test statistic using the idea of likelihood ratio and union-
intersection testing, which was named as generalized likeli-
hood ratio test. Their simulation results showed that their
test has good power performance, especially when the vari-
ables are correlated. However, the asymptotic distributions
were not obtained in their paper. Recently, [24] proposed
a least favorable direction test for multivariate analysis of
variance via the generalized likelihood ratio method, and ob-
tained asymptotic distributions under the spiked and non-
spiked models.

Besides the aforementioned hypothesis testing on mean
vectors, it is of interest to test hypotheses concerning lin-
ear combinations of k mean vectors. Assume Xi1, . . . ,Xini

are independent and identically distributed random vectors
with the p-dimensional multivariate normal Np(μi,Σi) dis-
tribution, where μi and Σi are unknown parameters with
Σi being positive definite for i ∈ {1, . . . , k}. Of interest is
to test the hypothesis

H0 :

k∑
i=1

ωiμi = 0 vs. H1 :

k∑
i=1

ωiμi �= 0,(1)

where ω1, . . . , ωk are known scalars with ω2
1 + · · ·+ ω2

k �= 0.
For the hypothesis testing in (1), [16] proposed a Dempster
trace test ([10]) by Bennett transformation ([4]). [8] used the
Bennett transformation to obtain three different test statis-
tics, which are respectively similar to the test statistics in
[3], [20] and [17]. [14] proposed a test for multiple linear
combinations of mean vectors with unequal covariance ma-
trices. [26] gave a test for a general linear hypothesis testing
problem based on U-statistics.

The main goal of this paper is to propose a new test
statistic for the linear hypothesis problem (1). Our proposed
test can also be applied to the two-sample Behrens-Fisher
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problem. It will be shown that the new test has better be-
havior than some existing tests such as [16] and [26] in both
size and power. We will discuss such differences between
the new test and existing tests through numerical compar-
isons.

The organization of this paper is as follows. Section 2 in-
troduces the generalized likelihood ratio and Bennett trans-
formation methods. In Section 3, we present our main results
and give their proofs. Simulation studies are carried out in
Section 4 to compare our proposed test with some existing
tests. Section 5 contains some conclusions.

2. PRELIMINARIES

For testing the hypothesis in (1), the generalized like-
lihood ratio method can not be directly applied because
the populations have unequal covariance matrices. Since the
Bennett transformation can make k-sample statistical infer-
ence problems into one-sample problems, we use the Bennett
transformation for the hypothesis in (1). We first introduce
the method of Bennett transformation. Without loss of gen-
erality, let n1 be the smallest of n1, . . . , nk. Define

Uj = ω1X1j +

k∑
i=2

ωi

√
n1

ni

(
Xij −

1

n1

n1∑
m=1

Xim(2)

+
1√
n1ni

ni∑
l=1

Xil

)
,

j ∈ {1, . . . , n1}. Simple calculations show that U1, . . . ,Un1

are independent and identically distributed with the

Np(μ,Σ) distribution, where μ =
k∑

i=1

ωiμi and Σ =

k∑
i=1

n1ω
2
i

ni
Σi. Therefore, the hypothesis in (1) is equivalent

to

H0 : μ = 0 vs. H1 : μ �= 0.(3)

Now we can propose test procedures for (3) based on
U1, . . . ,Un1 .

Likelihood-based tests often posses desirable properties;
however, in high-dimensional settings, the classical likeli-
hood ratio method is not well-defined when the data dimen-
sion p is larger than sample size n := n1 + · · ·+nk. For this
case, [25] and [24] considered a generalized likelihood ratio
method and proposed new tests for one-sample mean vector
and MANOVA problems, respectively. Moreover, their tests
outperform some existing tests in many cases. Motivated by
the merits of generalized likelihood ratio method, we here
use this method to test the hypothesis in (3). Next, we in-
troduce the generalized likelihood ratio method according
to [25] and [24]. By the union-intersection method, the hy-
pothesis in (3) is equivalent to

H0 : α
T

μ = 0 vs. H1 : α
T

μ �= 0(4)

for all p-dimensional real value vectors α. The likelihood
function of α

T

U1, . . . ,α
T

Un1 is

L(α
T

μ,α
T

Σα) = (2πα
T

Σα)−
n1
2

exp

⎧⎪⎪⎨⎪⎪⎩−

n1∑
i=1

(α
T

Ui −α
T

μ)2

2αTΣα

⎫⎪⎪⎬⎪⎪⎭ .

Thus we have

sup
α

T
μ

α
T

Σα

L(α
T

μ,α
T

Σα) = (2eπ)−
n1
2

(
n1 − 1

n1
α

T

Sα

)−n1
2

(5)

=: L(α)

and

sup
μ=0

α
T

Σα

L(α
T

μ,α
T

Σα) = (2eπ)−
n1
2

(n1 − 1

n1
α

T

Sα

(6)

+α
T

UU
T

α
)−n1

2

=: LH0(α),

where S = 1
n1−1

n1∑
i=1

(Ui−U)(Ui−U)
T

is the sample covari-

ance matrix and U = 1
n1

n1∑
i=1

Ui is the sample mean.

When p > n1, the sample covariance matrix S is sin-
gular with probability one. Hence α

T

Sα = 0 for some α,
namely L(α) = ∞ for α ∈ G = {α : α

T

Sα = 0}. If there
exists a vector α∗ ∈ G to make LH0(α

∗) be the smallest,

then based on α∗T

U1, . . . ,α
∗T

Un1 , we can construct a test
statistic to achieve the largest discrepancy of distributions
between the null hypothesis and the alternative hypothesis.
This α∗ is called the least favorable direction in [24]. So the
test statistic for testing the hypothesis in (3) is defined as

R(U) = min
L(α)=∞
α

T
α=1

LH0(α),

where U = (U1, . . . ,Un1). Moreover, when R(U) is small
enough, we reject the null hypothesis H0.

By (5) and (6),

R(U) = min
α

T
Sα=0

α
T

α=1

(2π)−n1/2

(
α

T

UU
T

α

)−n1/2

e−n1/2,

which is equivalent to the following statistic

T (U) = max
α

T
Sα=0

α
T

α=1

α
T

UU
T

α,(7)

which is the test statistic we propose.
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3. MAIN RESULTS AND PROOFS

Following the same steps as in [25], we get Lemma 3.1,
which provides an explicit expression of our proposed test
statistic T (U) in (7). We omit the proof.

Lemma 3.1. The generalized likelihood ratio test statistic
for the hypothesis (1) is

T (U) =
1

1T

n1
(UTU)−11n1

= U
T

(Ip − PS)U ,(8)

where 1n1 denotes an n1-dimensional vector whose compo-
nents are all equal to 1, Ip is a p×p identity matrix and PS

is the orthogonal projection matrix onto the column space
of S.

Although [25] gave the explicit expression of test statis-
tic, the asymptotic distributions were not obtained. [24] pro-
posed a least favorable direction test and derived asymptotic
distributions for the MANOVA problem. However, their the-
oretical results require that the number of populations is at
least two, so they are not directly applicable to the one-
sample case. Motivated by [24], we here give the theoretical
results of the generalized likelihood ratio test statistic for
one-sample testing.

It is difficult to obtain the asymptotic distribution of
T (U) via (8). In the following, we get an equivalent ex-
pression of T (U) which is different from that in (8). Let

P1n1
= In1 − 1

n1
1n11

T

n1
. Denote the spectral decomposition

of P1n1
as Q

(
In1−1 0
0 0

)
Q

T

, where Q = (Q1, . . . ,Qn1) is

an orthogonal matrix with Qn1 = 1√
n1

1n1 . Therefore,

(9)

(n1 − 1)S =

n1∑
i=1

(Ui −U)(Ui −U)
T

= UP1n1
U

T

= UQ

(
In1−1 0
0 0

)
Q

T

U
T

= Y

(
In1−1 0
0 0

)
Y

T

= V V
T

=

n1−1∑
i=1

YiY
T

i ,

where V = (Y1, . . . ,Yn1−1) and Y
T

= (V ,Yn1)
T

= Q
T

U
T

has the matrix normal distribution Nn1×p(Q
T

1n1μ
T

, In1 ⊗
Σ) where ⊗ denotes the Kronecker product of matri-
ces. Hence, Y1, . . . ,Yn1 are independent, Y1, . . . ,Yn1−1

has the Np(0,Σ) distribution and Yn1 is distributed as

Np(
√
n1μ,Σ). Therefore, α

T

Sα = 0 is equivalent to

α
T

V = 0. Furthermore, we have

T (U) = max
α

T
Sα=0

α
T

α=1

α
T

UU
T

α = max
α

T
V =0

α
T

α=1

1

n2
1

α
T

U1n11
T

n1
Uα

= max
α

T
V =0

α
T

α=1

1

n2
1

α
T

Y Q
T

1n11
T

n1
QY

T

α

= max
α

T
V =0

α
T

α=1

1

n1
α

T

Y

(
0 0
0 1

)
Y

T

α

=
1

n1
max

α
T

V =0

α
T

α=1

α
T

Yn1Y
T

n1
α.

Lemma 3.2. Assume p ≥ n1−1. Let PV be the orthogonal
projection matrix on the column space of V . Then

T (U) =
1

n1
Y

T

n1
(Ip − PV )Yn1 .(10)

Proof. Suppose Yn1 has a decomposition Yn1 = V a+b for a
p-dimensional vector a and an (n1 − 1)-dimensional vector
b which is orthogonal to the columns of V . Then (Ip −
PV )Yn1 = (Ip − PV )(V a + b) = b. Under the conditions

α
T

V = 0 and α
T

α = 1,

α
T

Yn1Y
T

n1
α = α

T

(V a+ b)(V a+ b)
T

α(11)

= α
T

bb
T

α≤b
T

b

= Y
T

n1
(Ip − PV )Yn1 .

Moreover, the equality in (11) holds if and only if α =

± (Ip−PV )Yn1√
Y T

n1
(Ip−PV )Yn1

. Hence, the proof of theorem is com-

pleted.

Although there are different expressions for T (U) in (8)
and (10), the following lemma states that they are equiva-
lent.

Lemma 3.3. Assume p ≥ n1 − 1. Then it gets

T (U) =
1

n1
Y

T

n1
(Ip − PV )Yn1 = U

T

(Ip − PS)U .

Proof. Note that

1

n1
Y

T

n1
(Ip − PV )Yn1 =

1

n1
Q

T

n1
U

T

(Ip − PV )UQn1

=
1

n2
1

1
T

n1
U

T

(Ip − PV )U1n1

= U
T

(Ip − PV )U = U
T

(Ip − PS)U .

The last equality holds owing to

PS = SS+ = V V
T

(V V
T

)+

= V V
T

V (V
T

V )−1(V
T

V )−1V
T

= PV ,

where S+ denotes the Moore-Penrose inverse of S.

In order to get the asymptotic distribution of the new test
statistic, we first state five conditions, where λ1 ≥ · · · ≥ λp

are the eigenvalues of Σ:

(A1) λ1 = o(n−1
1 tr(Σ)).

(A2) λ1 − λp = O(n−1
1

√
tr(Σ2)).
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(A3) ni/n1 → ρi ≥ 1 for i ∈ {2, . . . , k} where k is fixed.
(A4) tr(Σ4) = o(tr2(Σ2)).

(A5) μ
T

μ = O(n−1
1

√
tr(Σ2)).

(A1) gives n1 = o(p) which means the data dimension
p can be much larger than the data size n1. (A2) indicates
that the range of the eigenvalues of Σ is not too large. If
all the eigenvalues of Σ are uniformly bounded, (A2) holds.
(A3) implies that all sample sizes have the same growth
rate except constant terms, which is a standard assumption
for multi-sample asymptotic analysis. (A4) is often used in
high-dimensional mean hypothesis. (A5) is called as the local
alternative.

Now we consider the following example about k popu-
lation covariance matrices Σ1, . . . , Σk which satisfy (A4).
Suppose the eigenvalues λi1(Σi), . . . , λip(Σi) of Σi obey
λij(Σi) = aijp

δij and λil(Σi) = cil for j = 1, . . . ,mi,
l = mi + 1, . . . , p and i = 1, . . . , k, where mi is a fixed
constant, and aij and cil are all positive, unknown and
uniformly bounded constants as n, p → ∞, such that the
condition λi1(Σi) ≥ · · · ≥ λip(Σi) holds. Here we require
1
2 > δi1 ≥ · · · ≥ δimi > 0 for i = 1, . . . , k. This covariance
structure is called a spiked covariance model, which has been
considered in literature such as [16], [6], [5], [15], [18], [23]
and the references therein. It is noted that δi1 in [16] was
less than 1

4 or 1
8 in order to satisfy condition (A.2) or (A.3)

of their paper, which is stronger than our condition (A4).
In order to prove our main results, the following lemmas

are needed, which are respectively from Lemmas 5 and 6 in
[24].

Lemma 3.4. ([24]) Let Υ
T

have the matrix normal dis-
tribution Nm×n(0, Imn). Then for any random variables
ξ1, . . . , ξn independent of Υ, we have

‖ΥT

ΩΥ− tr(Ω)Im‖ = OP (
√

mtr(Ω2) +m max
1≤i≤n

|ξi|),

where ‖·‖ is the spectral norm of a matrix and Ω =
diag(ξ1, · · · , ξn).
Lemma 3.5. ([24]) If λ1 = o(n−1

1 tr(Σ)), then

tr((Ip − PV )Σ) = tr(Σ)− (n1 − 1)tr(Σ2)

tr(Σ)
+ oP (

√
tr(Σ2))

and

tr((Ip − PV )Σ)2 = tr(Σ2)(1 + oP (1)).

Theorem 3.1. Suppose the conditions (A1)-(A4) hold.
Then under the local alternative hypothesis (A5),

T (U)− n−1
1 (tr(Σ)− (n1 − 1)tr(Σ2)/tr(Σ))

n−1
1

√
2tr(Σ2)

(12)

d−→ N
(

n1μ
T

μ√
2tr(Σ2)

, 1

)
,

where
d−→ denotes convergence in distribution.

Proof. Let Q∗ΛQ
T

∗ be the spectral decomposition of Σ. De-

fine Yn1 =
√
n1μ + Q∗Λ

1
2Z, where Λ = diag(λ1, . . . , λp)

and Z = (z1, . . . , zp)
T

has the Np(0, Ip) distribution. Then

T (U) =
1

n1
Y

T

n1
(Ip − PV )Yn1

=
1

n1
Z

T

Λ
1
2Q

T

∗ (Ip − PV )Q∗Λ
1
2Z + μ

T

(Ip − PV )μ

+
2√
n1

μ
T

(Ip − PV )Q∗Λ
1
2Z =: I + II + III.

The term I can be rewritten as
p∑

i=1

1
n1

λi((Ip − PV )Σ)z2i .

Conditional on V , Var(I) = 2
n2
1
tr((Ip−PV )Σ)2. So the Lin-

deberg condition

max
1≤i≤p

1
n2
1
λ2
i ((Ip − PV )Σ)

Var(I)
≤ λ2

1

2tr(Σ2)(1 + oP (1))

pr−→ 0

holds by Lemma 3.5. The limit is obtained by the condition

(A4) and
pr−→ denotes convergence in probability. Then

I− 1
n1

tr((Ip − PV )Σ)√
2
n2
1
tr(Σ2)

d−→ N (0, 1),

which, combined with Lemma 3.5, gives

I− n−1
1 (tr(Σ)− (n1 − 1)tr(Σ2)/tr(Σ))

n−1
1

√
2tr(Σ2)

d−→ N (0, 1).(13)

For III, conditional on V , E(III) = 0 and Var(III) =
4
n1

μ
T

(Ip − PV )Σ(Ip − PV )μ ≤ 4
n1

λ1μ
T

μ = o(n−2
1 tr(Σ2)).

Therefore

III√
n−2
1 tr(Σ2)

pr−→ 0.(14)

Next we consider II. By Lemma 3.4, we have

λn1−1(V
T

V ) = (1 + oP (1))tr(Σ).(15)

It follows from the distribution of V that V
T

μ has the
Nn1−1(0,μ

T

ΣμIn1−1) distribution, which, combined with
the law of large numbers, results in

μ
T

V V
T

μ = OP (n
−1
1 μ

T

Σμ) = OP (n
−1
1 λ1μ

T

μ).(16)

By (15) and (16), we get

μ
T

PV μ = μ
T

V (V
T

V )−1V
T

μ(17)

≤ λ1((V
T

V )−1)μ
T

V V
T

μ

= λ−1
n1−1(V

T

V )μ
T

V V
T

μ
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= (1 + oP (1))tr
−1(Σ)OP (n

−1
1 λ1μ

T

μ)

= oP (μ
T

μ),

where the last equality holds by the condition (A1). So ac-
cording to (17) and the condition (A5),

II = μ
T

μ− μ
T

PV μ = (1 + oP (1))μ
T

μ(18)

= OP (n
−1
1

√
tr(Σ2)).

Lastly, the conclusion of theorem is obtained from (13), (14)
and (18).

In order to formulate a test procedure, we need to
give asymptotically ratio-consistent estimators of tr(Σ) and
tr(Σ2). Let n11 := [n1/2] + 1 and n12 := n1 − n11, where
[x] is the integer part of x for x ≥ 0, then Un11 , Sn11 and
Un12 , Sn12 stand for the sample mean vectors and covari-
ance matrices of the first n11 samples and the remaining n12

samples, respectively.

Lemma 3.6. Suppose the conditions (A1), (A3) and (A4)
hold. Then tr(Sn11Sn12) and tr(S) are the asymptotically
ratio-consistent estimators of tr(Σ2) and tr(Σ), respectively.

Proof. First, from E{tr(S)} = tr(Σ) and Var{tr(S)} =
2

n1−1 tr(Σ
2), we have tr(S) = tr(Σ) +OP (

√
n−1
1 tr(Σ2)).

Note that

tr(Sn11Sn12) =

n11∑
i=1

(Ui −Un11)
T

W (Ui −Unl1
)

(n11 − 1)(n12 − 1)

where W :=
n1∑

j=n11+1

(Uj −Un12)(Uj −Un12)
T

. It is easy to

get E{tr(Sn11Sn12)} = tr(Σ2) and

Var
{
tr(Sn11Sn12)

}
= Var

{
E[tr(Sn11Sn12)|W ]

}
+ E

{
Var[tr(Sn11Sn12)|W ]

}
=

2{n1tr(Σ
4) + tr2(Σ2)}

(n11 − 1)(n12 − 1)
.

Thus we have

tr(Sn11Sn12) = (1 + oP (n
− 1

2
1 ))tr(Σ2).

This completes the proof of Lemma 3.6.

Remark 3.1. The estimator tr(Sn11Sn12) of tr(Σ
2) is based

on [1], which is given in Lemma 3.1. It should be noted
that the requirements for obtaining asymptotically ratio-
consistent estimator of tr(Σ2) in [1] are different from (A1),
(A3) and (A4). Our assumption on Σ in (A4) is weaker than
those assumptions (A-iv and A-v) in [1].

Corollary 3.1. Let

T̂ =
T (U)− n−1

1 (tr(S)− (n1 − 1)tr(Sn11Sn12)/tr(S))

n−1
1

√
2tr(Sn11Sn12)

be our new test. It follows from Theorem 3.1 and

Lemma 3.6 that T̂
d−→ N

(
n1μ

T
μ√

2tr(Σ2)
, 1

)
under the lo-

cal alternative (A5). It is evident that T̂
d−→ N (0, 1)

under the null hypothesis. Thus, the rejection region is{
(X11, . . . ,X1n1 , . . . ,Xk1, . . . ,Xknk

) : T̂ > ξα

}
where ξα

represents the upper α quantile of N (0, 1). Furthermore,

the power of T̂ is β(T̂ ) = Φ

(
−ξα + n1μ

T
μ√

2tr(Σ2)

)
where Φ(x)

means the cumulative distribution function of N (0, 1).

Remark 3.2. If k = 1, ω1 = 1 and k = 2, ω1 = −ω2 = 1,
we get respectively the generalized likelihood ratio tests for
one-sample problem and two-sample Behrens-Fisher prob-
lem from T̂ . Moreover, it is noted that the asymptotic power

β(T̂ ) = Φ

(
−ξα + nγ(1−γ)μ

T
μ√

2tr(Σ2
∗)

)
is the same as that of the

test in [9], where γ = 1
1+ρ2

and Σ∗ = γΣ2 + (1− γ)Σ1.

Remark 3.3. The asymptotic power of the test in [16] is
the same as ours. However, in order to get the asymptotic
power, the assumption (A.2) used in [16] is stronger than
our assumption (A4).

From the viewpoint of asymptotic behavior, our new test
does not suffer loss of power from Remarks 3.2 and 3.3 when
using the Bennett transformation. And the simulation re-
sults in Section 4 also show that our test outperforms some
competing tests in some cases.

4. SIMULATION STUDIES

In this section we compare our proposed test with some
existing tests by simulation. Although our new test is ob-
tained under a normal model, we also consider the non-
normal model in simulation to illustrate the robustness of
our new test. We generate Xki, i ∈ {1, . . . , nk} from the
following three models:

• Model 1: Xki is distributed as a p-variate Np(μk,Σk)
random vector.

• Model 2: Xki is distributed as a p-variate scaled
mixture of normal distributions 0.7Np(μk,Σk) +
0.3Np(μk, 17/3Σk).

• Model 3: Xki has the p-variate t distribution with mean
μk, covariance matrix Σk and 35 degrees of freedom.

Let Q
T

kΛkQk be the spectral decomposition of Σk,
we generate Qk from the Harr distribution. Let p =
50, 100, 150, 200 and 300. Empirical sizes and powers are
computed under the nominal level α = 0.05 with 5000 repli-
cations.
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All of simulation results are presented by some figures.
In addition, we put our numerical simulation results in the
supplement material “http://intlpress.com/site/pub/files/
supp/sii/2020/0013/0001/SII-2020-0013-0001-s003.pdf”.

[16] proposed a Dempster trace test for the linear hy-
pothesis of k-sample means with unequal covariance ma-
trices by Bennett transformation in high-dimensional data,
namely

TN = σ̃−1√p

⎧⎨⎩n1U
T

U

trS
− 1

⎫⎬⎭ ,

where σ̃2 =
√
2â2

â1
, â1 = 1

p tr(S) and â2 = (n1−1)2

p(n1−2)(n1+1) ×
{tr(S2)− 1

n1−1 tr
2(S)}.

[26] considered the general linear hypothesis testing prob-
lem in high-dimensional data with heteroscedasticity. For
hypothesis (1), their test is given by

TZ = σ̃−1
∗

{ k∑
l=1

ω2
l

nl(nl − 1)

nl∑
i �=j

X
T

liXlj

+

k∑
l �=s

ωlωs

nlns

∑
i,j

X
T

liXsj

}
,

where

σ̃2
∗ = 2

⎧⎨⎩
k∑

l=1

ω2
l

̂tr(Σ2
l )

nl(nl − 1)
+

k∑
l �=s

ωlωstr(FlFs)

nlns

⎫⎬⎭ ,

̂tr(Σ2
l ) =

(nl − 1)

nl(nl − 2)(nl − 3)

{
(nl − 1)(nl − 2)tr(F 2

l )

+ tr2(Fl)−
nl

(nl − 1)

nl∑
i=1

‖Xli −X‖4
}
,

and Fl is the sample covariance matrix of lth population for
l ∈ {1, . . . , k}.

In the simulation, we set k = 3 and ω1 = ω2 = ω3 = 1.
For Λi = diag(λi1, · · · , λip), we consider the following four
cases.

• Case 1: λ1i = p2/(8+i) for i ∈ {1, . . . , 9} and λ1i = 0.025
for i ∈ {10, . . . , p}. λ2i = p1/(2+i) for i ∈ {1, . . . , 7}
and λ2i = 0.05 for i ∈ {8, . . . , p}. λ3i = p3/(7+i) for
i ∈ {1, . . . , 5} and λ3i = 0.075 for i ∈ {6, . . . , p}.

• Case 2: λ1i = p2/(8+i) for i ∈ {1, . . . , 9} and λ1i = 0.05
for i ∈ {10, . . . , p}. λ2i = p1/(2+i) for i ∈ {1, . . . , 7}
and λ2i = 0.07 for i ∈ {8, . . . , p}. λ3i = p4/(8+i) for
i ∈ {1, 2, 3} and λ3i = 0.09 for i ∈ {4, . . . , p}.

• Case 3: λ1i = p4/(12+i) for i ∈ {1, . . . , 9} and λ1i = 0.07
for i ∈ {10, . . . , p}. λ2i = p1/(2+i) for i ∈ {1, . . . , 7}
and λ2i = 0.05 for i ∈ {8, . . . , p}. λ3i = p3/(7+i) for
i ∈ {1, . . . , 5} and λ3i = 0.075 for i ∈ {6, . . . , p}.

Figure 1. The Empirical sizes of T̂ (red), TN (blue) and TZ

(green) under Model 1 when n1 = 15, n2 = 20.

Figure 2. The Empirical sizes of T̂ (red), TN (blue) and TZ

(green) under Model 1 when n1 = 15, n2 = 40.

• Case 4: λ1i = p4/(12+i) for i ∈ {1, . . . , 9} and λ1i =
0.075 for i ∈ {10, . . . , p}. λ2i = p2/(8+i) for i ∈
{1, . . . , 7} and λ2i = 0.025 for i ∈ {8, . . . , p}. λ3i =
p3/(7+i) for i ∈ {1, . . . , 5} and λ3i = 0.05 for i ∈
{6, . . . , p}.

For data sizes, we set n1 = 15, n2 = 20, n3 = 25 and
n1 = 15, n2 = 30, n3 = 55, respectively. In the power sim-
ulation, we set μ1 = μ2 = 0 and μ3 = (u1, . . . , up)

T

where
u2j−1 = 0 and u′

2js are i.i.d. U(−a, a). a is taken as 0 and
0.5 for empirical size and power, respectively. Because there
have the similar patterns with those under Case 1 and Model
1, we here only consider the case of H1 for different config-
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Figure 3. The Empirical powers of T̂ (red), TN (blue) and TZ

(green) under Model 1 when n1 = 15, n2 = 20.

Figure 4. The Empirical powers of T̂ (red), TN (blue) and TZ

(green) under Model 1 when n1 = 15, n2 = 40.

urations of a under Case 1 and Model 1. All the simulation
results are reported in Figures 1-13.

For testing hypotheses about a linear combination of
means, Figures 1, 2, 5, 6, 9 and 10 show that the empirical
sizes of the new test T̂ are around 5% and at most 6.94%.
TN and TZ have empirical sizes around 7% and have the
largest empirical sizes 8.8% and 8.24%, respectively. So T̂
can control the nominal size α = 0.05 very well. And TZ is
superior to TN in terms of controlling the nominal size. Re-
garding power, Figures 3, 4, 7, 8, 11 and 12 illustrate that
TN and TZ have similar empirical powers, which are less
than that of T̂ in all of our simulation studies. Moreover,
when data sizes become larger, the empirical powers of the

Figure 5. The Empirical sizes of T̂ (red), TN (blue) and TZ

(green) under Model 2 when n1 = 15, n2 = 20.

Figure 6. The Empirical sizes of T̂ (red), TN (blue) and TZ

(green) under Model 2 when n1 = 15, n2 = 40.

three tests also become larger. Figure 13 indicates that the
proposed test T̂ has greater power than TN and TZ as a is
about more than 0.4. However, TN and TZ are superior to
our test as a is about less than 0.3.

In summary, our proposed test T̂ controls a given size
reasonably and has greater power than competing tests for
the linear hypothesis problem whenever samples are from
the normal model (Model 1) or non-normal models (Models
2 and 3) as a tends to take a large value. Throughout the
simulations, the results under Models 2 and 3 have a pattern
similar to those under Model 1, which illustrate a degree of
robustness of our test.
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Figure 7. The Empirical powers of T̂ (red), TN (blue) and TZ

(green) under Model 2 when n1 = 15, n2 = 20.

Figure 8. The Empirical powers of T̂ (red), TN (blue) and TZ

(green) under Model 2 when n1 = 15, n2 = 40.

5. CONCLUDING REMARKS

In this paper, we propose a new test for the hypotheses
about a linear combination of k high-dimensional means and
provide numerical studies. The new test procedure is based
on the generalized likelihood ratio method and the Bennett
transformation. The asymptotic distributions of the new
test are obtained under the null and alternative hypotheses.
Our proposed test can also be applied to the two-sample
Behrens-Fisher problem. The numerical studies in this pa-
per show that our proposed test can control the nominal size
reasonably and has closer-to-nominal size and greater power

Figure 9. The Empirical sizes of T̂ (red), TN (blue) and TZ

(green) under Model 3 when n1 = 15, n2 = 20.

Figure 10. The Empirical sizes of T̂ (red), TN (blue) and TZ

(green) under Model 3 when n1 = 15, n2 = 40.

than competing tests TN and TZ for the linear hypothesis
problem in all of our simulations.

As pointed out by a reviewer, it is an important issue
to investigate the asymptotic behavior of the proposed test
under some special structures of covariance matrices such as
a low dimensional factor model in [15] when our assumptions
imposed on covariance matrix do not hold. The existed proof
methods in literature may not be used, so it needs to find out
some new proof methods. This is a very important problem
in both theory and practice, we will leave this problem as a
future study.
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Figure 11. The Empirical powers of T̂ (red), TN (blue) and
TZ (green) under Model 3 when n1 = 15, n2 = 20.

Figure 12. The Empirical powers of T̂ (red), TN (blue) and
TZ (green) under Model 3 when n1 = 15, n2 = 40.
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