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Subject-wise empirical likelihood inference for
robust joint mean-covariance model with
longitudinal data

Jing Lv, Chaohui Guo
∗
, and Jibo Wu

In longitudinal studies, one of the biggest challenges is
how to obtain a good estimator of covariance matrix to im-
prove the estimation efficiency of the mean regression coeffi-
cients. Meanwhile, one outlier in a subject level may gener-
ate multiple outliers in the sample due to repeated measure-
ments. To solve these problems, this paper develops a robust
joint mean–covariance model using the bounded exponential
score function and modified Cholesky decomposition. The
motivation for this new procedure is that it enables us to
achieve high effectiveness and robustness simultaneously by
introducing an additional tuning parameter γ which can be
automatically selected using a data-driven procedure. In ad-
dition, we propose a subject-wise empirical likelihood to con-
struct the confidence intervals/regions for the mean regres-
sion coefficients. Furthermore, under some mild conditions,
we have established asymptotic theories of the proposed pro-
cedures. Finally, simulation studies are constructed to evalu-
ate the finite sample performance of the proposed methods.
A practical progesterone example is used to demonstrate the
superiority of our proposed method.

AMS 2000 subject classifications: 62H12.
Keywords and phrases: Empirical likelihood, Exponen-
tial score function, Longitudinal data, Modified Cholesky
decomposition, Robustness and effectiveness.

1. INTRODUCTION

Longitudinal data arises frequently in the biomedical,
epidemiological, social, and economical fields. The gener-
alized estimating equation (GEE) proposed by Liang and
Zeger [11] is a popular approach to deal with longitudinal
data. However, the GEE is in principle very similar to the
weighted least squares method, which is not robust for non-
normal distributions. In the longitudinal data analysis, it is
well known that one outlier in the subject level may produce
a set of outliers in the sample due to repeated measurements.
Hence, robustness against outliers is a very important is-
sue in longitudinal studies. Recently, a robust Huber’s esti-
mation for longitudinal data has attracted much attention.
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Wang et al. [30] proposed a distribution-free bias correction
method for robust estimating equations. He et al. [7] con-
structed robust generalized estimating equations for longi-
tudinal generalized partial linear models. Fan et al. [5] devel-
oped a robust variable selection procedure for longitudinal
linear models. Other related literature can refer to Croux
et al. [4], Qin and Zhu [19] and Qin et al. [20]. However,
the mentioned references only considered the mean regres-
sion model with some specified correlation structures, which
will result in a loss of efficiency when the true correlation
structure is misspecified. Thus, it is essential to model the
covariance structure to improve the estimation efficiency of
mean regression coefficients. In recent years, many scholars
focused on studying joint mean and covariance models by us-
ing a modified Cholesky decomposition which is a useful tool
to parameterize the covariance matrix. There are two salient
merits for this decomposition. On the one hand, it automat-
ically guarantees the positive definiteness of the covariance
matrix. On the other hand, the parameters of this decom-
position are unconstrained and have well founded statistical
concepts. Recently, Ye and Pan [32] developed a joint mean
covariance model by utilizing the GEE method and modified
Cholesky decomposition. In order to relax the parametric as-
sumption, Guo et al. [6], Leng et al. [9], Mao et al. [13], Qin
et al. [18] and Zheng et al. [35] studied joint semiparametric
mean-covariance models for longitudinal data.

Although there have been a few research results on joint
mean covariance models for longitudinal data, these works
were built on either likelihood method or GEE method,
which is very sensitive to outliers and many commonly using
non-normal correlated errors. Thus it is practical interest to
develop robust joint mean covariance approaches. Recently,
Zheng et al. [33] proposed the robust joint mean–covariance
regression model by combining the GEE and Huber’s score
function. Combined regularized method with Huber’s score
function, Zheng et al. [34] proposed three penalized robust
generalized estimating equations to select significant vari-
ables both in the mean and covariance models. Lv et al.
[12] developed an adaptive robust estimation method for bi-
variate longitudinal data and discussed the selection of the
turning parameter c in Huber’s score function to achieve
better robustness and efficiency. Although the Huber’s score
function is a robust modeling tool, there is some disadvan-
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tages in terms of the estimation efficiency. Thus, this stimu-
lates us to look for other bounded score functions to obtain
better robustness and effectiveness. Wang et al. [29] pro-
posed a new exponential squared loss for independent lin-
ear regression models and showed that their approach was
near optimal and superior to some recently developed meth-
ods. A distinguishing characteristic of this new approach is
that it introduces an additional tuning parameter to achieve
both robustness and effectiveness for the resulting estimator.
Wang and Lin [27] proposed a simultaneous model struc-
ture identification and variable selection method for par-
tial linear varying coefficient models by utilizing the expo-
nential squared loss. Song et al. [23] extended exponential
squared loss to high dimensional single index varying coef-
ficient models. However, as above discussed literature, this
new robust loss function was only considered for indepen-
dent data. In this paper, based on the modified Cholesky
decomposition, we will develop joint mean covariance mod-
els for longitudinal data using the exponential score function
to achieve robust and effective estimators.

Empirical likelihood (EL) introduced by Owen [16] is a
nonparametric inference method based on likelihood ratio
type statistics, and its main advantages are as follows. On
the one hand, it does not involve the asymptotic covariance
of the estimators. On the other hand, it does not impose
prior constraints on the region shape, and the shape and ori-
entation of confidence regions are determined completely by
practical data. Recently, empirical likelihood based method
had been widely used to analyze longitudinal data. For ex-
ample, Bai et al. [1] proposed a weighted empirical likelihood
inference and established the asymptotic distribution of the
weighted empirical likelihood ratio. Li and Pan [10] proposed
a new EL ratio function to deal with the within subject cor-
relation without involving the estimation of nuisance param-
eters in the correlation matrix, which results in higher cover-
age probabilities and shorter confidence interval. To improve
the robustness of parametric estimation, combined with the
quadratic inference function (Qu et al. [22]) and empirical
likelihood, Tang and Leng [24] constructed weighted quan-
tile estimators by taking into account the within subject
correlations. Based on Tang and Leng [24], Tang et al. [25]
developed weighted composite quantile regression estima-
tors. Other related references on empirical likelihood with
longitudinal data include Qin et al. [17], Wang and Zhu [26]
and Wang et al. [28]. However, the above mentioned articles
only focused on some specific correlation structures, which
led to a loss of efficiency when the true correlation structure
is misspecified. This paper proposes a subject-wise empirical
log-likelihood ratio function for the regression coefficients to
improve the accuracy of interval estimation on the basis of
the modified Cholesky decomposition and exponential score
function.

The remainder of this paper is organized as follows. In
Sect. 2, we apply the modified Cholesky decomposition and

bounded exponential score function to construct three gen-
eralized estimating equations for the mean regression coeffi-
cients, autoregressive coefficients and innovation variances.
Then, we investigate their theoretical properties and pro-
pose an efficient algorithm to implement the procedure. Fur-
thermore, we discuss how to select the tuning parameter γ
so that the resulting estimators are robust and efficient. In
Sect. 3, we propose a subject-wise empirical likelihood ra-
tio statistic and establish its asymptotic distribution. Fur-
thermore, we construct the proper confidence regions and
pointwise confidence intervals for the parameters and its
components. In Sect. 4, we conduct extensive simulation
studies to compare the finite sample performance of the pro-
posed method with some existing methods. Sect. 5 applies
the new method to a progesterone data set. Some conclud-
ing remarks are given in Sect. 6. The proofs of theorems are
provided in the Appendix.

2. ROBUST JOINT MEAN-COVARIANCE
MODEL

We consider the longitudinal linear model

(1) yij = xT
ijβ + εij , i = 1, ..., n, j = 1, ...,mi,

where yij is the jth measurement on the ith subject, xij

is p dimensional vector of covariates, β is p dimensional
vector of parameters and εij is random error. According
to the characteristic of longitudinal data, we assume that
εi = (εi1, ..., εimi)

T are correlated in the same subject but
independent across the subjects.

2.1 Estimating equations under the
independent working model

For independent data, Wang et al. [29] proposed a new ro-
bust regression estimator based on the exponential squared
loss and pointed that their proposed method is near opti-
mal and superior to some recently developed methods. Ac-
cording to Wang et al. [29], under an independent working
model, we can estimate the regression coefficient β by min-
imizing

(2) Qγ (β) =

n∑
i=1

mi∑
j=1

{
1− ϕγ

(
yij − xT

ijβ
)}

,

where ϕγ(t) = exp
(
−t2/γ

)
, γ > 0 determines the de-

gree of robustness of the estimation. If γ is large, we have
1 − exp

(
−t2/γ

)
≈ t2/γ. Thereby, the new estimators are

similar to the least squares estimators. For observations with
large absolute values of tij = yij − xT

ijβ, a smaller γ can be
used to downweight the influence of an outlier on the estima-
tors. More detailed discussions on the exponential squared
loss can refer to Wang et al. [29], Wang and Lin [27] and Song
et al. [23]. Obviously, minimizing the objective function (2)
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with respect to β is equivalent to solving the following esti-
mating equations

(3)

n∑
i=1

XT
i ψγ (Yi −Xiβ) = 0,

where ψγ (t) = ϕ′
γ (t) = −2t

γ exp
(
−t2

/
γ
)
is the exponen-

tial score function, ϕ′
γ (t) is the first derivative of ϕγ (t),

Yi = (yi1, ..., yimi)
T
, Xi = (xi1, ...,ximi)

T
and ψγ (ti) =

(ψγ (ti1) , ..., ψγ (timi))
T

for ti = (ti1, ..., timi)
T
. Note that

ψγ (t) is a bounded score function due to lim
γ→+∞

ψγ (t) = 0

and lim
γ→0+

ψγ (t) = 0. Although we can obtain a consistent

estimator β̄γ from (3) by ignoring the possible correlations
between repeated measures, the efficiency of β̄γ may not be
satisfactory. We will omit the subscript γ from β̄γ in the
rest of this article for simplicity.

2.2 Estimating equations for joint mean and
covariance model

Efficient parameter estimators could be obtained by in-
corporating an appropriate weighted function that accounts
for the correlation and variation of repeated measurements
for each subject. Based on the idea of GEE (Liang and Zeger
[11]), we can use the estimating equations that take the form

(4)
n∑

i=1

XT
i Σ

−1
iγ ψγ (Yi −Xiβ) = 0,

where Σiγ = Cov (ψγ (Yi −Xiβ)). But we can not directly
obtain the estimator of β by solving (4). The main reason
is that the estimating equation (4) includes the unknown
covariance matrix Σiγ , which need to be determined by the
observed data. To guarantee the positive definiteness of the
matrices Σiγ(i = 1, ..., n), motivated by Ye and Pan [32], we
apply the modified Cholesky decomposition to decompose
Σiγ ,

(5) ΦiγΣiγΦ
T
iγ = Diγ ,

where Φiγ is a unique unit lower triangular matrix with 1’s
on the diagonal and the below diagonal entries of Φiγ are
the negatives of the autoregressive coefficients φγ,ijk in the
model

ψγ

(
yij − xT

ijβ
)
=

j−1∑
k=1

φγ,ijkψγ

(
yik − xT

ikβ
)
+ eγ,ij .

Note that when j = 1 the notation
∑0

k=1 means zero
throughout this paper. Diγ is an mi × mi diagonal ma-
trix with the jth diagonal element being V ar (eγ,ij) = d2γ,ij ,
which can be seen as the innovation variance for j =
1, ...,mi. Similar to Ye and Pan [32], we adopt two gener-
alized linear models for the autoregressive parameters and

innovation variances

(6) φγ,ijk = wT
ijkθγ , log

(
d2γ,ij

)
= zT

ijλγ ,

where θγ = (θγ,1, ..., θγ,q)
T

and λγ = (λγ,1, ..., λγ,d)
T
. We

should notice that θγ and λγ are γ-specific since the covari-
ance matrix Σiγ is related to γ, but we omit the subscript
γ from θγ and λγ in the rest of this article for simplic-
ity. The covariates zij are those used in regression analysis,
while wijk is usually taken as a polynomial of time differ-
ence tij − tik. A common choice for wijk and zij is wijk =(
1, tij − tik, ..., (tij − tik)

q−1
)T

and zij =
(
1, tij , ..., t

d−1
ij

)T
.

Remark 2.1. This modified Cholesky decomposition ap-
proach can guarantee the positive definiteness of Σiγ, and
the below diagonal elements of Φiγ are unconstrained. To
estimate the autoregressive parameters φγ,ijk and innova-
tion variances d2γ,ij in Φiγ and Diγ , we adopt two gener-
alized linear models (6). Of course, other regression models
also can be used to estimate φγ,ijk and d2γ,ij , for example,
semiparametric regression models (Leng et al. [9]). But lin-
ear models are simple and popular regression tools, and thus
linear models are considered here.

Now we propose three generalized estimating equations
for the mean, autoregressive parameters and innovation vari-
ances as follows:

U1 (β) =

n∑
i=1

XT
i Σ

−1
iγ ψγ (Yi −Xiβ) = 0,(7)

U2 (θ) =

n∑
i=1

T T
iγD

−1
iγ eiγ = 0,(8)

U3 (λ) =
n∑

i=1

ZT
i DiγW

−1
iγ

(
e2iγ − d2

iγ

)
= 0,(9)

where eiγ = (eγ,i1, ..., eγ,imi)
T

with eγ,ij =

ψγ

(
yij − xT

ijβ
)

−
∑j−1

k=1 φγ,ijkψγ

(
yik − xT

ikβ
)
, T T

iγ =

−∂eTiγ/∂θ is a q × mi matrix with the first col-
umn zero and the jth (j ≥ 2) column −∂eγ,ij/∂θ =∑j−1

k=1 wijkψγ

(
yik − xT

ikβ
)
, Zi = (zi1, ..., zimi)

T
, d2

iγ =(
d2γ,i1, ..., d

2
γ,imi

)T
and Wiγ = Cov

(
e2iγ

)
. A sandwich

“working” covariance structure W̃iγ = A
1/2
iγ Riγ (
)A

1/2
iγ

can be used to approximate the true Wiγ , where
Aiγ = 2diag

(
d4γ,i1, ..., d

4
γ,imi

)
and Riγ (
) stands for

the correlation between e2γ,ij and e2γ,ik (j �= k) by introduc-
ing a parameter 
. Typical structures for Riγ (
) include the
compound symmetry and AR(1). Ye and Pan [32] pointed
that the parameter 
 has little effect on the estimators
of β, θ and λ. So we take 
 = 0 in our simulations and
real data analysis. Based on the discussions above together
with (5), we can obtain Σ̂iγ = Φ̂−1

iγ D̂iγ(Φ̂
T
iγ)

−1, where

Φ̂iγ is an mi × mi lower triangular matrix with 1’s on

its diagonal and the below diagonal entries of Φ̂iγ are
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−φ̂γ,ijk = −wT
ijkθ̂ and D̂iγ = diag

(
d̂2γ,i1, ..., d̂

2
γ,imi

)
with

d̂2γ,ij = exp(zT
ijλ̂). Suppose that η̂ =

(
β̂T , θ̂T , λ̂T

)T

is the

root of the generalized estimating equations (7)–(9). Please
note that η̂ may depend on γ but we omit the subscript for
simplicity.

2.3 Asymptotic properties

Theorem 2.1. Under the conditions stated in the Ap-

pendix, the proposed estimator η̂ =
(
β̂T , θ̂T , λ̂T

)T

is

strongly consistent for the true value η0 =
(
βT
0 ,θ

T
0 ,λ

T
0

)T
,

that is, η̂ → η0 almost surely as n → ∞.

Now we need to calculate the covariance matrix of(
U1(β0)

T
,U2(θ0)

T
,U3(λ0)

T
)T

/√
n, denoted by Vn =(

vkl
n

)
k,l=1,2,3

to prove the asymptotic normality of η̂, where

vkl
n = n−1Cov (Uk,Ul) for k �= l and vkk

n = n−1V ar (Uk),
for k, l = 1, 2, 3. We further assume that the covariance ma-

trix Vn and c11n = −n−1
n∑

i=1

XT
i Σ

−1
iγ ΛiγXi are positive def-

inite at the true value η0 and
(10)

Vn =

⎛⎝ v11
n v12

n v13
n

v21
n v22

n v23
n

v31
n v32

n v33
n

⎞⎠ p→V =

⎛⎝ v11 v12 v13

v21 v22 v23

v31 v32 v33

⎞⎠
and c11n

p→ c11

as n → ∞, where Λiγ = diag {Λγ,i1, ...,Λγ,imi} with Λγ,ij =

exp
(
− ε2ij

γ

){[
2εij
γ

]2
− 2

γ

}
and εij = yij − xT

ijβ. The con-

stant matrices V and c11 in (10) are also assumed to be
positive definite.

Theorem 2.2. Suppose that (10) above is true. Under the
conditions stated in the Appendix, the proposed estimator η̂
is asymptotically normally distributed with

√
n

⎛⎝ β̂ − β0

θ̂ − θ0
λ̂− λ0

⎞⎠ d→N
(
0,A−1V A−1

)
as n → ∞, where A = diag

(
c11,v22,v33

)
, the matrices

vkl(k, l = 1, 2, 3) and c11 in V and A are evaluated at η0

and
d→ represents convergence in distribution.

2.4 Algorithm and the choice of tuning
parameter γ

This paper uses a quasi–Fisher scoring algorithm to solve
β, θ and λ iteratively. We assume the starting values of θ

and λ to be θ(0) = 0 and λ(0) = 0, so we obtain Σ
(0)
iγ =

Imi×mi based on (5) and (6). Hence, an initial estimate β(0)

of β is the solution of (7) under the independent working
covariance structure.

Given Σiγ , we solve (7) to find the estimate of β using
the iterative procedure

(11)
β(k+1) = β(k) +

{[
n∑

i=1

XT
i Σ

−1
iγ ΛiγXi

]−1

×
n∑

i=1

XT
i Σ

−1
iγ ψγ (Yi −Xiβ)

} ∣∣
β=β(k) .

Given β and λ, θ can be updated through

(12)
θ(k+1) = θ(k) +

{[
n∑

i=1

T T
iγD

−1
iγ Tiγ

]−1

×
n∑

i=1

T T
iγD

−1
iγ eiγ

}
|θ=θ(k) .

Finally, given β and θ, λ can be updated through

(13)
λ(k+1) = λ(k) +

{[
n∑

i=1

ZT
i DiγW

−1
iγ DiγZi

]−1

×
n∑

i=1

ZT
i DiγW

−1
iγ

(
e2iγ − d2

iγ

)}
|λ=λ(k) .

In summary, the main iterative algorithm is as follows:

Step 1. Given a starting value
(
β(0)T ,θ(0)T ,λ(0)T

)T
, we use

model (6) to form Φ
(0)
iγ and D

(0)
iγ . Then Σ

(0)
iγ , the starting

value of Σiγ is obtained by (5). Set k = 0.
Step 2. Using the iterative formulas (11)–(13) to calculate
the estimators β(k+1), θ(k+1) and λ(k+1) of the parameters
β, θ and λ respectively. Furthermore, based on (5) and (6),

we obtain Σ
(k+1)
iγ .

Step 3. Set k ← k + 1. Repeat Step 2 until convergence of
the parameter estimators.

The tuning parameter γ controls the degree of robust-
ness and efficiency of the proposed estimator β̂. Here we
propose a data–driven procedure to select γ, which achieves
high robustness and effectiveness. Motivated by Wang et al.
[29], we apply the grid search method to obtain the optimal

γopt by minimizing det(Ĉov(β̂)), where det(·) denotes the
determinant operator and

(14) Ĉov
(
β̂
)
= M̂−1

γ0 M̂γ1M̂
−1
γ0 ,

where

M̂γ0 =

n∑
i=1

XT
i Σ̂

−1
iγ ΛiγXi|β=β̂

and

M̂γ1 =
n∑

i=1

XT
i Σ̂

−1
iγ ψγ (Yi −Xiβ)

× {ψγ (Yi −Xiβ)}T Σ̂−1
iγ Xi |β=β̂ .

Remark 2.2. Our numerical experiences indicate that this
iterative algorithm converges very quickly, usually in a few
iterations. In addition, the optimal γ is obtained by min-
imizing the determinant of estimated covariance matrix of
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β̂, which may guarantee the resulting estimator attains high
efficiency. In our simulations and real data analysis, we use
a grid search method to obtain the optimal tuning parameter
γopt. Based on our empirical experience, the possible grids
points for γ is considered as an arithmetic sequence from 2
to 50 with the common difference being two.

3. EMPIRICAL LIKELIHOOD INFERENCE

Confidence region construction is also an important as-
pect for statistical inference. Although we can construct con-
fidence regions of β based on the sandwich formula (14), the
conventional normal based approximation method and di-
rect estimation of the covariance matrix are unstable under
the finite samples. This paper employs an empirical likeli-
hood approach to construct the confidence intervals/regions
of the regression coefficients, which does not need to esti-
mate the unknown covariance matrix of β. Compared with
the traditional normal based approximation method, the
main advantage of empirical likelihood approach is that the
shape and orientation of the confidence regions are auto-
matically determined by the data.

To construct the empirical likelihood ratio function for
β, we refer to Owen [16] and Qin and Lawless [21] about
empirical likelihood and estimating equations. Based on es-
timated covariance matrix Σ̂iγ , we construct an auxiliary

random vector ξi (β) = XT
i Σ̂

−1
iγ ψγ (Yi −Xiβ). Note that

E (ξi (β)) = 0 if β is the true parameter. Let p1, ..., pn be
nonnegative numbers satisfying

∑n
i=1 pi = 1. Using such in-

formation, a natural subject–wise empirical log–likelihood
ratio for β is defined as

(15)
l (β) = −2max

{
n∑

i=1

log (npi)

∣∣∣∣pi ≥ 0,
n∑

i=1

pi = 1,

n∑
i=1

piξi (β) = 0

}
.

A unique value for l (β) exists for a given β, provided that
0 is inside the convex hull of the points {ξi (β) , i = 1, ..., n}.
By the Lagrange multiplier method, the optimal value for
pi is given by

(16) pi (β) = n−1
{
1 + ρT ξi (β)

}−1
,

where ρ is a p-dimensional Lagrange multiplier satisfying

(17) n−1
n∑

i=1

ξi (β)

1 + ρT ξi (β)
= 0.

By (15) and (16), l (β) can be represented as

(18) l (β) = 2

n∑
i=1

log
{
1 + ρT ξi (β)

}
with ρ satisfying (17). In our numerical studies, we solve
(17) for ρ by employing the modified Newton–Raphson al-
gorithm (Chen et al. [3]). We define the maximum empiri-
cal likelihood (EL) estimator of β as β̂el = argminβ l (β).

Here we should realize that β̂el also relies on the tuning
parameter γ. Based on Xue and Zhu [31] and Wang and
Zhu [26], we can adopt similar strategy to prove that β̂ and
β̂el are asymptotically equivalent for point estimation. To
decrease the computational burden, we adopt the same op-
timal tuning parameter γopt as that in β̂ when constructing
the empirical log-likelihood ratio function. Now we state the
asymptotic properties of the empirical likelihood ratio.

Theorem 3.1. Suppose that the regularity conditions in
the Appendix hold, if β0 is the true parameter, then

l (β0)
d→χ2 (p), where χ2 (p) means the chi-square distribu-

tion with p degrees of freedom.

Remark 3.1. Let χ2
1−α (p) be the (1− α)th quantile of

the χ2 (p) for 0 < α < 1. By Theorem 3.1, an approx-
imate (1 − α) confidence region for β is defined by l0 ={
β : l (β) ≤ χ2

1−α (p)
}
. Theorem 3.1 can also be used to test

the hypothesis H0 : β = β0. One could reject H0 at level α
if l (β0) > χ2

1−α (p).

If we are interested in a subset of the regression coef-
ficients β, then profile empirical log likelihood ratio test
statistic can be applied to achieve this goal. To be more

specific, we assume β0 =

(
β
(1)
0

T
,β

(2)
0

T
)T

, where β
(1)
0 and

β
(2)
0 are p1 × 1 and (p − p1) × 1 vectors, respectively. If we

are interested in testing H0 : β
(1)
0 = b0, where b0 is some

known p1 × 1 vector. Then the profile log likelihood ratio
test statistic is defined as

l̄ (b0) = l
(
b0, β̃

(2)
)
− l

(
β̂(1), β̂(2)

)
,

where β̃(2) minimizes l
(
b0,β

(2)
)
with respect to β(2) and(

β̂(1)T , β̂(2)T
)T

is EL estimator.

Corollary 3.1. Under the same conditions as Theorem 3.1

and H0 : β
(1)
0 = b0, we have l̄ (b0)

d→χ2
p1
.

Remark 3.2. Corollary 3.1 not only can be used to test

the hypothesis H0 : β
(1)
0 = b0 for some known b0 but

also can construct the confidence interval/region for β(1),{
β(1) : l̄

(
β(1)

)
≤ χ2

1−α (p1)
}
.

4. SIMULATION STUDIES

To investigate the finite sample performance of the pro-
posed method, we carry out simulation studies.

Example 1. The data is generated from model (1), where

β = (1, 0.5)
T
, xij = (xij1, xij2)

T
follows a multivariate

normal distribution N(0,Σx) with (Σx)k,l = 0.5|k−l| for
1 ≤ k, l ≤ 2. Each subject is supposed to be measured by mi

times with mi ∼ Binomial (11, 0.8) + 1, which leads to dif-
ferent numbers of repeated measurements for each subjects.
In order to assess the robustness of the proposed method, we
consider the following three cases for the random error εi.
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case 1 Correlated normal error, εi follows a multivariate
normal distribution N(0,Ξi), where Ξi will be listed later.
case 2 Correlated normal error with outliers, εi follows the
same multivariate normal distribution as that in case 1, and
we randomly choose 2% of yij to be yij +5 and 2% of yij to
be yij − 5 simultaneously.
case 3 Correlated t-distribution with outliers, εi follows a
multivariate t-distribution with the degree 3 and covariance
matrix Ξi, where Ξi is the same as that in case 1. Mean-
while, we adopt the same strategy as that in case 2 to gen-
erate some outliers.

Let the covariance matrix Ξi of εi be Ξi =

Δ−1
i Bi

(
ΔT

i

)−1
, where Bi is an mi × mi diagonal matrix

with the jth element exp (−0.5 + 0.2uij), uij ∼ N(0, 1),
and Δi is a unit lower triangular matrix with (j, k) ele-
ment −δijk (k < j), δijk = 0.2 + 0.3(tij − tik). For the
covariates zij and wijk in covariance model (6), we take

zij = (1, zij2, zij3, zij4)
T

with zij2, zij3, zij4 ∼ N(0, 1) and

wijk =
{
1, tij − tik, (tij − tik)

2
, (tij − tik)

3
}T

with tij ∼
U(0, 1).

Example 2. We set β = (0.5,−0.5)
T

and the covari-

ance matrix as Ξi = D
1/2
i R (ρ)D

1/2
i , where Di =

diag
(
σ2
i1, ..., σ

2
imi

)
with σ2

ij = exp
(
zT
ijλ

)
and λ =

(−0.5, 0.2, 0, 0)
T
, and R (ρ) is AR(1) or compound symme-

try structure with correlation coefficient ρ = 0.85. Other
settings are the same as that in example 1.

We compare the proposed estimators β̂ defined in sub-
section 2.2 (denoted as β̂pr) and β̂el presented in section
3 with other existing four types of estimators. (i) The con-
ventional least squares estimator without considering cor-
relations, denoted as β̂ls. (ii) The estimator proposed by
Ye and Pan [32], denoted as β̂ye. (iii) The estimator pro-
posed by Zheng et al. [33] using robust Huber’s score func-
tion ψc (x) = min {c,max(−c, x)} with constant c = 2, de-
noted as β̂rb. (iv) The estimator obtained from (3) under the
independent working model, denoted as β̂in. Tables 1 and
2 give the bias, the sample standard deviation (SD), the
mean absolute deviation (MAD) and the model error (ME)
based on 200 replications, where MAD and ME are defined

by MAD =
∣∣∣β̂ − β0

∣∣∣, ME = 1
N

n∑
i=1

mi∑
j=1

(
xT
ijβ̂ − xT

ijβ0

)2

and

N =
n∑

i=1

mi.

Eyeballing Tables 1 and 2, we can derive the follow-
ing several observations. Firstly, all estimators are unbiased
due to small biases, indicating that they are consistent es-
timators. Secondly, under case 1, our proposed estimator
β̂pr performs equally as well as β̂ye in terms of SD, MAD

and ME. This result indicates that β̂pr performs no worse

than GEE estimator β̂ye under the correlated normal er-
ror, since we apply a data–driven procedure to obtain the
optimal tuning parameter γopt that can guarantee the pro-

posed estimation β̂pr to attain high efficiency. Meanwhile,

Table 1. Simulation results (×10−2) of the bias, SD, MAD
and ME for β = (β1, β2)

T with n = 100 for example 1.

method
β1 β2

bias SD MAD bias SD MAD ME

case 1 β̂ls 0.061 4.166 3.297 0.021 3.867 3.085 0.232

β̂ye 0.120 2.543 2.074 0.136 2.440 1.955 0.097

β̂rb 0.101 2.617 2.103 0.178 2.499 2.017 0.101

β̂in 0.105 3.868 3.063 0.020 3.634 2.913 0.203

β̂pr 0.093 2.579 2.092 0.119 2.461 1.992 0.099

β̂el 0.093 2.579 2.093 0.119 2.462 1.992 0.099

case 2 β̂ls 0.180 4.483 3.602 0.194 5.078 3.987 0.353

β̂ye 0.003 4.350 3.532 -0.002 4.343 3.423 0.294

β̂rb 0.174 3.112 2.552 -0.182 3.079 2.395 0.141

β̂in 0.419 3.602 2.976 -0.290 3.628 2.866 0.191

β̂pr 0.330 2.913 2.318 -0.330 2.991 2.359 0.127

β̂el 0.331 2.913 2.318 -0.331 2.991 2.359 0.127

case 3 β̂ls 0.569 6.953 5.594 -1.197 7.403 6.027 0.775

β̂ye 0.848 5.952 4.710 -0.965 5.474 4.541 0.473

β̂rb 0.475 4.325 3.379 -0.692 4.085 3.411 0.256

β̂in 0.051 4.507 3.620 -0.275 4.188 3.398 0.282

β̂pr 0.262 3.834 3.055 -0.402 3.958 3.173 0.227

β̂el 0.260 3.833 3.056 -0.401 3.959 3.173 0.227

β̂pr performs slightly better than β̂rb in terms of SD, MAD

and ME. Thirdly, β̂pr and β̂ye apparently outperform β̂in

and β̂ls, respectively, which indicates that it is necessary to
take account of the within correlations for longitudinal data.
Fourthly, β̂ls and β̂ye perform worse when data set contains
outliers, which means that they are not robust approaches.
Fifthly, β̂pr and β̂el have similar performances in terms of

bias, SD, MAD and ME, indicating that β̂pr and β̂el are
asymptotically equivalent for point estimation. Finally, the
proposed β̂pr and β̂el perform best among all methods for
cases 2 and 3. The main reasons include two aspects. On
the one hand, we apply the modified Cholesky decomposi-
tion to deal with the within correlation. On the other hand,
we select the optimal tuning parameter γopt by minimiz-
ing the determinant of estimated covariance matrix, which
yields both high robustness and high efficiency simultane-
ously. Thus, we can conclude that the proposed estimation
approach can achieve better robustness and efficiency than
the existing approaches, especially for the non–normal error
distributions.

In addition, the means and standard errors (in paren-
theses) of the selected averaged optimal parameter γopt are
given in Table 3 for example 1. We can see that the optimal
tuning parameter γopt is smaller for the contamination data
as a small γ leads to a greater resistance to outliers, which
is consistent with the theory. Furthermore, it is easy to ob-
serve that the selected optimal parameter γopt tends to be
stable with the sample size n increasing due to decreasing
standard deviations.
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Table 2. Simulation results (×10−2) of the bias, SD, MAD and ME for β = (β1, β2)
T with n = 100 for example 2.

method
cs ar1

β1 β2 β1 β2

bias SD MAD bias SD MAD ME bias SD MAD bias SD MAD ME

case 1 β̂ls 0.332 2.789 2.265 -0.029 2.836 2.217 0.121 0.120 3.207 2.461 -0.071 2.836 2.349 0.137

β̂ye 0.077 1.629 1.328 0.107 1.681 1.330 0.042 0.086 2.323 1.873 0.069 2.197 1.793 0.077

β̂rb 0.077 1.633 1.332 0.044 1.609 1.269 0.040 0.130 2.359 1.909 0.016 2.274 1.839 0.081

β̂in 0.329 2.794 2.280 -0.039 2.848 2.239 0.122 0.097 3.161 2.428 -0.045 2.878 2.378 0.137

β̂pr 0.075 1.602 1.309 0.098 1.651 1.311 0.041 0.100 2.327 1.881 0.051 2.213 1.802 0.078

β̂el 0.075 1.602 1.309 0.098 1.650 1.311 0.041 0.100 2.327 1.881 0.051 2.213 1.802 0.078

case 2 β̂ls 0.237 4.736 3.781 -0.183 4.505 3.597 0.317 -0.309 4.805 3.857 0.173 4.213 3.284 0.340

β̂ye 0.107 4.006 3.172 0.011 3.913 3.099 0.232 -0.296 4.306 3.397 0.013 3.875 3.078 0.282

β̂rb 0.171 2.062 1.603 -0.139 1.922 1.523 0.060 -0.145 2.520 2.039 0.071 2.362 1.852 0.103

β̂in 0.184 3.153 2.611 -0.235 3.169 2.538 0.152 -0.176 3.035 2.447 0.166 2.851 2.251 0.142

β̂pr 0.089 1.827 1.428 -0.107 1.703 1.363 0.048 -0.107 2.315 1.850 0.118 2.282 1.776 0.087

β̂el 0.088 1.827 1.428 -0.108 1.703 1.363 0.048 -0.108 2.315 1.850 0.118 2.282 1.776 0.087

case 3 β̂ls -0.915 6.454 5.024 0.555 6.565 5.288 0.603 0.826 5.658 4.552 -0.589 6.368 5.020 0.539

β̂ye -0.470 4.646 3.754 0.323 4.632 3.701 0.304 0.588 4.739 3.757 -0.759 5.342 4.332 0.372

β̂rb -0.136 2.671 2.128 0.038 2.571 2.050 0.100 0.304 3.346 2.698 -0.566 3.507 2.898 0.171

β̂in -0.334 3.739 2.949 0.067 3.579 2.843 0.210 0.316 3.643 2.874 -0.423 3.764 3.074 0.205

β̂pr -0.020 2.289 1.841 -0.023 2.217 1.756 0.078 0.110 3.031 2.475 -0.500 2.952 2.406 0.136

β̂el -0.020 2.289 1.841 -0.023 2.217 1.756 0.078 0.110 3.031 2.475 -0.500 2.952 2.406 0.136

Table 3. The selected averaged optimal parameter γopt and
its standard deviations (in parentheses) for example 1.

n case 1 case 2 case 3

50 48.26(6.226) 11.55(3.921) 8.570(5.558)
100 49.57(2.471) 10.37(2.481) 8.640(4.662)
200 49.65(2.409) 10.45(1.798) 7.580(1.991)

The true values θ0 and λ0 are unknown in simulations
since the covariance matrix of εi is different from that of
ψγ(εi). So we can not compute the biases and MADs of θ̂

and λ̂. Meanwhile, θ̂ and λ̂ rely on the turning parameter
γ. From Table 3, we can see that the averaged optimal pa-
rameter γopt = 10.37 for case 2 and n = 100 in example
1. Thus we fix γ = 10 and draw the histograms and Q–Q
plots of θ̂ and λ̂ for case 2 and n = 100 in example 1, which
is displayed in Fig. 1. From Fig. 1, we can see that θ̂ and
λ̂ are asymptotically normal, because the estimated curve
of density is very close to the curve of normal density and
the scattered points of Q–Q plots are very close to the line.
Meanwhile, we consider the Shapiro–Wilk normality test for
θ̂ and λ̂, and the results also indicate they are asymptoti-
cally normal. These results agree with the theoretical result
of Theorem 2.2.

Now we use the following methods to construct the confi-
dence intervals/regions, namely, the proposed empirical like-
lihood method (β̂el) in Section 3 and two normal approx-
imation methods including the joint mean–covariance esti-
mate β̂ye (Ye and Pan [32]) and the robust Huber estimate

β̂rb (Zheng et al. [33]). We run simulation experiments with
n = 50, 100, 200. The confidence intervals/regions and their
coverage probabilities, with nominal level 1− α = 0.95, are
computed from 500 runs. We can derive the following several
observations from Table 4 and Fig. 2. Firstly, EL method
performs better than two normal approximation methods,
β̂ye and β̂rb, because its confidence intervals have uniformly
shorter average lengths and higher coverage probabilities.
Secondly, the empirical coverage probabilities tend to the
nominal level 0.95 as n increases. Thirdly, we can see that
EL-based regions have a slightly higher coverage probabili-
ties and smaller area of confidence region than those of the
normal approximation methods (β̂ye and β̂rb). In addition,
the distribution of the empirical likelihood ratio statistic
l (β0) is asymptotically χ2(2) by Theorem 3.1. In order to
prove this empirically, Fig. 3 plots the quantile of the 300
empirical likelihood ratio statistics against the quantile of
χ2(2) distribution. From Fig. 3, we can see that the scat-
tered points of Q–Q plots are very close to the line, which
is consistent with the theoretical result.

5. REAL APPLICATION

In this section, we applied the proposed robust estima-
tion method to analyze the longitudinal progesterone data
which includes a total of 492 observations. This longitudi-
nal hormone study collects 34 women’s urine samples in a
menstrual cycle and has been studied by Fan et al. [5] and
Zheng et al. [33]. We consider the response (y) as the log-
transformed progesterone level, x1 and x2 are age (AGE)
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Figure 1. The histograms, the estimated curve of density (solid curve), the curve of normal density (dashed curve) and the
Q-Q plots of the 300 estimates of θ = (θ1, θ2, θ3, θ4)

T and λ = (λ1, λ2, λ3, λ4)
T for case 2 with n = 100 and γ = 10 in

example 1.
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Figure 2. The 95% confidence regions for β = (1, 0.5)T based on the three different methods with n = 100 for example 1.

Figure 3. The Q-Q plot for example 1 with n = 100.

and body mass index (BMI). In this study, our main inter-
est is to investigate whether AGE and BMI have significant
influences on the progesterone level. To model jointly the
mean and covariance structures for the data, we adopt the
following three generalized linear models for the mean, au-
toregressive parameters and innovation variances:

yij = β0 + β1xij1 + β2xij2 + εij ,
φγ,ijk = wT

ijkθ,

log
(
d2γ,ij

)
= zT

ijλ,

where wijk =
(
1, tij − tik, ..., (tij − tik)

q−1
)T

and zij =(
1, tij , ..., t

d−1
ij

)T
and yij denotes the j-th log-transformed

progesterone value of the ith woman, which is measured at
tij with tij being rescaled into interval [0, 1].

Obviously, our proposed estimators β̂pr and β̂el rely
on the dimensions of covariates wijk and zij (q and d).
To study the sensitivity of our approach to q and d for
the finite sample, we consider different q and d for β̂pr.

Specifically, β̂22
pr , β̂

23
pr , β̂

24
pr , β̂

42
pr , β̂

43
pr and β̂44

pr represent the
proposed estimators with (q = 2, d = 2), (q = 2, d =
3), (q = 2, d = 4), (q = 4, d = 2), (q = 4, d = 3), and

(q = 4, d = 4). Please note that β̂pr and β̂el are asymp-

totically equivalent for point estimation, which has been
demonstrated by simulation studies. Thus we only consider
(q = 2, d = 2) for β̂el. For fair comparison, β̂ls, β̂ye, β̂rb

and β̂in are also considered here. Table 5 lists the esti-
mated regression coefficients and their 95% confidence in-
tervals, as well as the confidence interval lengths for the
intercept, AGE and BMI. Note that 95% confidence inter-
vals of β̂el is constructed by empirical likelihood method
and other approaches’ 95% confidence intervals are con-
structed by the normal approximation method. First, it is
easy to observe that AGE and BMI have insignificant influ-
ence on the progesterone level at 5% significance level for
all methods since their confidence intervals contain zero.
This result is consistent with that in Zheng et al. [33].

Second, β̂22
pr , β̂23

pr and β̂24
pr have similar performances due

to similar estimated values and 95% confidence intervals
and perform better than β̂42

pr , β̂
43
pr and β̂44

pr . The main rea-
son may be as follows. More covariance parameters need
to be estimated for large q and d and thus poorer covari-
ance covariance matrix estimation may be obtained due
to small finite sample size (n = 34), which leads to poor
mean parameter estimators. Therefore, small q and d may
be more suitable for this data set and we choose the co-
variates in the covariance model (6) as zij = (1, tij)

T
and
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Table 4. Estimated coverage probabilities (CP) of confidence

intervals (regions) for β1, β2 and β = (β1, β2)
T , and

averaged confidence interval lengths (Length) for β1 and β2

with n = 50, 100, 200 for example 1.

n method
β1 β2 β

Length CP Length CP CP

50 case 1 β̂ye 0.1363 0.928 0.1376 0.952 0.946

β̂rb 0.1366 0.926 0.1376 0.950 0.934

β̂el 0.1382 0.920 0.1396 0.952 0.942

case 2 β̂ye 0.2422 0.936 0.2414 0.930 0.922

β̂rb 0.1651 0.922 0.1658 0.906 0.904

β̂el 0.1618 0.932 0.1618 0.922 0.910

case 3 β̂ye 0.3081 0.922 0.3024 0.934 0.926

β̂rb 0.2185 0.914 0.2186 0.928 0.894

β̂el 0.2093 0.924 0.2123 0.932 0.912

100 case 1 β̂ye 0.0984 0.934 0.0989 0.942 0.932

β̂rb 0.0986 0.932 0.0990 0.944 0.936

β̂el 0.1003 0.940 0.1009 0.940 0.944

case 2 β̂ye 0.1766 0.952 0.1777 0.952 0.948

β̂rb 0.1190 0.938 0.1198 0.942 0.930

β̂el 0.1166 0.946 0.1179 0.942 0.938

case 3 β̂ye 0.2282 0.940 0.2288 0.952 0.934

β̂rb 0.1575 0.920 0.1565 0.920 0.890

β̂el 0.1514 0.942 0.1501 0.946 0.934

200 case 1 β̂ye 0.0699 0.948 0.0698 0.946 0.936

β̂rb 0.0699 0.934 0.0699 0.930 0.942

β̂el 0.0700 0.946 0.0701 0.942 0.950

case 2 β̂ye 0.1284 0.954 0.1283 0.938 0.948

β̂rb 0.0851 0.930 0.0852 0.948 0.940

β̂el 0.0833 0.942 0.0835 0.950 0.950

case 3 β̂ye 0.1617 0.953 0.1626 0.952 0.945

β̂rb 0.1122 0.932 0.1116 0.936 0.918

β̂el 0.1067 0.955 0.1064 0.942 0.936

wijk = (1, tij − tik)
T
. The estimated covariance parame-

ters are λ̂1 = −5.8904(0.8538), λ̂2 = 1.2151(0.3482) and

θ̂1 = 0.2551(0.0266), θ̂2 = −0.4875(0.0685), where the val-
ues in parentheses are standard errors obtained by the boot-
strap method. Obviously, the estimated coefficients λ̂ and θ̂
are significant at significance level 0.05, which means that
the constructed covariance model is suitable for this data
set. Third, β̂22

pr and β̂el have similar estimated values but

β̂el’s confidence interval is universally narrowest among all
approaches, which indicates that β̂el has obvious superiority
in confidence interval estimation.

In addition, a leave–one–out cross validation procedure
is applied to investigate the predictive performance. Specif-
ically, we assess the goodness of fit using the following cri-
terion

MSECV =
1

n

n∑
i=1

∥∥∥Yi −Xiβ̂(−i)

∥∥∥,
where n = 34 and β̂(−i) stands for a estimator that
is obtained based on the data of the other 33 subjects
except the ith subject. The MSEs of β̂ls, β̂ye, β̂rb, β̂in,

β̂22
pr , β̂23

pr , β̂24
pr , β̂42

pr , β̂43
pr , β̂44

pr and β̂el are 0.8627(0.3545),
0.8526(0.3499), 0.8484(0.3587), 0.8628(0.3551), 0.8478
(0.3500), 0.8477(0.3503), 0.8462(0.3567), 0.8636 (0.3600),
0.8631(0.3606), 0.8711(0.3727) and 0.8478(0.3501), where
the values in parentheses are standard errors. We can
clearly see that β̂22

pr , β̂
23
pr , β̂

23
pr and β̂el have better prediction

performance than the other compared methods, which
shows that it may more suitable to adopt small q and d for
producing better prediction performance.

6. CONCLUDING REMARKS

This paper develops robust exponential joint mean-
covariance models, in which the covariance matrix of the
exponential score function is estimated via the modified
Cholesky decomposition. We further develop a data–driven

Table 5. The estimates (EST), lower bound (LB), upper bound (UB) and confidence interval lengths (Length) of 95%
confidence intervals for progesterone data.

method
EST LB UB Length

Intercept AGE BMI Intercept AGE BMI Intercept AGE BMI Intercept AGE BMI

β̂ls 2.3275 0.0103 -0.0040 2.2794 -0.0475 -0.0719 2.3756 0.0682 0.0638 0.0962 0.1157 0.1357

β̂ye 2.3432 -0.0031 0.0008 2.2913 -0.0645 -0.0600 2.3952 0.0583 0.0616 0.1039 0.1228 0.1216

β̂rb 2.3454 0.0012 0.0105 2.2927 -0.0627 -0.0491 2.3981 0.0651 0.0701 0.1054 0.1277 0.1192

β̂in 2.3280 0.0103 -0.0038 2.2793 -0.0480 -0.0726 2.3766 0.0686 0.0651 0.0973 0.1165 0.1377

β̂22
pr 2.3428 -0.0021 0.0050 2.2909 -0.0629 -0.0538 2.3947 0.0586 0.0638 0.1038 0.1214 0.1177

β̂23
pr 2.3468 0.0003 0.0049 2.2959 -0.0595 -0.0518 2.3978 0.0601 0.0617 0.1019 0.1196 0.1135

β̂24
pr 2.3429 0.0028 0.0117 2.2899 -0.0590 -0.0453 2.3958 0.0646 0.0686 0.1059 0.1235 0.1140

β̂42
pr 2.3361 0.0084 0.0007 2.2803 -0.0581 -0.0802 2.3919 0.0748 0.0815 0.1116 0.1329 0.1616

β̂43
pr 2.3377 0.0095 0.0018 2.2806 -0.0571 -0.0783 2.3947 0.0761 0.0819 0.1141 0.1332 0.1602

β̂44
pr 2.3309 0.0182 0.0046 2.2728 -0.0522 -0.0879 2.3890 0.0885 0.0972 0.1161 0.1407 0.1851

β̂el 2.3428 -0.0021 0.0050 2.2987 -0.0504 -0.0507 2.3889 0.0507 0.0482 0.0902 0.1011 0.0989
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procedure to select the optimal tuning parameter γopt by

minimizing det(Ĉov(β̂)) to achieve better robustness and ef-
ficiency. The proposed parametric estimation method is easy
to implement and more efficient than some traditional ro-
bust estimation methods. In addition, we utilize the subject–
wise empirical likelihood method to construct the confidence
regions/intervals of regression coefficients. Simulation stud-
ies and a real data analysis have confirmed that the proposed
empirical likelihood method has better coverage and esti-
mation accuracy than those of the normal approximation–
based methods.

The focus of this article is the linear regression model.
When nonlinearity is present, nonparametric or semi-
parametric models may be more useful. Leng et al. [9]
constructed joint semiparametric mean–covariance models
when analyzing longitudinal data. Lai et al. [8] developed
variable selection procedure for longitudinal single index
models based on smooth-threshold estimating equations,
which is computationally simpler than traditional shrink-
age penalty approaches. Chen et al. [2] studied longitudinal
partially linear single index models under a general frame-
work including both the sparse and dense longitudinal data
cases. However, these approaches are not robust, and thus it
is of great interest to extend the proposed method to these
important areas of research.
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APPENDIX. PROOFS

To establish the asymptotic properties of proposed esti-
mators, the following conditions are needed.
(C1) We assume that the dimensions p, q and d of the co-
variates xij , wijk and zij , i = 1, ..., n, j = 1, ...,mi, k =
1, ..., j− 1 are fixed and that {mi} is a bounded sequence of
positive integers.

(C2) The parameter space Θ of η =
(
βT ,θT ,λT

)T
is a

compact subset of R
p+q+d, and the true parameter value

η0 =
(
βT
0 ,θ

T
0 ,λ

T
0

)T
is in the interior of the parameter

space Θ.
(C3) The covariates xij , wijk and zij , and the matrices
W−1

iγ are all bounded, meaning that all the elements of the
vectors and matrices are bounded.
(C4) E (ψγ (εij)) = 0, E

(
ψ′

γ (εij)
)
< 0 and E

(
ψγ(εij)

2
)
is

finite for any γ > 0.

Proof of Theorem 2.1. We only show that β̂ → β0 almost
surely, because the proofs for θ̂ and λ̂ are similar. According
to McCullagh [14], we have

β̂ − β0 =

[
1
n

n∑
i=1

XT
i Σ

−1
iγ ΛiγXi

]−1

β=β0

×
{

1
n

n∑
i=1

XT
i Σ

−1
iγ ψγ (Yi −Xiβ)

}
β=β0

+ op
(
n−1/2

)
.

(A.1)

Thus, by the condition (C4), the expectation and covariance
matrix of U1i = XT

i Σ
−1
iγ ψγ (Yi −Xiβ) are E0 (U1i) = 0

and V0 (U1i) = XT
i Σ

−1
iγ ΣiγΣ

−1
iγ Xi = XT

i Σ
−1
iγ Xi at β =

β0, where E0(u) and V0(u) stand for the expectation and
covariance of u at β = β0. Since Σiγ = Φ−1

iγ Diγ(Φ
T
iγ)

−1

and Σ−1
iγ = ΦT

iγD
−1
iγ Φiγ , the variance matrix V0 (U1i) can

be further written as

V0 (U1i) = XT
i Φ

T
iγD

−1
iγ ΦiγXi.

The condition (C3) means that there exists a constant κ0

such that V0 (U1i) ≤ κ0Ip×p for any i and all η ∈ Θ, where
Ip×p is a p × p matrix with all elements being 1’s. That is,
all elements of V0 (U1i) are bounded by κ0. Hence we can

obtain
∑∞

i=1
V0(U1i)

i2 < ∞. Thus, by Kolmogorov’s strong
law of large numbers, together with E0 (U1i) = 0, we have{

n−1
n∑

i=1

XT
i Σ

−1
iγ ψγ (Yi −Xiβ)

}
|β=β0

a.s.→ 0(A.2)

as n → ∞. Similarly, it can be shown that{
1
n

n∑
i=1

XT
i Σ

−1
iγ ΛiγXi

}
β=β0

is a bounded matrix. Applica-

tion of (A.2) to (A.1) leads to β̂ → β0 almost surely as
n → ∞. The proof is complete. �
Lemma 1. Under conditions (C1)–(C4), let(
β̂T , θ̂T , λ̂T

)T

be the root of the robust generalized

estimating equations (7)–(9), then∥∥∥√n
(
β̂ − β0

)
− β̃

∥∥∥ = op (1) ,
∥∥∥√n

(
θ̂ − θ0

)
− θ̃

∥∥∥ = op (1) ,∥∥∥√n
(
λ̂− λ0

)
− λ̃

∥∥∥ = op (1) ,

where

β̃ =

{
1

n

n∑
i=1

XT
i Σ

−1
iγ ΛiγXi

}−1

β=β0

1√
n
U1 (β0) ,

θ̃ =

{
1

n

n∑
i=1

T T
iγD

−1
iγ Tiγ

}−1

θ=θ0

1√
n
U2 (θ0) ,

and

λ̃ =

{
1
n

n∑
i=1

ZT
i DiγW

−1
iγ DiγZi

}−1

λ=λ0

1√
n
U3 (λ0) .

Proof of Lemma 1. The proof is similar to Lemma 2 of
Leng et al. [9] and Lemma in Zheng et al. [33], thus we
omitted the details.
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Proof of Theorem 2.2. According to Lemma 1,
we only need to show the asymptotic normality of(
β̃T , θ̃T , λ̃T

)T

. This is equivalent to the asymptotic nor-

mality of
(
U1(β0)

T
,U2(θ0)

T
,U3(λ0)

T
)T

/
√
n. Note that

conditions (C1)–(C4) imply that

E0

[∣∣ςT {
XT

i Σ
−1
iγ ψγ (Yi −Xiβ)

}
+ �T

{
T T
i D−1

iγ eiγ
}

+ϑT
{
ZT

i DiγW
−1
iγ

(
e2iγ − σ2

iγ

)}∣∣3] ≤ κ

for any ς ∈ R
p, � ∈ R

q and ϑ ∈ R
d, where κ is a constant

independent i and E0 represents the expectation at η = η0.
Furthermore, we have

1
n

n∑
i=1

V0

[∣∣ςT {
XT

i Σ
−1
iγ ψγ (Yi −Xiβ)

}
+ �T

{
T T
iγD

−1
iγ eiγ

}
+ϑT

{
ZT

i DiγW
−1
iγ

(
e2iγ − σ2

iγ

)}∣∣]
=

(
ςT ,�T ,ϑT

)
1
nVn

(
ςT ,�T ,ϑT

)T
→

(
ςT ,�T ,ϑT

)
V

(
ςT ,�T ,ϑT

)T
> 0,

where V0 stands for the covariance at η = η0.
Thus, we can apply multivariate Liapounov central
limit theorem to establish the asymptotic normality of(
U1(β0)

T
,U2(θ0)

T
,U3(λ0)

T
)T

/
√
n. Let

K1 =

{
1

n

n∑
i=1

XT
i Σ

−1
iγ ΛiγXi

}
β=β0

,

K2 =

{
1

n

n∑
i=1

T T
iγD

−1
iγ Tiγ

}
θ=θ0

,

and

K3 =

{
1

n

n∑
i=1

ZT
i DiγW

−1
iγ DiγZi

}
λ=λ0

.

Therefore we have

√
n

⎛⎝ β̂ − β0

θ̂ − θ0
λ̂− λ0

⎞⎠
=

⎛⎝ K1 0 0
0 K2 0
0 0 K3

⎞⎠−1 ⎛⎝ U1 (β0)/
√
n

U2 (θ0)/
√
n

U3 (λ0)/
√
n

⎞⎠+ op (1)

d→N
(
0,A−1V A−1

)
.

The proof of Theorem 2.2 is completed. �
Proof of Theorem 3.1. We first define Ω =

lim
n→∞

1
n

n∑
i=1

XT
i Σ̂

−1
iγ ΣiγΣ̂

−1
iγ Xi. Applying the Lindeberg cen-

tral limit theorem, together with condition (C4), we have

1√
n

n∑
i=1

ξi (β0)
d→N (0,Ω) ,(A.3)

and

1

n

n∑
i=1

ξi (β0) ξ
T
i (β0)

p→Ω.(A.4)

From (A.3), (A.4), and using the same arguments that are
used in the proof of (2.14) in Owen [15], we can prove
that

ρ = Op

(
n−1/2

)
,(A.5)

where ρ is defined in section 3. Applying the Taylor expan-
sion to (18) and invoking (A.3)–(A.5), we obtain

l (β0) = 2
n∑

i=1

{
ρT ξi (β0)−

[
ρT ξi (β0)

]2/
2
}
+ op (1) .

(A.6)

By (17), it follows that

0 =
n∑

i=1

ξi(β0)
1+ρT ξi(β0)

=
n∑

i=1

ξi (β0)−
n∑

i=1

ρT ξi (β0) ξi (β0)

+

n∑
i=1

ξi(β0)[ρT ξi(β0)]
2

1+ρT ξi(β0)
.

The application of (A.3)–(A.5) again yields

ρ =

[
n∑

i=1

ξi (β0) ξ
T
i (β0)

]−1 n∑
i=1

ξi (β0) + op

(
n−1/2

)
,

(A.7)

and

n∑
i=1

[
ρT ξi (β0)

]2
=

n∑
i=1

ρT ξi (β0) + op (1) ,(A.8)

Substituting (A.7) and (A.8) into (A.6), we obtain

l (β0) =

[
1√
n

n∑
i=1

ξi (β0)

]T [
1
n

n∑
i=1

ξi (β0) ξ
T
i (β0)

]−1

×
[

1√
n

n∑
i=1

ξi (β0)

]
+ op (1) .

(A.9)

Based on (A.3), (A.4) and (A.9), we can prove Theo-
rem 3.1. �
Proof of Corollary 3.1. Let ρ̃ = ρ

(
b0, β̃

(2)
)

and

ξ
(2)
i

(
b0, β̃

(2)
)
= ∂ξi

(
b0, β̃

(2)
)/

∂β̃(2), then ρ̃ and β̃(2) sat-

isfy

Q1

(
b0, β̃

(2), ρ̃
)
=

n∑
i=1

ξi

(
b0, β̃

(2)
)

1 + ρ̃T ξi

(
b0, β̃(2)

) = 0,
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and

Q2

(
b0, β̃

(2), ρ̃
)
=

n∑
i=1

ρ̃T ξ
(2)
i

(
b0, β̃

(2)
)

1 + ρ̃T ξi

(
b0, β̃(2)

) = 0.

Expanding Q1

(
b0, β̃

(2), ρ̃
)

and Q2

(
b0, β̃

(2), ρ̃
)

at(
b0,β

(2)
0 , 0

)
, we have

ρ̃ = (I − P )Σ−1
n ξ̃ + op

(
n−1/2

)
,

and

β̃(2) − β
(2)
0 = −

(
ξ̃(2)TΣ−1

n ξ̃(2)
)−1

ξ̃(2)TΣ−1
n ξ̃

+ op
(
n−1/2

)
,

where

ξ̃ =

n∑
i=1

ξi

(
b0,β

(2)
0

)
, ξ̃(2) =

n∑
i=1

ξ
(2)
i

(
b0,β

(2)
0

)
,

P = Σ−1
n ξ̃(2)

(
ξ̃(2)TΣ−1

n ξ̃(2)
)−1

ξ̃(2)T

and

Σn =

n∑
i=1

ξi

(
b0,β

(2)
0

)
ξTi

(
b0,β

(2)
0

)
.

Because

l
(
b0, β̃

(2)
)

= 2
n∑

i=1

log
{
1 + ρ̃T ξi

(
b0, β̃

(2)
)}

= 2
n∑

i=1

ρ̃T ξi

(
b0, β̃

(2)
)
−

n∑
i=1

{
ρ̃T ξi

(
b0, β̃

(2)
)}2

+ op (1)

= ξ̃TΣ
−1/2
n

(
I −Σ

1/2
n PΣ

−1/2
n

)
Σ

−1/2
n ξ̃ + op (1) .

Similar to the proof of Theorem 3.1, we have

Σ
−1/2
n ξ̃

d→N (0, I) and Σ
1/2
n PΣ

−1/2
n is symmetric

and idempotent, with trace equal to p − p1. Because

l
(
β̂(1), β̂(2)

)
= 0. Hence the empirical likelihood ratio

statistic l̄ (b0) converges to χ2
p1
. �
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