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Nonparametric statistical inference
and imputation for incomplete categorical data∗

Chaojie Wang, Linghao Shen, Han Li, and Xiaodan Fan
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Missingness in categorical data is a common problem in
various real applications. Traditional approaches either uti-
lize only the complete observations or impute the missing
data by some ad hoc methods rather than the true condi-
tional distribution of the missing data, thus losing or dis-
torting the rich information in the partial observations. In
this paper, we propose the Dirichlet Process Mixture of Col-
lapsed Product-Multinomials (DPMCPM) to model the full
data jointly and compute the model efficiently. By fitting an
infinite mixture of product-multinomial distributions, DPM-
CPM is applicable for any categorical data regardless of the
true distribution, which may contain complex association
among variables. Under the framework of latent class anal-
ysis, we show that DPMCPM can model general missing
mechanisms by creating an extra category to denote missing-
ness, which implicitly integrates out the missing part with
regard to their true conditional distribution. Through sim-
ulation studies and a real application, we demonstrate that
DPMCPM outperforms existing approaches on statistical
inference and imputation for incomplete categorical data of
various missing mechanisms. DPMCPM is implemented as
the R package MMDai, which is available from the Compre-
hensive R Archive Network at https://cran.r-project.org/
web/packages/MMDai/index.html.

Keywords and phrases: Infinite mixture model,
Product-multinomial distribution, Missing data, Imputa-
tion.

1. INTRODUCTION

Missingness in categorical data is a common problem
in many real applications. For examples, in social surveys,
data collected by questionnaires are often incomplete be-
cause subjects may be unwilling or unable to respond to
some items [11]. In biological experiments, data may be in-
complete for either biologically-driven or technically-driven
reasons [7]. In recommendation system problems [16], ana-
lysts often have a dataset as the toy example in Table 1. The
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goal is to predict the potential purchase behavior without
direct observation, e.g., whether Customer3 and Customer4
would buy Book5.

Table 1. Toy data example with the goal to infer the empty
cells. 1: bought; 0: recommended but not bought; empty:

missing values.

Book1 Book2 Book3 Book4 Book5

Customer1 1 1 0

Customer2 1 0 0

Customer3 1 1

Customer4 1 1

Customer5 0 1 0

Customer6 0 1 0

When dealing with datasets with missingness, naive ap-
proaches, such as the complete-case analysis (CCA) and
overall mean imputation, would waste the information in
the missing data and may bias the inference [2]. When miss-
ingness is high, CCA is hardly applicable due to the lack of
complete cases. Advanced methods, such as multiple impu-
tation [18, 20], impose a parametric model on the data and
then draw multiple sets of samples to account for the un-
certainty of the missing information. For categorical cases,
[19] advocated the log-linear model for multiple imputation,
which can capture certain types of association among the
categorical variables. However, this model works only when
the number of variables is small, as the full multi-way cross-
tabulation required for the log-linear analysis increases ex-
ponentially with the number of variables [27].

There are two basic ideas for imputing multivariate miss-
ing data: fully conditional specification (FCS) and joint
modeling. FSC [25] specifies a collection of univariate con-
ditional imputation models that condition on all the other
variables. A popular application based on FCS is known as
Multiple Imputation by Chained Equation (MICE), which
specifies a sequence of regression models iteratively [24, 31].
[23] provided the R package mice to implement this method
efficiently. Although it has been shown to work well for many
datasets and become a popular method [9], MICE still has
some common drawbacks of FCS. A typical application of
MICE is to use multinomial logistic regression for the cat-
egorical data, but the relationship among variables may be
nonlinear and may involve complex interaction or higher-
order effects [15]. Besides, there is no guarantee that the
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iterations of sequential regression model will converge to
the true posterior distribution of missing values [27]. Other
parametric approaches include missMDA based on principal
component analysis [10], MIMCA based on correspondence
analysis [1], and so on. These parametric methods can be ap-
plied in some specific problems but not in general cases. [14]
provided a detailed review for current advances of multiple
imputation.

From the perspective of data analysts, no matter the
data is raw with missingness or has been imputed when
arriving, it is important to understand the detailed mecha-
nisms of pre-processing, including imputation. [32] reviewed
and discussed the imputation danger caused by the differ-
ence of the God’s model, imputer’s model and analyst’s
model. They pointed that any attempt of pre-processing
to make the data “more usable” implies potential assump-
tions. In this aspect, joint modeling provides a powerful tool
to model the underlying distribution behind the data. For
categorical data, [27] proposed a latent class model, i.e.,
the finite mixture of product-multinomial model. The la-
tent class model can characterize both simple association
and complex higher-order interactions among the categori-
cal variables as long as the number of latent class is large
enough [13]. [3] proposed the Dirichlet Process Mixture of
Products of Multinomial distributions (DPMPM) to model
complete multivariate categorical datasets, which avoids the
arbitrary setting of the number of mixture components. Fur-
thermore, [3] proved that any multivariate categorical data
distribution can be approximated by DPMPM for a suffi-
ciently large number of mixture components. [21] general-
ized the DPMPM framework to analyze incomplete cate-
gorical datasets, which works well for low missingness but
performs poorly for high missingness since the number of
parameters would increase dramatically. Based on the work
of [21], [12] introduced a variant of this model for edit-
imputation, which accounts for the values that are logically
impossible but present due to measurement error. [8] ex-
tended this model to nested data structures in the presence
of structural zeros. Other related works include the divi-
sive latent class model [26], Bayesian multilevel latent class
models [29] and so on. [28] presented a detailed overview
of recent researches on multiple imputation using the latent
class model.

In this paper, we propose DPMCPM, which extends
DPMPM for modelling incomplete multivariate categorical
data efficiently. DPMCPM inherits some nice properties of
DPMPM. It avoids the arbitrary setting of the number of
mixture components by using the Dirichlet process. In ad-
dition, DPMCPM is applicable for any categorical data re-
gardless of the true distribution and can capture the com-
plex association among variables. Different from the miss-
ingness viewed as unknown parameters in [21], DPMCPM
creates an extra category to denote the missingness. It shall
reduce computation burden and gain better performance

when the missingness is high. Under the framework of the la-
tent class analysis, we show that DPMCPM can model gen-
eral missing mechanisms. Through simulation studies and a
real application, we demonstrate DPMCPM performs bet-
ter statistical inference and imputation than existing ap-
proaches. To our knowledge, this is the first non-parametric
tool which can model arbitrary categorical distributions and
handle high missingness.

This paper is organized as follows. Section 2 introduces
the DPMCPMmodel and the Gibbs sampler algorithm. Sec-
tion 3 performs simulation studies on the synthetic data and
Section 4 presents a real application in a recommendation
system problem. Section 5 concludes the paper.

2. METHOD

2.1 Dirichlet process mixture of
product-multinomials

We begin with the finite mixture product-multinomial
model for the case of complete dataset x = {xij}, where
i = 1, · · · , n and j = 1, · · · , p. Suppose x comprises of n
independent samples associated with p categorical variables,
and the j-th variable has dj categories. Let xij ∈ {1, · · · , dj}
denote the observed category for the i-th sample in the j-
th variable. The finite mixture product-multinomial model
assumes that those xij are generated from a multinomial
distribution indexed by a latent variable zi ∈ {1, · · · , k}.
A finite mixture model with k latent components can be
expressed as:

xij |zi,ψ(j)
zi ∼ multinomial(ψ

(j)
zi1

, · · · , ψ(j)
zidj

),(1)

zi|Θ ∼ multinomial(θ1, · · · , θk),(2)

where Θ = {θ1, · · · , θk} and ψ(j)
zi = {ψ(j)

zi1
, · · · , ψ(j)

zidj
}. We

further define Ψ = {ψ(j)
h : h = 1, · · · , k; j = 1, · · · , p} and

z = {zi : i = 1, · · · , n}.
[3] proved that any multivariate categorical data distri-

bution can be represented by the mixture distribution in
Equation 1 and 2 for a sufficiently large k. However, speci-
fying a good k to avoid over-fitting and over-simplification is
non-trivial, and it becomes even harder when the dataset is
highly incomplete [3, 21]. This motivates the use of an infi-
nite extension of the finite mixture model, i.e., the Dirichlet
process mixture. A Dirichlet process can be represented by
various schemes, including the Pólya urn scheme, the Chi-
nese restaurant process and the stick-breaking construction
[22]. [3] chose the stick-breaking construction to model the
Dirichlet process. However, in practice, the slice Gibbs sam-
pler in their construction may often be trapped in a single
component when n is relatively large due to numeric limits
and thus fail to identify the correct number of components
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[30]. To avoid this drawback, we construct the Dirichlet pro-
cess by using the Chinese restaurant process in DPMCPM:

P (zi = h|z−i) =
nh,−i

n+ α− 1
, h = 1, · · · , k;

P (zi = k + 1|z−i) =
α

n+ α− 1
,

(3)

where k denotes the number of previously occupied com-
ponents and nh,−i denotes the number of samples in the
h-th component excluding the i-th sample. Here α is a prior
hyper-parameter that acts as the pseudo-count of the num-
ber of samples in the new component regardless of the input
data.

2.2 Multinomials with incomplete data

[17] introduced a class of missing mechanisms, which
are commonly referred as Missing Completely At Random
(MCAR), Missing At Random (MAR) and Missing Not At
Random (MNAR). Traditionally, missing mechanisms of a
data matrix x are denoted by introducing an indicator ma-
trix r = (rij), where rij = 1 if xij is observed, and rij = 0 if
xij is missing. The missing rates p(rij |xi) under three types
of missing mechanisms are defined as follows:

• MCAR: Missingness does not depend on the missing or
observed data, i.e.,

p(rij |xi) = τ,

where xi = (xi1, · · · , xip) is the i-th observation and
τ ∈ (0, 1) is a constant which does not depend on xi;

• MAR: Missingness only depends on the observed data,
i.e.,

p(rij |xi) = p(rij |xi,obs),

where xi,obs denotes the observed values in the i-th ob-
servation;

• MNAR: Missingness depends on both the missing and
observed data, i.e.,

p(rij |xi) = p(rij |xi,obs,xi,mis),

where xi,obs and xi,mis denote the observed and missing
values in the i-th observation, respectively.

In DPMCPM, we model the incomplete data by creating
an extra category to denote the missingness. Here Equa-
tion 4 is used to replace Equation 1 in the DPMPM model:

(4) xij |zi,ψ(j)
zi ∼ multinomial(ψ

(j)
zi0

, ψ
(j)
zi1

, · · · , ψ(j)
zidj

),

where the extra 0-th category denotes the case when xij is
missing.

Once we get the parameter estimates using Equation 4,
we shall rescale the multinomial probabilities as follows to
recover the corresponding parameters in Equation 1:

ψ̃
(j)
hc = p(xij = c|xij �= 0, zi = h,ψ

(j)
h ) = ψ

(j)
hc /(1− ψ

(j)
h0 ),

for c = 1, · · · , dj . This procedure implicitly integrates out
the missing values according to their estimated conditional
distributions. As compared to [21], this “collapse” step dra-
matically shrinks the dimension of the posterior sampling
space, thus enables DPMCPM to handle high missingness.

The idea of introducing an extra category comes from [5]
for the log-linear model but they did not provide a strict
proof. In fact, because any relationship among variables can
be approximated by the mixture product-multinomial model
for a sufficiently large k, DPMCPM also accommodates any
dependencies among the 0-th categories and other param-
eters, thus it can capture the MCAR, MAR and MNAR
missing mechanisms [3, 5]. We have the following theorem:

Theorem 1. For any general missing rate p(rij |xi), there

exists at least one set of parameters Θ and Ψ = {ψ(j)
hc : h =

1, · · · , k; j = 1, · · · , p; c = 0, 1, · · · , dj} in DPMCPM, which
is equivalent with the corresponding missing rate.

Proof. See Appendix A.1 for detailed proofs.

Based on the estimation of Θ and Ψ̃ = {ψ̃(j)
hc : h =

1, · · · , k; j = 1, · · · , p; c = 1, · · · , dj}, we can obtain an ap-
proximate of the true distribution up to the Monte Carlo
error. With this estimated distribution, any statistical in-
ference and imputation can be performed. For example, if
xij is missing and a single imputation is desired, we can
impute x̂ij = cpred by

cpred = argmax
c

p(xij = c|xi,obs,Θ, Ψ̃),

where xi,obs denotes all of the observed data in the i-th
sample and cpred is the predicted value.

2.3 Posterior inference

We use the Bayesian approach to fit the non-parametric
model in Equation 2-4 to the data. More specifically, we
introduce prior distributions for unknown parameters, and
then use a Markov chain Monte Carlo algorithm to sam-
ple from their posterior distribution. The converged samples
will be used for statistical inference.

For prior distributions, we assume the conjugate prior for

ψ
(j)
h , i.e.,

ψ
(j)
h ∼ Dirichlet(βj0, · · · , βjdj ),

for h = 1, · · · , k and j = 1, · · · , p. If the sample size n is
small, we suggest using a flat and weak prior by setting
βj0 = · · · = βjdj = 1 for all j. For the Dirichlet prior
in Equation 3, [22] suggested that the hyper-parameter α
should be a small number, thus we set α = 0.25 by default.
In a specific application where users have more knowledge
about the concentration level, the value of α can be changed
according to the prior knowledge.
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Since xij ’s are independent conditional on the latent com-

ponent zi’s and ψ(j)
zi ’s as in Equation 4, the joint likelihood

of x given z and Ψ can be written as

p(x|z,Ψ) =

n∏
i=1

p∏
j=1

p(xij |zi,ψ(j)
zi ) =

n∏
i=1

p∏
j=1

ψ(j)
zixij

.

Since z and Ψ are independent, the augmented joint poste-
rior distribution is p(z,Ψ|x) ∝ p(x|z,Ψ)p(z)p(Ψ).

To sample from the joint posterior distribution, we use
the following Gibbs sampler algorithm 1:

Algorithm 1 Gibbs Sampler Algorithm

1: Initialize parameters z and Ψ. For convenience, we can set
all samples in different components initially. Set zi = i,
i = 1, · · · , n and k = n. Set ψ

(j)
i by sampling from ψ

(j)
i ∼

Dirichlet(βj0, · · · , βjdj ), for i = 1, · · · , n and j = 1, · · · , p.
2: Update zi, i = 1, · · · , n, by sampling according to the follow-

ing weights:

P (zi = h|z−i,x,Ψ) ∝ nh,−i

n+ α− 1

p∏
j=1

ψ
(j)
hxij

, h = 1, · · · , k;

P (zi = k + 1|z−i,x,Ψ)

∝ α

n+ α− 1

p∏
j=1

∏dj
c=0 Γ(I(xij = c) + βjc)

Γ(
∑dj

c=0 βjc + 1)
.

If zi = k + 1, we obtain a new component and increase k by
1. Then we sample a new component parameter ψk+1 from

ψ
(j)
k+1 ∼ Dirichlet(I(xij = 0) + βj0, · · · , I(xij = dj) + βjdj ),

for j = 1, · · · , p.
3: Sort the components decreasingly according to the number of

samples in each component. Delete empty components and
re-calculate k.

4: Update ψ
(j)
h by sampling from

ψ
(j)
h ∼ Dirichlet(

∑
i:zi=h

I(xij = 0) + βj0,

· · · ,
∑

i:zi=h

I(xij = dj) + βjdj ),

for h = 1, · · · , k and j = 1, · · · , p.
5: Repeat Step 2-4 until convergence.
6: Re-scale the multinomial probabilities without the category

for missingness:

ψ̃
(j)
hc = ψ

(j)
hc /(1− ψ

(j)
h0 ),

for h = 1, · · · , k; j = 1, · · · , p; and c = 1, · · · , dj .

In Step 2, for h = 1, · · · , k, the conditional posterior dis-
tribution is derived as follows:

p(zi = h|z−i,x,Ψ) = p(zi = h|z−i,xi,ψh)

∝ p(zi = h|z−i)p(xi|zi = h,ψh)

=
nh,−i

n+ α− 1

p∏
j=1

p(xij |zi = h,ψ
(j)
h )

=
nh,−i

n+ α− 1

p∏
j=1

ψ
(j)
hxij

.

For h = k + 1, we have:

p(zi = k + 1|z−i,x,Ψ) ∝ p(zi = k + 1|z−i)p(xi|zi = k + 1)

=
α

n+ α− 1

p∏
j=1

p(xij |zi = k + 1),

where

p(xij |zi = k + 1) =

∫
p(xij |zi=k + 1,ψ

(j)
k+1)p(ψ

(j)
k+1)dψ

(j)
k+1

=

∫ dj∏
c=0

(ψ
(j)
k+1,c)

I(xij=c) ·
dj∏
c=0

(ψ
(j)
k+1,c)

βjc−1dψ
(j)
k+1

=

∏dj

c=0 Γ(I(xij = c) + βjc)

Γ(
∑dj

c=0 βjc + 1)
.

In Step 4, the conditional posterior distribution comes
from:

p(ψ
(j)
h |x, z) ∝ p(x|z,ψ(j)

h )p(ψ
(j)
h )

∝
∏

i:zi=h

dj∏
c=0

(ψ
(j)
hc )

I(xij=c) ·
dj∏
c=0

(ψ
(j)
hc )

βjc−1

=

dj∏
c=0

[
ψ
(j)
hc

]∑
i:zi=h I(xij=c)+βjc−1

.

The above Gibbs sampler algorithm is implemented in
the R package MMDai.

2.4 Identifiability

[3] proved that any multivariate categorical distribution
can be decomposed to a finite mixture product-multinomial
model for some k. It should be noted that this decomposition
is not identifiable if no restrictions are placed, where “iden-
tifiable” means the decomposition is unique up to label-
switching. In fact, [4] proved that the k-component finite
mixture of univariate multinomial distribution is identifi-
able if and only if the number of trials m in multinomial
distributions satisfies the condition that m > 2k − 1. For
the multivariate multinomial distribution, we can also prove
that it is identifiable if and only if mj > 2k − 1 for all j. In
most real applications, we only have mj = 1 and thus the
decomposition is always unidentifiable.

Fortunately, identifiability is not a problem in our anal-
ysis. Firstly, we are only interested in the estimation of the
joint distribution, which is unique though the decomposition
is not. The main issue here is whether the joint distribution
can be approximated well enough. [27] discussed the above
difference between estimating joint distribution and cluster-
ing when the latent class model is adopted. Secondly, with
the Dirichlet prior in our Bayesian approach, different de-
compositions are weighted unequally and the simpler model
is preferred. For the multiple non-identifiable decomposi-
tions, our algorithm usually converges to the decomposition
with the smallest k.
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3. SIMULATIONS

In this section, we check the performance of our method
and compare it with other methods based on synthetic data.
In each simulation experiment, we first synthesize a set of
complete data following a given data model, then mask a
certain percentage of the observations according to the cor-
responding missing mechanism to generate the incomplete
dataset as our input data, finally use the masked entries to
test the performance of statistical inference and imputation.
We consider the following missing mechanisms in simulation
studies:

• MCAR: The missingness does not depend on observed
and missing values,

p(xij = 0) = 0.2,

for all i = 1, · · · , n and j = 1, · · · , p.
• MAR: The first variable is fully observed and the miss-

ingness in other variables depends on the observation
in the first variable:

p(xij = 0|xi1 = 1) = 0.1, p(xij = 0|xi1 = 2) = 0.3,

for i = 1, · · · , n and j = 2, · · · , p.
• MNAR: The missingness depends on the missing value

itself:

p(xij = 0|xij = 1) = 0.1, p(xij = 0|xij = 2) = 0.3,

for all i = 1, · · · , n and j = 1, · · · , p.
Considering the uncertainty of Monte Carlo simulations,

we repeat the experiments, including the data synthesis step,
for 100 times independently for each data model. To com-
pare the performance with existing methods, we also apply
the DPMPM model in [21] and MICE on these datasets.
DPMPM and MICE represent two typical ideas for im-
puting incomplete categorical data respectively: joint mod-
eling by Bayesian latent class model and FCS by itera-
tive regression. See the supplementary materials for the
detailed R code, http://intlpress.com/site/pub/files/ supp/
sii/2020/0013/0001/SII-2020-0013-0001-s002.zip.

3.1 Case 1: data from mixture model

In this case, we generate binary data (dj = 2 for all j)
from a finite mixture of product-multinomial distributions
with n = 50 and p = 20. The true parameters in the mixture
model are set as follows: the number of components k = 3,
Θ and Ψ are sampled from Θ ∼ Dirichlet(10, · · · , 10) and
ψ

(j)
h ∼ Dirichlet(0.5, · · · , 0.5) for h = 1, · · · , k and j =

1, · · · , p, respectively.
First we show that DPMCPM can identify the correct

number of components in the mixture model. Figure 1
presents the histogram of the estimated k in 100 replications
under different missing mechanisms. In most cases, DPM-
CPM can capture the true number of components k = 3.

Figure 1. Histograms of the estimated k in 100 replications
under different missing mechanisms.

In other cases, DPMCPM may select the simpler model to
interpret datasets.

Then we show that DPMCPM can outperform DPMPM
and MICE in the imputation of missing values, where the
imputation accuracy is defined as follows:

imputation accuracy =
the number of correct imputation

the number of masked entries
.

Here the number of correct imputation is calculated based
on the true complete data. Table 2 presents the mean and
standard error of imputation accuracy of the three meth-
ods for 100 replications under different missing mechanisms.
It shows that DPMCPM significantly outperformed other
methods.

Table 2. Mean and standard error of imputation accuracy of
the three methods under different missing mechanisms. Data
are generated from the finite mixture product-multinomial

model.

DPMCPM DPMPM MICE

MCAR 0.7860(0.044) 0.7031(0.040) 0.5746(0.039)
MAR 0.7744(0.049) 0.6987(0.048) 0.5687(0.052)
MNAR 0.7684(0.050) 0.6811(0.049) 0.5752(0.044)

Besides the imputation accuracy, we can also compare the
performance on other statistical inference problems. From
DPMCPM, we obtain an estimation of the multivariate
multinomial distribution with the estimates of Θ and Ψ.
Although the distribution estimation can be a little differ-
ent from the true distribution due to the existence of miss-
ingness and the limited sample size, DPMCPM can perform
more or better statistical inference than DPMPM and MICE
based on the estimated distribution. Table 3 presents the
gap between the estimated correlation matrix and the true
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correlation matrix. The gap is defined as follows:

gap =
∑
i

∑
j

(σ̂ij − σij)
2,

where σ̂ij and σij are the estimated and true correlation
between the i-th and j-th variables, respectively. The mean
and standard error of the gap for 100 replications are sum-
marized in Table 3. Because MICE can not provide an esti-
mation of the distribution directly, we use instead the sam-
ple distribution from its imputation. The table shows that
DPMCPM have better correlation estimation than other
methods under all missing mechanisms.

Table 3. Mean and standard error of the gap between the
estimated and true correlation matrix under different missing

mechanisms.

DPMCPM DPMPM MICE

MCAR 7.5968(2.216) 9.2249(2.656) 11.8448(2.088)
MAR 7.8092(2.366) 8.8777(2.279) 12.1515(2.487)
MNAR 7.1693(2.287) 9.3119(2.549) 11.7781(2.395)

3.2 Case 2: nonlinear association

In addition to the data generated from mixture models,
we also perform simulation studies on more general cases.
In practice, it is cumbersome to design and simulate gen-
eral categorical data distribution with large p due to the
exponentially increasing size of the contingency table. Here
we design a simple nonlinear experiment to demonstrate the
power of DPMCPM in this aspect.

As an example, we generate three Bernoulli random
variables, V1, V2 and V3, as follows. Assume that V1 ∼
Bernoulli(0.3) and V2 ∼ Bernoulli(0.5) are independent,
where V ∼ Bernoulli(p) denotes that V follows a Bernoulli
distribution with probability Pr(V = 1) = p. Let V3 be the
output of the exclusive-or operator on V1 and V2 with prob-
ability 95% and be an independent Bernoulli random error,
i.e., V3 ∼ Bernoulli(0.5), with probability 5%. Essentially,
this is a data model with strong nonlinear association. We
set n = 300, p = 3 and the same missing mechanisms as
in Section 3.1. The mean and standard error of the impu-
tation accuracy in this study are summarized in Table 4.
The results show that MICE does not capture the nonlinear
association among variables while DPMCPM does it well.
DPMCPM also performs better than DPMPM here.

4. APPLICATION ON RECOMMENDATION
SYSTEM PROBLEM

In this section, we present a real application on a recom-
mendation system problem. [6] contributed a dataset about
the ratings of movies. The entire ratings table in [6] contains
20000263 ratings on 27278 movies from 138493 users. In real
applications of missing data, the true values of missingness

Table 4. Mean and standard error of the imputation accuracy
of three methods under different missing mechanisms. Data

are generated from the nonlinear association model.

DPMCPM DPMPM MICE

MCAR 0.8527(0.031) 0.7527(0.052) 0.5644(0.038)
MAR 0.8699(0.041) 0.7832(0.058) 0.5054(0.055)
MNAR 0.7935(0.060) 0.6945(0.072) 0.5179(0.041)

are always unknown. For the purpose of cross-validation, we
extract a subset of data with low missingness such that we
mask a high percent of them for evaluating the imputation
accuracy. First, we select the movies which were rated by
more than 25% users. Then we remain the users who rated
more than 95% of the selected movies. The resulting dataset
contains 68861 ratings on 38 movies from 1837 users, where
the percentage of missingness is 1.35%. The data matrix
MovieRate in the MMDai package is the resulted dataset.

Since the original ratings in [6] are ordinal data made on
a 5-star scale with half-star increments (0.5 stars–5.0 stars),
we consider two plans: (1) transform to binary data accord-
ing to a cutoff (thus the data is pure categorial); (2) round
up to 5-category data (thus the data is ordinal). To eval-
uate the performance of DPMCPM, we mask 40% of the
ratings in MovieRate under MCAR, resulting in the incom-
plete “observed data”, where the percentage of missing val-
ues is 40.81%. Predicting the unobserved favor of a user on
a particular movie is equivalent to impute a missing value
in incomplete data.

The analyses in Section 3 are repeated on this real
dataset. As an example of recommendation system, we also
compare with the classical SVD approximation algorithm for
recommendation problems. The data MovieRate is masked
and imputed for 100 times independently. The mean and
standard error of the imputation accuracy are summarized
in Table 5. To check the effect of the cutoff used to di-
chotomize the original ordinal data, we repeat the exper-
iments by varying the cutoff from 4.0 to 3.5 and 3.0. Table 5
shows that DPMCPM has significantly higher imputation
accuracy than other approaches on MovieRate. The perfor-
mance improvement is not sensitive to the choice of the cut-
off. The improved accuracy can be very helpful for reducing
the cost of bad recommendations in real life.

Except for the imputation of missing values, we also ex-
plore the clustering structure among movies according to the
fitting of DPMCPM. Figure 2 shows the heatmap plots of an
input data from one of the 100 experiments (both unordered
and ordered versions) and the true data MovieRate, where
the rows correspond to users and the columns correspond
to movies. The order is based on the latent class inferred by
DPMCPM. The figure demonstrated that DPMCPM could
detect the cluster structure efficiently despite the high miss-
ingness in the input data.

To demonstrate the usage of the estimated distribution
from DPMCPM, we perform the Fisher exact test to test
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Table 5. Imputation accuracy comparison on the movie data.

Cutoff DPMCPM DPMPM MICE SVD

Binary (Cutoff-4.0) 0.7598(0.002) 0.6805(0.003) 0.6859(0.002) 0.6765(0.004)
Binary (Cutoff-3.5) 0.8158(0.002) 0.7424(0.002) 0.7400(0.002) 0.7413(0.003)
Binary (Cutoff-3.0) 0.9075(0.001) 0.8602(0.002) 0.8445(0.002) 0.8599(0.002)

5-Categoty 0.5480(0.003) 0.4321(0.003) 0.4198(0.002) 0.4449(0.005)

Table 6. The pairs of movies with the least and largest Fisher test p-values.

Movie 1 Movie 2 p-value

Star Wars: Episode IV (1977) Star Wars: Episode V (1980) 0.00004
Star Wars: Episode V (1980) Star Wars: Episode VI (1983) 0.00023
Star Wars: Episode IV (1977) Star Wars: Episode VI (1983) 0.00069

The Fugitive (1993) Jurassic Park (1993) 0.00086
Jurassic Park (1993) Men in Black (1997) 0.00106

Twelve Monkeys (1995) Ace Ventura: Pet Detective (1994) 1.00000
Apollo 13 (1995) Fight Club (1999) 1.00000

Pulp Fiction (1994) Mission: Impossible (1996) 1.00000
Pulp Fiction (1994) Independence Day (1996) 1.00000

Speed (1994) Fight Club (1999) 1.00000

Figure 2. Heatmap plots of an unordered input Data, the
input data ordered according to the model fitting by

DPMCPM, and the true data MovieRate with the same
ordering.

the independence of each pair of movies according to the
estimated joint distribution. The five pairs with the least
and largest p-values are reported in Table 6. The association

results agree with common sense based on the nature of
these movies.

5. CONCLUSION

In this paper, we introduce the DPMCPMmethod, which
implemented multivariate multinomial distribution estima-
tion for categorical data with missing values. DPMCPM in-
herits some nice properties of DPMPM. It avoids the arbi-
trary setting of the number of mixture components by us-
ing the Dirichlet process. Also, DPMCPM is applicable for
any categorical data regardless of the true distribution and
can capture the complex association among variables. Un-
like DPMPM, DPMCPM can model general missing mech-
anisms and handle high missingness efficiently, thus DPM-
CPM can achieve more accurate results in empirical stud-
ies. Through simulation studies and a real application, we
demonstrate that DPMCPM performs better statistical in-
ference and imputation than other methods.

It shall be noted that approximating a general distri-
bution of high-dimensional categorical data is still a hard
task, although DPMCPM could approximate the true gen-
eral distribution at arbitrary precision theoretically if n is
big enough. To estimate the underlying general distribution
accurately, the required sample size n still increases expo-
nentially with the number of variables p. Thus our method
may be limited when p grows with n. Fortunately, in many
applications, there is underlying cluster structures in the
dataset. In these cases, the underlying distribution is close
to a mixture of product-multinomials, thus the sample size
needed for DPMCPM to estimate the underlying distribu-
tion accurately is much smaller. For example, in recommen-
dation system problems, it is reasonable to assume that
the customers with similar historical activities have similar
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tastes. For handling such problems, DPMCPM would have
more advantages than traditional approaches. Future work
shall try to improve the efficiency for the case that there
is no underlying cluster structures in the high-dimensional
dataset.

APPENDIX A. PROOF

A.1 Theorem 1

Proof. Here is a constructive proof for Theorem 1.
Assume that there are p variables and the j-th variable

has dj categories. Let πc1,··· ,cp = p(X1 = c1, · · · , Xp = cp)

then
∑d1

c1=1 · · ·
∑dp

cp=p πc1,··· ,cp = 1.
For all missing mechanisms belong to MCAR, MAR or

MNAR family, the missing rate can be written as p(r|x) =∏n
i=1

∏p
j=1 p(rij |xi), which is a function of xi. For each vari-

able, let

q
(j)
c1,··· ,cp = p(rij = 0|xi1 = c1, · · · , xip = cp),

For any joint distribution Π with missing mechanism Q

where Q = {q(j)c1,··· ,cp} is a table with d1 × · · · × dp × p cells,
we can estimate a new joint probability table by adding an
extra category to denote missingness,

Π̃ = θ̃1 · ψ̃
(1)

1 ⊗ · · · ⊗ ψ̃
(p)

1 + · · ·+ θ̃k · ψ̃(1)

k ⊗ · · · ⊗ ψ̃
(p)

k

where ψ̃
(j)

h = (ψ̃
(j)
h0 , ψ̃

(j)
h1 , · · · , ψ̃

(j)
hdj

).
The problem we need to prove is, there exists a set of

parameters {Θ̃, Ψ̃} that can recover the original joint dis-
tribution table Π and missing mechanism Q after scaling
the extra category in the latent classes. In another word,
given Π and Q, there exists a set of solution {Θ̃, Ψ̃} under
our estimates.

Note that for any general cases, we always have following
decomposition

Π =
∑

c1,··· ,cp
πc1,··· ,cp · Ic1 ⊗ · · · ⊗ Icp .

Define a series of latent classes H = {c1, · · · , cp} where
c1, · · · , cp is a notation of latent class. Here we design a set

of parameters {Θ̃, Ψ̃}:

Θ̃ = {θ̃h : h ∈ H}, where θ̃c1,··· ,cp = πc1,··· ,cp ,

Ψ̃ = {ψ̃(j)

h : h ∈ H},

where ψ̃
(j)

h = (ψ̃
(j)
h0 , ψ̃

(j)
h1 · · · , ψ̃(j)

hdj
) is a dj+1-dimension vec-

tor. For the vector ψ̃
(j)

c1,··· ,cp , we have ψ̃
(j)
c1,··· ,cp0 = q

(j)
c1,··· ,cp

and ψ̃
(j)
c1,··· ,cpcj = 1− q

(j)
c1,··· ,cp with other elements are 0.

Then we re-scale the extra category ψ
(j)
h =

(ψ
(j)
h1 , · · · , ψ

(j)
hdj

) where ψ
(j)
hc = ψ̃

(j)
hc /(1 − ψ̃

(j)
h0 ). Thus,

we have ψ
(j)
c1,··· ,cp = Icj where Icj is a vector with length dj

that the cj-th element is 1 and other elements are 0.

Under this {Θ̃, Ψ̃} setting, the joint distribution is

∑
h∈H

θ̃h ·ψ(1)
h ⊗ · · · ⊗ψ

(p)
h

=
∑

c1,··· ,cp

πc1,··· ,cp · Ic1 ⊗ · · · ⊗ Icp = Π.

In this decomposition, the posterior probability of latent
class

p(zi = c1, · · · , cp|xi1 = c1, · · · , xip = cp)

= p(zi = c1, · · · , cp, xi1 = c1, · · · , xip = cp)

/p(xi1 = c1, · · · , xip = cp)

= πc1,··· ,cp/πc1,··· ,cp = 1.

For the missing mechanism, on the level of latent class,
we have

p(rij = 1|zi = c1, · · · , cp, xi1 = c1, · · · , xip = cp)

= ψ̃
(j)
c1,··· ,cpcj ,

then

p(rij = 0|zi = c1, · · · , cp, xi1 = c1, · · · , xip = cp)

= 1− p(rij = 1|zi = c1, · · · , cp, xi1 = c1, · · · , xip = cp)

= 1− ψ̃
(j)
c1,··· ,cpcj = ψ̃

(j)
c1,··· ,cp0

Thus, integrating the level of latent class, we have

p(rij = 0|xi1 = c1, · · · , xip = cp)

=
∑
h∈H

p(rij = 0|zi = h, xi1 = c1, · · · , xip = cp)

· p(zi = h|xi1 = c1, · · · , xip = cp)

= p(rij = 0|zi = c1, · · · , cp, xi1 = c1, · · · , xip = cp)

= ψ̃
(j)
c1,··· ,cp0 = q

(j)
c1,··· ,cp .

So we show that any joint distribution with general miss-
ing mechanism can be captured by our latent class model.
Proven.

Remark. This proof is a constructive proof. We show that
there exists a construction of the latent class model that
can capture any general missing mechanisms under any joint
distributions. In specific cases, this construction may be not
unique since decomposition of joint distribution is multiple,
and not optimal in terms of complexity of model. Actually,
this proof shows that the estimate can always attain the
true joint distribution with right missing mechanism, which
is the maximum a posteriori estimate when sample size n is
large enough.
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