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A multivariate coefficient of variation for
functional data
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This paper considers an adaptation of the multivariate
coefficient of variation to functional data. Similarly to the
coefficient of variation and its multivariate generalizations,
the functional multivariate coefficient of variation (FMCV)
is useful in practical applications. Namely, it may be helpful
for comparing the relative variation in different populations
or the performance of different equipment characterized by
univariate or multivariate functional data. Some theoreti-
cal properties of the new functional data analysis method
are discussed. Using the basis function representation of
the data, it is shown that the FMCV reduces to the multi-
variate coefficient of variation of a vector of coefficients of
that representation. This enables effective computation of
the FMCV. The performance of classical and robust esti-
mators of the FMCV is compared in a finite sample setting
using simulation studies. The new methods are illustrated
on electrocardiography (ECG) data. These data are divided
into two groups: normal and abnormal (representative of
some cardiac pathology). The variability in the abnormal
group is shown to be significantly greater than that in the
normal group.

AMS 2000 subject classifications: Primary 62H05;
secondary 62M99.
Keywords and phrases: Dispersion measure, Functional
data analysis, Multivariate coefficient of variation, Robust
estimation, Variability measure.

1. INTRODUCTION

The coefficient of variation (CV), being the ratio of the
standard deviation to the population mean, is a widely
used measure of relative variation. The CV is a dimen-
sionless quantity and may be expressed as a percentage.
It is commonly used to compare the variability of several
populations, even when they are characterized by variables
expressed in different units or have significantly different
means. In particular, the CV is often used to assess the per-
formance or reproducibility of measurement techniques or
equipment. Of course, the lower the CV, the greater the
precision of the technique or equipment.

In many experiments, the populations are characterized
by more than one variable. In such cases, computing the CV
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for each variable is a common practice, although this ignores
the correlation between them, and does not summarize the
variability of the multivariate data into a single index. The
known multivariate extensions of the CV have received less
consideration in the literature. This may be because gener-
alizing the univariate CV to the multivariate setting is not
straightforward. Constructions of the multivariate CV are
based on different approaches, which reduce to the CV in
the univariate case. However, when the number of variables
is greater than one, the multivariate CVs are not generally
equal to each other and hence do not measure the same
quantity. Thus there is no one universal definition of multi-
variate CV. Different constructions of the multivariate CV
are briefly reviewed in the next paragraph.

Let X = (X1, . . . , Xp)
� be a p-dimensional random vec-

tor with mean vector u �= 0p and covariance matrix Σ. The
following definitions of the multivariate coefficient of varia-
tion (MCV) were introduced in [31, 40, 41, 2], respectively:

MCVR =

√
(detΣ)1/p

u�u
, MCVVV =

√
trΣ

u�u
,

MCVVN =

√
1

u�Σ−1u
, MCVAZ =

√
u�Σu

(u�u)2
.

MCVR and MCVVV are based on the generalized variance
detΣ and the total variance trΣ respectively. In the case
of MCVVN, the Mahalanobis distance u�Σ−1u appears to
be a natural extension of the CV. Voinov and Nikulin [41]
made this specific allusion to the MCV, since they claimed
that this measure for variation between the mean vector u
and a covariance matrix Σ increases in the sense of non-
negative definiteness as u�u increases. Finally, MCVAZ is
derived based on a matrix generalizing the square of the CV
(see also Section 2 for another interpretation of MCVAZ).
For a more detailed review of the MCVs we refer to [1, 2],
where many of their properties are stated.

In this paper, we extend the definition of the MCV to the
functional data framework. Functional data analysis (FDA)
is a branch of statistics concerned with (potentially multi-
dimensional) functions, curves or surfaces, and has received
much attention in the literature. In practice, each observa-
tion consists of pairs (tj , xj), j = 1, . . . ,m, where t1, . . . , tm
are time or location points, and x1, . . . , xm are discrete mea-
surements being observations of a (smooth) function X, i.e.,
x1 = X(t1), . . . , xm = X(tm). Such data appear in many
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scientific fields, for instance chemometrics, economics, engi-
neering, genetics, medicine, meteorology and plant science.
Particular examples include data on activity monitoring
with accelerometers, electrical activity of the heart, GDP
per capita, growth curves, and temperature and precipita-
tion in a given location. In contrast to traditional multivari-
ate analysis, the statistical methods of FDA are developed
for the functions as such rather than the individual mea-
surements. A broad perspective on FDA methods is pre-
sented in the monographs of [9, 18, 27, 28, 42], as well as
in the review papers of [36, 39]. Since the aims of FDA are
mainly the same as for other statistical analyses, there are
functional versions of many standard statistical methods,
including analysis of variance [15, 16], canonical correlation
analysis [20], classification [7, 23, 32], cluster analysis [5, 10],
outlier detection [3], principal component analysis [4, 8], re-
gression analysis [12, 21, 25] and repeated measures analysis
[24, 35].

The techniques of FDA help to avoid many problems of
classical multivariate analysis. First of all, FDA avoids the
curse of dimensionality. When the number of time points
exceeds the number of time series, most statistical methods
do not give satisfactory results due to overparameterization.
To avoid this problem, dimension reduction techniques, such
as principal component analysis, are commonly used. How-
ever, in this case, some information about the spatial and
temporal structure of the data may be lost. In the case of
functional data, this problem can be avoided, because the
time series are replaced with a set of curves independent of
the number of time points. Secondly, FDA methods easily
deal with the problem of missing data. Unfortunately, most
of classical data analysis methods require complete time se-
ries. One solution is simply to delete a time series that has
missing values from the data set, but this usually leads to
information loss. Another possibility is to use one of many
methods of predicting missing data, but then the results will
depend on the method used. In contrast, in the case of func-
tional data, the problem of missing observations is solved by
expressing time series in the form of a set of curves. More-
over, the time points do not have to be evenly distributed
in individual time series.

Applications of the functional multivariate coefficient of
variation may be similar to those of the MCV, as for exam-
ple comparing the variability in different populations or the
performance of different equipment. However, the functional
multivariate coefficient of variation is applicable, when the
experimental units are characterized by multivariate func-
tional data, for which the MCV can not be used, since it is
designed for classical multivariate data only.

It appears not to be easy to generalize the MCVs to func-
tional data. It is difficult to find functional counterparts
of the elements appearing in the definitions of MCVR and
MCVVN. Moreover, it is easy to see that they require the
non-singularity of Σ, which may limit their applicability.
On the other hand, MCVVV does not take into account

the correlation structure of the data, which is important
in functional data analysis. Fortunately, MCVAZ is free of
these restrictions, and it can be quite easily extended to
functional data by using its alternative form as given in [2],
as we shall see in Section 2. We refer to MCVAZ as the
multivariate coefficient of variation of Albert-Zhang type.
We show some theoretical properties of the functional ver-
sion of MCVAZ, and we present it in a simple form using
the basis function representation of the functional observa-
tions. Classical and robust estimators of the MCVAZ for
functional data are also proposed, and their performance is
investigated by simulation studies (Section 3), which indi-
cate the advantage of using robust estimates in the pres-
ence of outlying observations or under non-normal data. In
Section 4, we illustrate the new methods on an electrocar-
diography (ECG) data set. Some conclusions are given in
Section 5.

2. FUNCTIONAL MULTIVARIATE
COEFFICIENT OF VARIATION

In this section we define the multivariate coefficient of
variation for functional data by adapting the multivariate
coefficient of variation of Albert-Zhang type (MCVAZ). We
also consider classical and robust estimation methods.

Let us first note the following alternative form of the
MCVAZ, which is established in Property 3 in the Appendix
of [2]:

(1) MCVAZ =

√
Var(u�

∗ X)

‖u‖ ,

where u∗ = u/‖u‖. The form in Eq. (1) makes the defi-
nition of the MCVAZ more explicit and similar to that of
the univariate coefficient of variation: namely, it is given as
the ratio of a standard deviation to a mean value. Thus,
MCVAZ is the univariate coefficient of variation for the ran-
dom variable u�

∗ X. In the following, we use the expression
in Eq. (1) for MCVAZ to define the coefficient of variation
for multivariate functional data.

Let X(t) = (X1(t), . . . , Xp(t))
�, t ∈ [a, b], a, b ∈ R

be a p-dimensional random process with mean function
μ(t) = (μ1(t), . . . , μp(t))

� �= 0p. We assume that the pro-
cess X(t), t ∈ [a, b] belongs to the Hilbert space Lp

2[a, b] of
p-dimensional vectors of square integrable functions on [a, b].
Let 〈·, ·〉 and ‖ · ‖ denote the inner product and the norm in
the space Lp

2[a, b].

Definition 2.1. The functional multivariate coefficient of
variation (FMCV) for the random process X(t), t ∈ [a, b] is
defined as follows:

(2) FMCV =

√
Var(〈μ∗,X〉)

‖μ‖ ,

where μ∗(t) = μ(t)/‖μ‖, t ∈ [a, b].
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The above definition is analogous to the (classical) mul-
tivariate coefficient of variation of Albert-Zhang type given
in the form of Eq. (1). Namely, the inner product u�

∗ X in
Euclidean space Rp is naturally replaced by the inner prod-
uct 〈μ∗,X〉 in the Hilbert space Lp

2[a, b], and similarly, the
norm ‖u‖ is replaced by ‖μ‖. Of course, the FMCV is well-
defined if Var(〈μ∗,X〉) exists. A condition guaranteeing its
existence is the square integrability of the components of the
process X(t), t ∈ [a, b], as is stated in the following result.
Moreover, this theorem states that the FMCV is the CV of
the random variable 〈μ∗,X〉, similarly to the multivariate
coefficient of variation of Albert-Zhang type. The proof is
outlined in Appendix A.

Theorem 2.1. If Xi(t), t ∈ [a, b], i = 1, . . . , p, are

square integrable, i.e., E‖Xi‖2 = E
∫ b

a
X2

i (t) dt < ∞,
then Var(〈μ∗,X〉) exists. Furthermore, the FMCV defined
in Eq. (2) is the CV of the random variable 〈μ∗,X〉.

Now, we derive a simpler form of the FMCV defined in
Eq. (2) using the basis function representation of the pro-
cess X(t), t ∈ [a, b]. Let X(t) belong to a finite dimensional
subspace Lp

2[a, b] of L
p
2[a, b], where the components of X(t)

can be represented by a finite number of basis functions (see,
for example [28, 36]), i.e.,

(3) Xk(t) =

Bk∑
l=1

αklϕkl(t),

where k = 1, . . . , p, t ∈ [a, b], Bk ∈ N, αkl are random
variables with finite variance and {ϕkl}∞l=1, k = 1, . . . , p are
bases in the space L1

2[a, b]. The Eq. (3) can be expressed in
the following matrix notation:

(4) X(t) = Φ(t)α,

where

Φ(t) = diag
(
ϕ�

1 (t), . . . ,ϕ
�
p (t)

)
is the block diagonal matrix of ϕ�

k (t) =
(ϕk1(t), . . . , ϕkBk

(t)), k = 1, . . . , p and α =
(α11, . . . , α1B1 , . . . , αp1, . . . , αpBp)

�. By Eq. (4), for
t ∈ [a, b], we have

(5) μ(t) = E(X(t)) = Φ(t)E(α) = Φ(t)a.

From Eq. (4) and Eq. (5), it follows that

〈μ∗,X〉 =

∫ b

a

μ∗(t)
�X(t) dt(6)

=

∫ b

a

a�

‖μ‖Φ(t)�Φ(t)α dt =
a�JΦα

‖μ‖ ,

‖μ‖ =

√∫ b

a

μ(t)�μ(t) dt(7)

=

√∫ b

a

a�Φ(t)�Φ(t)a dt

=
√
a�JΦa = ‖J1/2

Φ
a‖,

if the matrix J
1/2

Φ
exists, where JΦ = diag(Jϕ1

, . . . ,Jϕp
)

and Jϕk
=

∫ b

a
ϕk(t)ϕ

�
k (t) dt is the Bk × Bk cross product

matrix corresponding to the basis {ϕkl}∞l=1, k = 1, . . . , p.
For an orthonormal basis, for instance the Fourier basis,
the cross product matrix is equal to the identity matrix.
A formula for JΦ for a B-spline basis is given, for exam-
ple, in [19]. The approximation of the cross product matrix
for these as well as other bases is also implemented in the
function inprod() in the R package fda [29, 30].

For random vector J
1/2

Φ
α, we have E(J

1/2

Φ
α) = J

1/2

Φ
a and

Cov(J
1/2

Φ
α) = J

1/2

Φ
ΣαJ

1/2

Φ
, where Σα = Cov(α). By Eq.

(2), (6) and (7), we obtain

(8) FMCV =

√√√√Var

(
a�JΦα

‖J1/2

Φ
a‖

)

‖J1/2

Φ
a‖

=

√
a�JΦΣαJΦa

(a�JΦa)2
.

Thus, we have proved the following result.

Theorem 2.2. Under the above assumptions and notation,
the functional multivariate coefficient of variation for the
random process X(t), t ∈ [a, b], defined in Eq. (2), is the
multivariate coefficient of variation of Albert-Zhang type for

the random vector J
1/2

Φ
α, if the matrix J

1/2

Φ
exists.

By Theorem 2.2, the FMCV reduces to the multivariate
coefficient of variation of Albert-Zhang type for the (B1 +

· · · + Bp)-dimensional random vector J
1/2

Φ
α. Although the

FMCV is defined for univariate and multivariate functional
data, we note that even when p = 1, the FMCV reduces to
MCVAZ (not to the CV), since B1 is usually greater than
one.

The above definitions and assumptions are population-
based. In practice, given a random functional sample, we
have to estimate the unknown vector α in Eq. (4), as well
as its parameters a and Σα, appearing in the expression for
the FMCV given in Eq. (8).

Let x1(t), . . . ,xn(t), t ∈ [a, b] be a random sample con-
taining realizations of the process X(t). These observations
are represented similarly as in Eq. (4), i.e.,

xi(t) = Φ(t)αi,

where t ∈ [a, b] and i = 1, . . . , n. Then, the vectors αi,
i = 1, . . . , n can be estimated by the least squares method
or the roughness penalty approach (see, for example, [28]).
The expansion lengths Bk in Eq. (3) can be selected deter-
ministically or with the use of information criteria such as
the Akaike and Bayesian information criteria. Shmueli [34]
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showed that the Akaike criterion gives the best prediction,
while the Bayesian criterion gives the best fit.

Using the estimators of αi, say α̂i, i = 1, . . . , n, we can
estimate the mean vector a and the covariance matrix Σα.
The classical estimators are the sample mean and the sample
covariance matrix, i.e.,

(9) â =
1

n

n∑
i=1

α̂i, Σ̂α =
1

n

n∑
i=1

(α̂i − â)(α̂i − â)�.

However, these estimators may break down when the data
contain outliers. Thus, many authors recommend the use of
robust estimators of location and scatter in the presence of
outlying observations [1, 2, 37, 38]. There are many robust
estimators worthy of consideration. Similarly to [1], we shall
refer mainly to the two most commonly used, namely the
minimum covariance determinant (MCD) estimator [33] and
the S-estimator [6].

For a given breakdown point α, the MCD estimator is
based on a subset of {α̂1, . . . , α̂n} of size h = �n(1 − α)	
minimizing the generalized variance (i.e., the determinant of
the covariance matrix) among all possible subsets of size h.
Then the MCD estimators of a and Σα are the sample
mean and the sample covariance matrix (multiplied by a
consistency factor) computed from this subset. The location
and scatter S-estimators are the vector an and the positive
definite symmetric matrix Σn respectively which minimizes
det(Σn) subject to

1

n

n∑
i=1

ρ

(√
(α̂i − an)�Σ

−1
n (α̂i − an)

)
= b0,

where ρ : R → [0,∞) is a given non-decreasing and sym-
metric function (e.g., Tukey’s biweight) and b0 is a constant
needed to ensure consistency of the estimator.

Finally, the (classical and robust) estimators of the
FMCV are obtained by replacing the parameters a and Σα
in Eq. (8) by their estimators â and Σ̂α. In the next sec-
tion, we test their behavior on finite samples by simulation
experiments.

3. SIMULATION STUDIES

In this section, simulation experiments are conducted to
measure the finite sample performance of the estimators of
the FMCV given by Eq. (8). We consider a classical estima-
tor based on the sample mean and the sample covariance
matrix given by Eq. (9), as well as robust estimators based
on the MCD and S estimators of the parameters a and Σα.

3.1 Simulation design

We consider the functional sample x1(t), . . . ,xn(t) of size
n = 100, 200, 300 containing realizations of the random pro-
cess X(t), t ∈ [0, 1] of dimension p = 5. These observations
are generated in the following discretized way:

xi(tj) = Φ(tj)αi + εij ,

where i = 1, . . . , n, tj , j = 1, . . . , 50 are equally spaced de-
sign time points in [0, 1], the matrix Φ(t) is as in Section 2
with Bk = 5, k = 1, . . . , p, αi are 5p-dimensional random
vectors, and εij = (εij1, . . . , εijp)

� are measurement errors
such that εijk ∼ N(0, 0.025rik) and rik is the range of the
k-th row of the matrix

(Φ(t1)αi . . .Φ(t50)αi) ,

k = 1, . . . , p. For data generation and for evaluation of the
estimators, we consider two commonly used bases, namely
the Fourier and B-spline bases.

The vectors αi, i = 1, . . . , n were generated from a mul-
tivariate normal distribution or multivariate t-distribution
with five degrees of freedom, with mean vector a and co-

variance matrix Σα, or a distribution of ZΣ
1/2
α + a, where

Z = (Y−E(Y))Cov(Y)−1/2 and Y follows a mixture of two
independent multivariate normal distributions N5p(15p, I5p)
(with probability 0.3) and N5p(215p, 2I5p) (with probability
0.7). Here 15p = (1, . . . , 1)� and I5p is the identity ma-
trix. Similarly to [1], we set a = a1 := ae1 or a = a2 :=
(a/(5p)1/2)15p and Σα = (1 − ρ)I5p + ρ15p1

�
5p, where a is

chosen to obtain a given value of the FMCV, ρ = 0, 0.5, 0.8
and e1 = (1, 0, . . . , 0)�. Note that a2 is an eigenvector of
Σα. We set FMCV = 0.1, 0.5, 0.9. Moreover, to obtain
uncontaminated and contaminated functional data, ε% of
the observations are generated with the covariance matrix
equal to 10Σα, where ε = 0, 10, 20, 30, 40, 50. The fact
that this method of data generation results in contaminated
functional data (if ε > 0) was confirmed by an outlier-
gram, that is, by the functional outlier detection method
of [3] detecting outlying observations by connecting two
functional depths. The R code of this method is available
at http://halweb.uc3m.es/esp/Personal/personas/aarribas/
esp/public.html. Figure 1 on page 651 shows sample realiza-
tions of simulated functional data.

For each combination of the above simulation parameters,
1000 samples were generated, and the classical, MCD and
S estimators (with breakdown point equal to 0.5) of the
FMCV were evaluated on these samples. Based on the values
of the estimators, the estimated mean squared error (MSE)
was computed to assess the performance of the estimators,
namely

MSE =
1

1000

1000∑
i=1

(F̂MCVi − FMCV)2,

where F̂MCVi is the value of the estimator of the FMCV
obtained in the i-th sample, i = 1, . . . , 1000. The resulting
MSEs are given in Tables 1–3 and Tables 1–7 in the Supple-
mentary Materials.

The simulation experiments as well as the real data exam-
ple in Section 4 were conducted in the R computing environ-
ment [30]. The R code reproducing the simulation results,
the results of the real data example of Section 4, etc., are
given in the Supplementary Materials.
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Figure 1. Sample realizations of the first functional variables of simulated data with 10% outlying observations.
Uncontaminated and contaminated data are depicted in gray and black respectively.

Table 1. MSEs of classical and robust (MCD and S) estimators of the FMCV in the case of normal distribution, Fourier basis,
n = 100, p = 5 and a = a1.

class. MCD S class. MCD S class. MCD S

ε FMCV = 0.1, ρ = 0 FMCV = 0.1, ρ = 0.5 FMCV = 0.1, ρ = 0.8
0 0.0000 0.0001 0.0001 0.0001 0.0002 0.0001 0.0003 0.0005 0.0003
10 0.0016 0.0001 0.0001 0.0019 0.0002 0.0002 0.0025 0.0005 0.0004
20 0.0047 0.0001 0.0004 0.0053 0.0002 0.0006 0.0068 0.0006 0.0009
30 0.0085 0.0002 0.0017 0.0095 0.0003 0.0019 0.0118 0.0007 0.0025
40 0.0130 0.0009 0.0064 0.0147 0.0011 0.0069 0.0181 0.0016 0.0080
50 0.0179 0.0059 0.0133 0.0204 0.0065 0.0140 0.0251 0.0088 0.0161

ε FMCV = 0.5, ρ = 0 FMCV = 0.5, ρ = 0.5 FMCV = 0.5, ρ = 0.8
0 0.0019 0.0029 0.0019 0.0209 0.0314 0.0212 0.0656 0.0953 0.0664
10 0.0332 0.0031 0.0025 0.1278 0.0347 0.0304 0.2922 0.1007 0.0912
20 0.0940 0.0032 0.0084 0.2919 0.0368 0.0519 0.6255 0.1054 0.1340
30 0.1630 0.0036 0.0331 0.4902 0.0412 0.1177 1.0005 0.1209 0.2661
40 0.2345 0.0168 0.1345 0.7307 0.0936 0.3261 1.4984 0.2156 0.6466
50 0.3033 0.1191 0.2693 0.9976 0.3683 0.6583 1.9943 0.8076 1.2419

ε FMCV = 0.9, ρ = 0 FMCV = 0.9, ρ = 0.5 FMCV = 0.9, ρ = 0.8
0 0.0131 0.0163 0.0130 0.1197 0.1654 0.1216 0.3854 0.5333 0.3876
10 0.0706 0.0154 0.0095 0.6283 0.1763 0.1662 1.5364 0.5636 0.5306
20 0.1838 0.0160 0.0171 1.1743 0.1909 0.2820 2.7146 0.5771 0.7428
30 0.2867 0.0136 0.0640 1.7589 0.2138 0.5742 4.2450 0.6646 1.4568
40 0.3755 0.0335 0.2904 2.3889 0.4412 1.4175 5.8112 1.1368 3.2821
50 0.4462 0.2220 0.5432 2.9514 1.3361 2.5026 7.3496 3.3350 5.6680
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Table 2. MSEs of classical and robust (MCD and S) estimators of the FMCV in the case of t-distribution with five degrees of
freedom, Fourier basis, n = 100, p = 5 and a = a1.

class. MCD S class. MCD S class. MCD S

ε FMCV = 0.1, ρ = 0 FMCV = 0.1, ρ = 0.5 FMCV = 0.1, ρ = 0.8
0 0.0001 0.0004 0.0002 0.0002 0.0004 0.0002 0.0004 0.0006 0.0003
10 0.0017 0.0003 0.0001 0.0020 0.0004 0.0001 0.0028 0.0005 0.0003
20 0.0050 0.0002 0.0002 0.0057 0.0003 0.0002 0.0072 0.0004 0.0004
30 0.0086 0.0001 0.0008 0.0109 0.0002 0.0010 0.0143 0.0005 0.0014
40 0.0137 0.0005 0.0025 0.0156 0.0007 0.0028 0.0185 0.0011 0.0035
50 0.0189 0.0019 0.0056 0.0210 0.0024 0.0062 0.0264 0.0034 0.0074

ε FMCV = 0.5, ρ = 0 FMCV = 0.5, ρ = 0.5 FMCV = 0.5, ρ = 0.8
0 0.0044 0.0121 0.0062 0.0249 0.0201 0.0153 0.0719 0.0461 0.0435
10 0.0517 0.0098 0.0030 0.1420 0.0188 0.0176 0.3039 0.0481 0.0557
20 0.1282 0.0073 0.0039 0.3428 0.0217 0.0299 0.6786 0.0588 0.0858
30 0.2123 0.0045 0.0167 0.5727 0.0294 0.0717 1.0843 0.0849 0.1740
40 0.3010 0.0097 0.0543 0.8068 0.0631 0.1579 1.5770 0.1653 0.3360
50 0.4019 0.0359 0.1160 1.1104 0.1627 0.3023 2.1642 0.3614 0.6079

ε FMCV = 0.9, ρ = 0 FMCV = 0.9, ρ = 0.5 FMCV = 0.9, ρ = 0.8
0 0.0206 0.0535 0.0296 0.1373 0.0833 0.0775 0.4147 0.2098 0.2328
10 0.1608 0.0454 0.0157 0.6510 0.0797 0.0961 1.5298 0.2339 0.3127
20 0.3397 0.0364 0.0125 1.3905 0.1019 0.1729 3.0649 0.3039 0.5154
30 0.5174 0.0222 0.0347 1.9681 0.1479 0.3667 4.3468 0.4605 0.9566
40 0.6139 0.0222 0.1200 2.6334 0.3042 0.7510 5.9736 0.8762 1.8222
50 0.7742 0.0638 0.2467 3.3383 0.6651 1.2988 7.6180 1.7064 2.9605

Table 3. MSEs of classical and robust (MCD and S) estimators of the FMCV in the case of mixture of normal distributions,
Fourier basis, n = 100, p = 5 and a = a1.

class. MCD S class. MCD S class. MCD S

ε FMCV = 0.1, ρ = 0 FMCV = 0.1, ρ = 0.5 FMCV = 0.1, ρ = 0.8
0 0.0001 0.0001 0.0001 0.0001 0.0006 0.0003 0.0003 0.0019 0.0011
10 0.0017 0.0001 0.0001 0.0019 0.0004 0.0002 0.0025 0.0013 0.0008
20 0.0047 0.0001 0.0004 0.0053 0.0003 0.0003 0.0064 0.0009 0.0008
30 0.0087 0.0002 0.0012 0.0097 0.0003 0.0004 0.0118 0.0008 0.0010
40 0.0134 0.0006 0.0035 0.0152 0.0003 0.0007 0.0183 0.0011 0.0010
50 0.0176 0.0024 0.0088 0.0202 0.0008 0.0038 0.0247 0.0031 0.0077

ε FMCV = 0.5, ρ = 0 FMCV = 0.5, ρ = 0.5 FMCV = 0.5, ρ = 0.8
0 0.0021 0.0043 0.0024 0.0216 0.0734 0.0248 0.0653 0.2783 0.1070
10 0.0379 0.0038 0.0027 0.1285 0.0469 0.0285 0.2856 0.1852 0.1222
20 0.1020 0.0037 0.0078 0.2947 0.0377 0.0641 0.6031 0.1437 0.2408
30 0.1759 0.0051 0.0247 0.5047 0.0616 0.3980 1.0405 0.2095 1.1201
40 0.2545 0.0128 0.0732 0.7491 0.3798 1.7084 1.5105 1.0244 3.3714
50 0.3208 0.0492 0.1862 0.9737 1.5144 2.7948 1.9882 2.7528 4.8398

ε FMCV = 0.9, ρ = 0 FMCV = 0.9, ρ = 0.5 FMCV = 0.9, ρ = 0.8
0 0.0132 0.0296 0.0151 0.1190 0.4660 0.2736 0.3770 1.2859 0.8901
10 0.0870 0.0229 0.0113 0.5964 0.3671 0.3287 1.5149 1.0949 1.0272
20 0.2114 0.0178 0.0172 1.1848 0.3196 0.6659 2.8603 0.9864 1.8050
30 0.3298 0.0150 0.0484 1.8255 0.4887 2.3572 4.3818 1.3322 4.8912
40 0.4291 0.0259 0.1609 2.4682 1.8147 4.9669 5.8772 3.8394 7.8594
50 0.5041 0.0935 0.3871 2.9989 3.0804 6.0332 7.3744 4.7974 9.2819

3.2 Simulation results

The simulation results presented in Tables 1–3 and Ta-

bles 1–7 in the Supplementary Materials. lead to the follow-

ing conclusions concerning the finite sample behavior of the

estimators of the FMCV under uncontaminated and con-
taminated data.

When the FMCV or the number of outliers increases, the
MSEs of all estimators also increase. However, the increase
in the MSE of the MCD estimator appears to be slower
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than that of the other estimators when ε increases, except
some cases for ε ∈ {40, 50}, FMCV = 0.9 and a = a2 under
mixture of normal distributions. Moreover, sometimes the
MSE of the MCD (respectively S) estimator decreases with
an increasing number of outliers up to 30% (respectively
10%); for example, under a t-distribution, a = a1, FMCV =
0.9 and ρ = 0.

Under uncontaminated data and normal distribution or
mixture of normal distributions, the classical estimator is
at least slightly better than the S-estimator, and much bet-
ter than the MCD estimator. The situation is similar in the
case of the t-distribution and small FMCV or lack of correla-
tion. However, in the remaining cases, the robust estimators
(especially the S-estimator) often perform better than the
classical estimator.

Under contaminated data, the classical estimator breaks
down, even when ε is small. This indicates, as was expected,
the lack of robustness of the classical estimator based on
the sample mean and the sample covariance matrix. On the
other hand, the robust estimators are much more resistant to
contamination. However, they may break down under mix-
ture of normal distributions and FMCV = 0.5, 0.9, when ε is
close to the breakdown point (see Table 6 in the Supplemen-
tary Materials). Fortunately, the MCD estimator overcomes
this problem, when the number of observations increases
(see Table 7 in the Supplementary Materials). The S esti-
mator outperforms the MCD estimator when the number of
outlying observations is small, i.e., ε ≤ 10 or ε ≤ 20, but
the MCD estimator performs better when ε ≥ 20 or ε ≥ 30.
The main reason for this is that the bias of the MCD esti-
mator is greater than that of the S-estimator in the presence
of intermediate outlying observations, but smaller than the
bias of the S-estimator in case of severe contamination. The
squared bias of the estimators behaves similarly to the MSE,
and it is therefore omitted to save space.

The classical estimator usually performs worse under a
t-distribution than under a normal distribution. For robust
estimators, the same holds when a = a2 and ε = 0, but in
the other cases the reverse is true. Under mixture of normal
distributions, the classical estimator usually performs worse
than under normal distribution, when ρ = 0 or the Fourier
basis is used, but the reverse is true in the other scenarios.
On the other hand, the MSEs of the robust estimators are
usually smaller under mixture of normal distributions than
under normal distribution, when a = a1, ε > 0, ρ = 0 or
FMCV = 0.1, but the reverse is true in the other situations.
The MSEs usually increase when the correlation increases
in the case a = a1. However, for a = a2, the MSEs are quite
stable for small FMCV, and for greater FMCV the MSEs
of robust estimators may even decrease as the correlation
increases, except the case of mixture of normal distributions,
where the MSEs usually increase. These findings all indicate
that the variability of the estimators of the FMCV depends
on the direction of a.

The MSEs are usually similar for different bases, but
greater differences may be found when the FMCV is larger.

Moreover, the MSE is often greater for the B-spline basis
than for the Fourier basis. This may be because the cross
product matrix in JΦ corresponding to the B-spline basis
is numerically approximated, while for the Fourier basis, it
is equal to the identity matrix.

To summarize, the estimators of the FMCV perform
very satisfactorily when the FMCV is smaller. However, for
greater values, they may overestimate the FMCV. We also
observed that it is necessary to use robust estimators when
outlying observations or non-normal distribution of the data
are suspected. The S-estimator performs better than the
MCD estimator under uncontaminated or less contaminated
functional data, while in the other cases the reverse is true.

4. REAL DATA APPLICATION

In this section, we demonstrate the applicability of the
FMCV using an electrocardiogram (ECG) data set. We also
complement the simulation results of Section 3 with some
additional observations. We consider the ECG data set orig-
inating from [26] and available in the R package mfds [17].

Electrocardiography is a diagnostic procedure that mon-
itors the electrical activity of the heart with the intention of
diagnostic cardiac pathologies. An electrocardiogram is gen-
erated by placing one or more electrodes at standardized
locations on the body, and recording the electrical poten-
tial difference observed at that site during each heartbeat;
a complete ECG utilizes twelve electrodes, but fewer are of-
ten used for simpler diagnostic procedures. In our case, the
data comes from two electrodes (p = 2). Each data set in
the ECG database contains the measurements recorded by
one electrode during one heartbeat. The data sets contained
in each database were analyzed by experts, and a label of
normal or abnormal (supraventricular premature beat) was
assigned to each data set. The ECG database contains 200
(n = 200) data sets, where 133 were identified as normal
and 67 were identified as abnormal. Data from ECG were
recorded in 152 time points (mi = 152, i = 1, . . . , n) (Fig-
ure 2 on page 654).

The ECG database was used to discriminate between nor-
mal and abnormal heartbeats [26]. For illustrative purposes,
we show that this also makes sense from the point of view
of variability. Moreover, it seems that groups with greater
variability are more difficult to classify, as we show for the
ECG database at the end of this section.

Here, we compute the FMCV for normal and abnormal
heartbeats separately. The basis function representation of
the data was obtained using the Fourier and B-spline bases
and B1 = B2 = 5, 7, 9, 11, 13, 15, if this was possible. (Odd
values of the number of basis functions are dictated by the
implementation of the Fourier basis in the R package fda
[29] which was used.) To estimate the vectors of coefficients
αi, i = 1, . . . , n, the least squares estimation method was
used. To estimate the FMCV, we used the same estima-
tors as in the simulation experiments of Section 3, namely
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Figure 2. ECG data set.

the classical, MCD and S estimators, as well as the orthogo-
nalized Gnanadesikan-Kettenring (OGK) estimator [11, 22].
Additionally, the standard errors (SE) were obtained by the
bootstrap method, based on 1000 bootstrap samples. The
estimated FMCVs and SEs are presented in Figure 3 on
page 655.

Since to apply the MCD and S estimators one may need
a larger number of observations, they may not be applicable
when the number of basis functions is greater. This is seen
when computing the SEs in this example: for the abnormal
group, the MCD and S estimators do not exist for bootstrap
samples. In contrast, the OGK estimator is a robust estima-
tor of location and dispersion for high-dimensional data sets,
and it can be used in this scenario. Moreover, for the normal
group, the SEs of the MCD and S estimators increase fairly
rapidly as the number of basis functions increases. These
facts illustrate a limitation of some of the robust methods,
namely that their application may require a greater amount
of data. Fortunately, the SEs of the classical and OGK es-
timates are quite stable for all values of Bi, i = 1, 2. The
results are also quite stable for both of the bases used, al-
though sometimes greater differences can be observed.

In the normal group, we observe that the FMCVs for
the classical and S estimators are greater than those for the
MCD and OGK estimators. This confirms that the classical
and S estimators may overestimate the FMCV, as was indi-
cated in the simulations (Section 3). This may be caused by
the presence of outlying observations (especially in the nor-
mal group) as indicated by the outlier detection method of

[3]. Nevertheless, the FMCVs for the normal group are sig-
nificantly smaller than those for the abnormal group. This
implies that the ECGs for heartbeats representing cardiac
pathology exhibit much greater variability than those for
normal heartbeats. Thus, the FMCV confirms the correct-
ness of the division of the heartbeats into normal and ab-
normal groups.

Finally, we justify our claim that the groups with greater
variability may be more difficult to classify. For this pur-
pose, we applied two different classification rules to the ECG
data set, namely the linear discriminant analysis in the space
of the multivariate functional discriminant coordinates [14]
(the FDC classifier) and the classifier based on the func-
tional logistic regression [13] (the FLR classifier). For sim-
plicity, we used the Fourier basis only and the same B1 and
B2 as for the FMCV. The leave-one-out (LOO) classification
errors computed separately for all observations, the normal
and abnormal groups are presented in Figure 4 on page 655.
In fact, the LOO classification errors of both classifiers for
the abnormal group are much greater than for the normal
group, which justifies our claim at least for this particular
data set.

5. CONCLUDING REMARKS

In functional data analysis, the data are considered as
curves or functions. These appear naturally in many scien-
tific fields where repeated measurements are taken in time
or space. To extend the range of methods of functional data
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Figure 3. Estimated FMCVs and SEs for the normal (solid line) and abnormal (dashed line) groups, where 1 – classical
estimator and Fourier basis, 2 – classical estimator and B-spline basis, 3 – MCD estimator and Fourier basis, 4 – MCD

estimator and B-spline basis, 5 – S-estimator and Fourier basis, 6 – S-estimator and B-spline basis, 7 – OGK estimator and
Fourier basis, 8 – OGK estimator and B-spline basis.

Figure 4. LOO classification errors (as percentages) for the normal (solid line), abnormal (dashed line) groups and all
observations (dotted line), where 1 – FDC classifier, 2 – FLR classifier.
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analysis, we have defined the functional multivariate coeffi-
cient of variation for both univariate and multi-dimensional
functional data. Its theoretical properties show that the
FMCV is well-defined and admits a reasonable interpreta-
tion. We have also proved a simple form of the FMCV using
the basis expansion of the data, which is easy to implement.
By an application to ECG data, treated as functional data,
we illustrated the use of the FMCV to compare the relative
variation of different groups and indicated that the groups
with greater variability may be more difficult to classify.
Possible applications of the FMCV also include comparison
of the performance or reproducibility of different techniques
or equipment, when they are described by certain functional
variables.

The practical performance of the classical and robust es-
timators of the FMCV has been tested by simulation stud-
ies. For small values of the FMCV, its estimators perform
very satisfactorily, but for greater values, they may overes-
timate the FMCV. Robust estimators were constructed by
plugging in the robust estimators of the location and disper-
sion parameters to the basis form of the FMCV; that is, the
MCD and S estimators. Under normal data without outliers,
the classical sample mean and covariance matrix outperform
the robust estimators, but the reverse is the case with non-
normal data or in the presence of outliers. The S-estimator
appears to perform better than the MCD estimator in the
absence of contamination or under small contamination, but
in other cases the position is reversed. In the real data ap-
plication, we also noted that these robust estimators (and
many others) may require a fairly large number of observa-
tions in order to be applied. Therefore, there may be a need
to consider other estimators, such as OGK, which are also
designed for high-dimensional data.

SUPPLEMENTARY MATERIAL

The Supplementary Materials contain the all simulation
results of Section 3 (http://intlpress.com/site/pub/files/
supp/sii/2019/0012/0004/SII-2019-0012-0004-s003.pdf) as
well as the R code reproducing the simulation results of
Section 3 and the results of the real data example from Sec-
tion 4 (http://intlpress.com/site/pub/files/ supp/sii/2019/
0012/0004/SII-2019-0012-0004-s004.zip).

APPENDIX A. PROOF OF THEOREM 2.1

Proof of Theorem 2.1. Let Yi(t) = Xi(t) − μi(t), t ∈ [a, b],
i = 1, . . . , p. Then EYi = 0 and Yi(t), t ∈ [a, b], i = 1, . . . , p,
are square integrable, since:

E‖Yi‖2 = E

∫ b

a

Y 2
i (t) dt

= E

∫ b

a

(Xi(t)− μi(t))
2 dt

= E

∫ b

a

X2
i (t) dt

−2E

∫ b

a

Xi(t)μi(t) dt

+E

∫ b

a

μ2
i (t) dt

= E‖Xi‖2 − 2E〈Xi, μi〉+ ‖μi‖2

= E‖Xi‖2 − ‖μi‖2 < ∞

(see [18] p. 23, for evidence of the last equality). Now, we
conclude similarly to [18] (p. 23–24) that

Var(〈μ∗i, Xi〉) = Var(〈μ∗i, Xi〉 − 〈μ∗i, μi〉)
= Var(〈μ∗i, Xi − μi〉)
= Var(〈μ∗i, Yi〉)
= E(〈μ∗i, Yi〉2)

= E

(∫ b

a

μ∗i(t)Yi(t) dt

)2

=

∫ b

a

∫ b

a

E (Yi(t)Yi(s))μ∗i(t)μ∗i(s) dtds

=

∫ b

a

CYi(μ∗i)(t)μ∗i(t) dt

= 〈CYi(μ∗i), μ∗i〉,

where CYi is the covariance operator of Yi(t), t ∈ [a, b].
Therefore, Var(〈μ∗i, Xi〉) exists, which implies the existence
of Var(〈μ∗,X〉) as

Var(〈μ∗,X〉) = Var

(
p∑

i=1

〈μ∗i, Xi〉
)

=

p∑
i=1

Var (〈μ∗i, Xi〉)

+ 2
∑

1≤i<j≤p

Cov (〈μ∗i, Xi〉〈μ∗j , Xj〉)

≤
p∑

i=1

Var (〈μ∗i, Xi〉)

+ 2
∑

1≤i<j≤p

√
Var (〈μ∗i, Xi〉)Var (〈μ∗j , Xj〉).

The second statement follows from the first and from the
following observation:

E(〈μ∗,X〉) = E

(
p∑

i=1

〈μ∗i, Xi〉
)

=

p∑
i=1

E (〈μ∗i, Xi〉)

=

p∑
i=1

〈μ∗i, μi〉
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=
1

‖μ‖

p∑
i=1

〈μi, μi〉

= ‖μ‖,

which completes the proof.
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cation problem based on regression models for multidimensional
functional data. Statistics in Transition New Series 16 97–110.
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