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Nonnegative hierarchical lasso with a mixed(
1, 12
)
-penalty and a fast solver

Wanling Xie and Hu Yang
∗

Grouping structures arise naturally in many high dimen-
sional statistical problems. Incorporation of grouping infor-
mation can efficiently improve the statistical accuracy and
model interpretability. In addition, nonnegative constraints
are essential to cope with index tracking problems. This pa-
per proposes the nonnegative hierarchical lasso with nonneg-
ative constraints on the coefficients both in low dimensional
setting and ultra high dimensional setting, which is capa-
ble of simultaneous selection at both the group and within-
group levels with overlap, namely the bi-level selection.

In theoretical analysis, we show the nonnegative hierar-
chical lasso enjoys the oracle properties in group selection
when the number of covariates diverges with the sample
size under certain regularity conditions. Since there are less
works devoted to the theoretical properties of bi-level se-
lection methods in cases where the number of variables or
groups is much larger than the sample size, we also de-
rive the oracle inequalities for the prediction and l1 esti-
mation errors of the estimator under the restricted eigen-
value conditions on the design matrix. It is shown to have
group selection consistency and estimation consistency in
ultra high-dimensional sparse linear regression models. To
get the solution of the nonnegative hierarchical lasso, we
propose a fast and efficient iterative half thresholding-based
local linear approximation algorithm (IHT-LLA) for solving.
Simulations indicate that the nonnegative hierarchical lasso
outperforms other nonnegative regularization methods and
is robust against possible mis-specified grouping structure.
Besides, we further apply our method to the index tracking
problems.

Keywords and phrases: Nonnegative hierarchical lasso,
Oracle property, Bi-level selection, Index tracking, Oracle
inequality.

1. INTRODUCTION

Consider the classical linear regression model

(1) y = Xβ + ε,

where y is the response and X = (X1, . . . , Xp) is the design
matrix, where Xj = (x1j , . . . , xnj)

T , j = 1, . . . , p are the
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predictors and ε is the error term. Without loss of generality,
we assume the data are centered so that the intercept can
be excluded from the regression model.

Suppose the predictors can be naturally divided into J
groups and there are pj variables in the jth group, then it
can be rewritten as

(2) yi =

J∑
j=1

pj∑
k=1

xi,jkβjk + εi, i = 1, . . . , n.

Grouping structures arise from diverse fields of scientific
research. For example, in ANOVA, a factor with multiple
levels can be referred as a group. Similarly, in gene expres-
sion studies, genes which belong to the same biological path-
way form a natural group and in genome-association stud-
ies, single-nucleotide polymorphisms from the same gene can
also be regarded as a group. Furthermore, in nonparamet-
ric additive models, each original predictor can be expanded
into a set of basis functions. Thus it is desirable for us to
incorporate such grouping structures into the model as the
prior knowledge. There are several recent literature devoted
to address the group variable selection problems. Yuan and
Lin [7] proposed the group lasso method which used an l2
norm of the coefficients from a group and developed a group
coordinate descent algorithm to compute the group lasso so-
lutions. Meier et al. [8] extended this approach to the logistic
regression model. Wang et al. [9] developed a group SCAD
for microarray time course gene expression data. Zhao et al.
[10] proposed the composite absolute penalty for grouped
and hierarchical variable selection which included the group
lasso as a special case. Hu et al. [19] considered the group
adaptive elastic-net approach to cope with collinearity. In
many applications, however, it is of importance to select
both groups and individuals. Huang et al. [13] proposed the
group bridge for bi-level selection which yielded sparsity at
the group and within group levels. Breheny and Huang [14]
introduced a general framework for bi-level selection and de-
rived a local coordinate descent algorithm. Friedman et al.
[11] considered a more general penalty which blended the
lasso penalty with the group lasso penalty and proposed the
sparse group lasso method. The hierarchical lasso proposed
by Zhou and Zhu [12] can be regarded as a special case of
group bridge with γ = 0.5. Huang et al. [21] reviewed the
several group selection methods involving both group selec-
tion and bi-level selection methods.
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Index tracking, as a popular passive portfolio manage-
ment strategy, aims at reproducing the performance of a
market index. In view of the transaction costs and adjust-
ment of constituent stocks, it is necessary for us to con-
struct a sparse index tracking portfolio against the costly
full replication, i.e., purchasing a small amount of assets
to replicate the index. There are two kinds of widely used
methods of sparse index tracking. The first one is such a two-
stage approach, namely stock selection first and then capital
allocation. Various stock selection methods have been pro-
posed in the last two decades. For instance, K.J.Oh et al.
[23] took advantage of market capitalization to select as-
sets. Dose and Cincotti [24] selected the stocks which are
more correlated with the index. Alexander [25] considered
a selection method based on the idea if there exists a linear
combination of the log-prices of selected assets cointegrated
well with the value of index. The above two-stage approach,
however, suffers from unclarity on how optimal the resulting
portfolio is. To unify these two steps, another approach is
to directly penalize the cardinality of the tracking portfo-
lio (i.e., l0-norm of the coefficients) to simultaneously select
assets and allocate the capital to the selected stocks. Note
that this problem is highly non-convex due to the l0-norm
term. In general, a common approach is to substitute other
non-convex norms for the l0-norm. In addition, fewer than
half the exchanges around the world allow short sales due
to the lack of consensus among regulators. Conversely, some
countries don’t officially prohibit short-selling, yet no short-
selling takes place for lack of necessary institutions or re-
quest for high fees. Considering the legality and feasibility
of short-selling, the nonnegative constraints are commonly
used in index tracking management as the short-sale con-
straints. For this aim, a large amount of literatures have
devoted to the nonnegative penalized methods and the ap-
plication in index tracking. Breiman [1] proposed the non-
negative garrotte and showed its stability when compared to
the subset regression and ridge regression. Slawski and Hein
[32] considered the nonnegative least squares and gave the
rate of convergence. Meinshausen [30] showed the effective-
ness of sign-constrained least squares estimation for sparse
high-dimensional data. Wu et al. [34] proposed the nonneg-
ative lasso and proved its oracle property. Wu and Yang
[33] introduced the nonnegative elastic-net and applied it to
the index tracking problem. Yang and Wu [35] further pro-
posed the nonnegative adaptive lasso as an improvement of
nonnegative lasso.

Since there has been little discussion about the bi-level
selection methods under the nonnegative constraints on the
coefficient and notice that L1/2 regularizer can be taken
as a representative of the Lp regularizer. Compared to the
L0 regularizer and L1 regularizer, the Lp regularizer can
produce more sparse solutions than L1 regularizer and it
is easier to be solved than the L0 regularizer. In this pa-
per, we propose the nonnegative hierarchical lasso with a
group L1/2 regularizer which gives nonconvexity on the

group level for simultaneous estimation and bi-level selection
in sparse high-dimensional linear regression models. This
method is an extension of the hierarchical lasso with non-
negative constraints on the coefficients. Under certain ap-
propriate conditions, it is shown to have satisfactory prop-
erties both in diverging and ultra high-dimensional settings.
The main contribution of this paper is threefold. Firstly,
we extend the hierarchical lasso to nonnegative hierarchi-
cal lasso and prove it enjoys the oracle properties in group
selection when the number of covariates diverges with the
sample size and further derive the oracle inequalities in cases
where the number of covariates is much larger than the
sample size. Secondly, we propose a fast and efficient it-
erative half thresholding-based local linear approximation
algorithm(IHT-LLA) based on the iterative half threshold-
ing algorithm in Xu et.al. [22], group coordinate descent in
Wei and Zhu [28] and local linear approximation in Zou and
Li [5]. The proposed algorithm is faster than the existing al-
gorithms for solving the group L1/2 optimization problem.
Thirdly, we show by simulation studies and the real data ex-
ample that the nonnegative hierarchical lasso outperforms
other nonnegative methods for high-dimensional data.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the nonnegative hierarchical lasso. The
oracle properties both in the low-dimensional setting and
in cases where p � n are studied in Section 3. In Section
4, we propose a fast iterative half thresholding-based local
linear approximation algorithm(IHT-LLA) for implementa-
tion. In Section 5 and Section 6, simulation studies as well
as an application are conducted to show the finite sample
performance of the proposed method as compared to other
nonnegative methods. We conclude with a few remarks in
Section 7. All the technical proofs are given in the Appendix.

2. NONNEGATIVE HIERARCHICAL LASSO

In this section, we extend the hierarchical lasso to non-
negative hierarchical lasso to simultaneously select impor-
tant variables at both the group and within-group levels
when the true coefficients are nonnegative.

We denote

(3) βjk = djαjk, j = 1, . . . , J ; k = 1, . . . , pj ,

where dj ≥ 0 represents the group information from jth
group as the first level of hierarchy to reflect the information
that all βjk belong to the jth group by treating each βjk

hierarchically, while αjk
′
s ≥ 0 are at the second level to

show the differences within the jth group.
Thus, we consider the following penalized least square

question with nonnegative constraints on (dj , αjk)

(4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min
dj ,αjk

1
2

n∑
i=1

(
yi −

J∑
j=1

dj
pj∑
k=1

αjkxi,jk

)2

+λ1

J∑
j=1

dj + λ2

J∑
j=1

pj∑
k=1

αjk,

subject to dj ≥ 0, αjk ≥ 0,
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where λ1 ≥ 0 and λ2 ≥ 0 are the regularization parame-
ters to control the degree of penalization of the groups and
individuals, respectively. If dj = 0, then all βjk in the jth
group will be equal to 0; if not, choosing proper λ2 will make
some of αjk thus some of βjk shrunken to zero. More pre-
cisely, the nonnegative hierarchical lasso can not only select
important groups, but also identify important members of
these groups, which is referred as bi-level selection.

(4) is an optimization problem w.r.t (dj , αjk). We show
it can be written in an equivalent form w.r.t βjk.

lemma 2.1. If (d̂, α̂) is a local minimizer of (4), then β̂ is
a local minimizer of

min
βjk≥0

1

2

n∑
i=1

(
yi −

J∑
j=1

pj∑
k=1

xi,jkβjk

)2

+2
√
λ

J∑
j=1

√
βj1 + βj2 + . . .+ βjpj ,(5)

where λ = λ1 ·λ2, β̂jk = d̂jα̂jk. On the other hand, if β̂ is a

local minimizer of (5), then define (d̂, α̂) where d̂j = 0, α̂j =

0 if β̂j = 0 and d̂j = (λ2

∑pj

k=1 βjk/λ1)
1/2, α̂j = β̂j/d̂j if

β̂j �= 0 as a local minimizer of (4)

Note that the penalty function of (5) is equivalent to a
mixed

(
1, 1

2

)
-penalty, namely the outer bridge penalty with

bridge index γ = 0.5, and the inner lasso penalty so that it
characterized by a concave group-level penalty and an in-
dividual variable-level 1-norm penalty. Note that both the
lasso penalty and bridge penalty with γ ≤ 1 possess the
ability of variable selection. Therefore, the nonnegative hi-
erarchical lasso can select not only important groups, but
also the individuals.

3. ASYMPTOTIC PROPERTIES

3.1 Oracle properties for a diverging number
of variables

In this section, we explore the theoretical properties of
the nonnegative hierarchical lasso when the number of co-
variates is smaller than the sample size and show it has the
group selection consistency, namely, under some regulariza-
tion conditions, correctly selects true groups with asymp-
totic probability one with appropriate choice of regulariza-
tion parameters. Meanwhile, we derive the asymptotic dis-
tribution of the estimators of the nonzero coefficients.

Without loss of generality, we assume

βAj �= 0, 1 ≤ j ≤ J1,

βAj = 0, J1 + 1 ≤ j ≤ J.

Let B1 = ∪J1
j=1Aj be the collection of the nonzero groups

and B2 = Bc
1 be that of zero groups. Let βBk

= (βj , j ∈
Bk)

T , k = 1, 2 and β = (βT
B1

, βT
B2

)T . We assume β∗ =

(β∗T
B1

, β∗T
B2

)T is the true coefficient with β∗
B2

= 0 and β̂ =

(β̂T
B1

, β̂T
B2

)T as the nonnegative hierarchical estimates of β∗.
Similarly, we denote X(1) and X(2) the submatrices of the
design matrix X formed by columns in B1 and its comple-
ment, respectively. Define

Cn =
1

n
XTX,Cn

11 =
1

n
XT (1)X(1),

Cn
22 =

1

n
XT (2)X(2), Cn

Aj
=

1

n
XT

Aj
XAj .

Let λmax and λmin be the largest and the smallest eigenval-
ues of Cn, respectively.

Consider the following conditions:
(A1) The errors ε1, ε2, . . . , εn are uncorrelated with mean
zero and finite variance σ2.
(A2) The maximum multiplicity C∗

n = maxk
∑J

j=1 I{k∈Aj}
is bounded and

λ

nλmin

J1∑
j=1

1

‖β∗
Aj

‖1
|Aj | ≤ σ2pMn,(6)

Mn = O(1).

(A3) λ(λmin/p)
3
2√

nλ2
max

→ ∞.

Condition (A1) is standard in linear regression model.
Condition (A2) requests the l1-norms of the coefficients in
the nonzero groups are bounded away from zero. Moreover,
both Condition (A2) and Condition (A3) require full rank
design, that is, rank(X) = p ≤ n. In this case, we still allow
the number of features p = pn to grow with n under the
assumption that the design matrix X is column full rank. If{
B1, β

∗
B1

, J1
}
are fixed unknowns, then (A2)-(A3) are con-

sequences of

C∗
n = O(1), λmin = O(1), λmax = O(1),

λ

n
→ 0,

λ

p
3
2
√
n
→ ∞.(7)

lemma 3.1. Suppose conditions (A1) and (A2) hold, then
nonnegative hierarchical lasso possesses the estimation con-
sistency, that is

(8) ‖β̂ − β∗‖22 ≤ Op

(
σ2p

nλmin

)
.

Theorem 3.1. Under conditions (A1)-(A3), then the non-
negative hierarchical lasso has group selection consistency.
That is

P

{
β̂B2 = 0

}
→ 1.(9)

Theorem 3.2. Suppose
{
B1, β

∗
B1

, J1
}

are fixed unknowns
and (7) holds. Suppose

Cn
11 → C11,

1√
n
XT (1)ε →D W ∼ N(0, σ2C11).(10)
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Then

û =
√
n
(
β̂B1 − β∗

B1

)
→D{

C−1
11 W ∼ N

(
0, σ2C−1

11

)
, û ∈ Do,

Mj1,...,jkW ∼ N(0, D), û ∈ Do
j1,...,jk

,
(11)

where D = σ2C−1
11 (C11 − H(HTC−1

11 H)−1HT )C−1
11 ,

Mj1,...,jk = C−1
11 [I − H(HTC−1

11 H)−1HTC−1
11 ], H denotes

the |B1| × k matrix with the main diagonal elements 1 and
others 0. The definitions of Do and Do

j1,...,jk
are given in

the appendix.

remark 3.1. Theorem 3.1 suggests that the nonnegative
hierarchical lasso estimates of the zero groups can be all
dropped with probability converging to one. Theorem 3.2
shows the estimator of nonzero coefficients is root-n con-
sistent and converges to a block-wise Gaussian distribution.
Combine Theorem 3.1 and Theorem 3.2, imply that the non-
negative hierarchical estimator has the oracle property in
group selection. The complete proof of Theorem 3.1 and
Theorem 3.2 can be found in the Appendix.

3.2 Oracle inequalities and model
consistency in high-dimensional linear
model

To study the asymptotic properties of nonnegative hierar-
chical lasso in sparse ultra high-dimensional setting, namely,
the number of features as well as the number of groups can
be much larger than the sample size, the criterion (5) is
rewritten as

min
βjk≥0

1

2n

n∑
i=1

(
yi −

J∑
j=1

pj∑
k=1

xi,jkβjk

)2

+λn

J∑
j=1

√
βj1 + βj2 + . . .+ βjpj ,(12)

where m1 ≤ max1≤j≤J ‖βAj‖
1
2
1 ≤ m2, the lower bound and

upper bound of the square root of l1 norm of coefficients in
each group, respectively.

In what follows, we assume the noise is a vector of i.i.d
normal random variables so that it has Gaussian tails. As
compared to the Non-Gaussian error, often used in the ro-
bust regression, it possesses some nice properties, such as
the tail bound on a combination of i.i.d normal random
variables. With these properties, we can bound the random
part XT

j ε, and further derive the oracle inequalities for the
prediction and estimation errors.

Besides the notations used in section 3.1, we need some
more notations to state the following results. We denote
by ‖A‖F and |||A||| the Frobenius and spectral norms of
matrix A, respectively. If A is positive semi-definite and
λ1, . . . , λk are the eigenvalues of A, then we have ‖A‖F =

(
∑k

i=1 λ
2
i )

1/2 and |||A||| = maxi=1,...,k λi. We set J(β̂) =

{j : β̂j �= 0, 1 ≤ j ≤ p} with cardinality M(β̂) = |J(β̂)|. Let
Δ = β̂ − β∗,ΔB1 = β̂B1 − β∗

B1
,ΔAj = β̂Aj − β∗

Aj
.

In our theoretical analysis, we make the following regu-
larity conditions throughout.
(B1) For some integer 1 ≤ s ≤ p, let

B =

{
Δ ∈ R

p :

J∑
j=J1+1

‖ΔAj‖
1
2
1 ≤ 3

J1∑
j=1

‖ΔAj‖
1
2
1

}
.(13)

Then the following conditions hold:

κ(s) = min
J1≤s

min
‖Δ‖2 �=0
Δ∈B

‖XΔ‖2√
n‖ΔB1‖1

> 0.(14)

(B2) The error ε is a vector of i.i.d normal random variables
with mean 0 and variance σ2.
(B3) The group number J tends to infinity with n at a rate
lim

n→∞
log(J)/n = 0, i.e., J = en

a1
for some 0 < a1 < 1

(B4) The maximum multiplicity C∗
n = maxk

∑J
j=1 I{k∈Aj}

is bounded and there exists a constant 0 ≤ a2 < 1 such that
max1≤j≤J pj = O

(
na2
)
.

(B5) There exist a constant a3 ∈ (0,min{1 − a1, 1 − a2})
such that λmax = O

(
na3
)
.

Condition (B1) is called the restricted eigenvalue assump-
tion on the Gram matrix of X. The integer s plays a role of
an upper bound on the group sparsity. This is an extension
to our settings of the RE assumption for the usual lasso and
Dantzig selector from Bickel et al. [16] and group sparsity
from Lounici et al. [17]. RE assumption is widely used in
high-dimensional setting to establish non-asymptotic error
bounds, which is milder than the incoherence condition. It
is equivalent to lower bounding the restricted 	1-eigenvalues
of the sample covariance matrix XTX/n. Since it is a simple
form of restricted strong convexity condition for the least-
square loss, then follow the discussion in [18], RE assump-
tion holds with high probability for various classes of ran-
dom design matrix. For example, for a random design matrix
X with rows xi ∈ R

p drawn independently and identically
distributed from a zero mean sub-Gaussian distribution with
covariance Σ, then RE assumption hold with high probabil-
ity. Condition (B3) implies the number of groups can be
much larger than the sample size and allows the dimension-
ality grows at a exponential rate as the sample size increases.
Condition (B4) and (B5) assume the maximal group size and
the largest eigenvalue of the sample covariance matrix are
bounded at some rate as n grows.

lemma 3.2. For every j ∈ 1, 2, . . . , J , recall that Cn
Aj

=

XT
Aj

XAj/n and choose

λn ≥ max
1≤j≤J

{
2σm2√

n

(
tr
(
Cn

Aj

)
+ 2
∣∣∣∣∣∣Cn

Aj

∣∣∣∣∣∣(15) (
2γlog(J) +

√
pjγlog(J)

))1/2}
,
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where γ > 1. Then with probability at least 1 − 2J1−γ, for
any solution β̂ of criterion (12) we have

J∑
j=J1+1

‖ΔAj‖
1
2
1 ≤ 3

J1∑
j=1

‖ΔAj‖
1
2
1 ,(16)

‖XΔ‖22
n

≤ 3λn

J1∑
j=1

‖ΔAj‖
1
2
1 .(17)

Theorem 3.3. Under conditions (B1)-(B3). If M(β∗) ≤ s
and the regularization parameter λn is chosen such that (15)
holds with γ > 1, then with probability at least 1 − 2J1−γ,
we have that

1

n
‖XΔ‖22 ≤ 3

4
3 J

2
3
1 C

∗ 1
3

n λ
4
3
n

κ
2
3 (s)

,(18)

‖ΔB1‖1 ≤ 3
2
3 J

1
3
1 C

∗ 2
3

n λ
2
3
n

κ
4
3 (s)

,(19)

‖Δ‖1 ≤ 16
3

2
3 J

1
3
1 C

∗ 8
3

n λ
2
3
n

κ
4
3 (s)

,(20)

M(β̂) ≤ 4m2
2λmax

3
4
3C

∗ 4
3

n J
2
3
1

λ
2
3
n (1− λn

m1
)2κ

2
3 (s)

,(21)

where λmax denotes the largest eigenvalue of the Gram ma-
trix of X.

remark 3.2. Inequalities (18)-(21) in Theorem 3.3 are
called the oracle inequalities which give non-asymptotic
bounds on the prediction and l1 estimation loss with some
probability. The parameter γ controls the probability under
which the above inequalities hold.

Theorem 3.4. Suppose {B1, β
∗
B1

, J1} are fixed unknowns
and conditions (B1)-(B5) hold. Set

λn =
4
√
2σ̂

√
λmaxm2√
n

(
max
1≤j≤J

pj +Alog(J)

) 1
2

,(22)

where A ≥ 5/2 and σ̂ is some estimator of σ. Then with
probability at least 1− 2J1−2A/5 we have

(i) group selection consistency:

P(β̂B2 = 0) → 1;

(ii) estimation consistency:

‖β̂ − β∗‖1 ≤ Op

(
σ2

κ3κ(s)

max1≤j≤J pj+Alog(J)

n

)1/3

.

remark 3.3. Taking the regularization parameter λ of order
((max1≤j≤J pj +Alog(J))/n)1/2, theorem 3.4 indicates that
the nonnegative hierarchical lasso enjoys the group selection
consistency when the number of covariates is much larger
than the sample size and establishes the upper bound for l1
estimation errors.

remark 3.4. Since σ is unknown in general, we need a
well-chosen estimator σ̂ of σ. It can be shown that we can
take σ̂ = yT y/n after centering y, which we can refer to the
section 6.2 in [15] for more details.

4. ESTIMATION ALGORITHM

Since the optimization problem (4) w.r.t (dj , αjk) re-
quires to choose the values of two tuning parameters and
it is computationally expensive, we consider the optimiza-
tion w.r.t βjk as follows

min
βjk≥0

n∑
i=1

(
yi −

J∑
j=1

pj∑
k=1

xi,jkβjk

)2

+λ

J∑
j=1

√
βj1 + βj2 + . . .+ βjpj ,

multiplying by a positive parameter μ both sides of the
above equation gives

min
β≥0

μ‖y −Xβ‖22 + λμ

J∑
j=1

‖βAj‖
1/2
1 ,

where μ is some rescaling factor.
To this end, we propose a fast and efficient itera-

tive half thresholding based local linear approximation
algorithm(IHT-LLA) for solving the nonnegative hierarchi-
cal lasso problem, which is based on the iterative half thresh-
olding algorithm in Xu et.al. [22], group coordinate descent
in Wei and Zhu [28] and local linear approximation in Zou
and Li [5].

Following the half threshold algorithm in Xu et.al. [22],
for the usual L1/2 regularization, the thresholding represen-
tation is defined as follows:

β̂(k+1) = Hλkμk,
1
2

(
β̂(k) + μkX

T (y −Xβ̂(k))

)
,

where Hλμ,1/2(x) = (hλμ,1/2(x1), . . . , hλμ,1/2(xn)) and

hλμ, 12
(x) =

{
fλμ, 12 (x), |x| >

3√54
4 (λμ)2/3,

0, otherwise,

with fλμ,1/2(x) = 2x(1+cos(2π/3−2ϕ(x)/3))/3 and ϕ(x) =

arccos(λμ(|x|/3)−3/2/8).

If β̂Aj = 0, 1 ≤ j ≤ J , the group penalty of the jth
group is reduced to the usual L1/2 penalty. Therefore, fol-
lowing the idea of iterative half thresholding algorithm,
we get the threshold value for β̂Aj = 0, 1 ≤ j ≤ J . If

β̂Aj �= 0, 1 ≤ j ≤ J , then adopting a local linear approx-
imation, the optimization problem with respect to the jth
group is closely related to an iteratively reweighted nonneg-
ative adaptive lasso procedure. Suppose β(0) ≥ 0 be the
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initial estimator, if β
(0)
Aj

= 0, then set β̂Aj = 0. Otherwise
they can be locally approximated by a linear function as

(23) Pλ

(
βAj

)
≈ Pλ

(
β
(0)
Aj

)
+

λ

2‖β(0)
Aj

‖1/21

pj∑
k=1

(βjk − β
(0)
jk ).

It can be regarded as an nonnegative adaptive lasso problem
at each iterative step and can be solved efficiently using a
revised coordinate-wise descent algorithms from [6] when
suppose the estimator is nonnegative. Assume that the xij

are standardized so that
∑

i xij/n = 0,
∑

i x
2
ij = 1, then one

can show that the coordinate-wise update has the form

β̂jk ←
(
β
(0)
jk + xT

jk(y −Xβ(0))− λ/4‖β(0)
Aj

‖1/21

)
+

.

Obviously, the above algorithm has a blockwise coordi-
nate descent structure. It optimizes a target function with
respect to a single group at a time, iterate through all the
groups until convergence. Therefore, the IHT-LLA iterates
as follows:

1. Center y. Center and normalize xjk.

2. Initialize β
(0)
jk .

3. Set μt = μ0 = 1/|||XTX/n|||2, the square of spectral
norm of the Gram matrix of X, and λt can be chosen from
BIC criteria.

4. For the jth group, if β̂
(t)
jk + μtX

T (y − Xβ̂(t)) ≤
3
√
54(λtμt)

2/3/4, k = 1, 2 . . . , pj , then set β̂
(t+1)
Aj

= 0. Other-
wise, solving the following nonnegative adaptive lasso prob-
lem

β̂
(t+1)
Aj

= argmin
βAj

≥0
μt‖y∗ −XAjβAj‖22(24)

+
λtμt

2‖β(t)
Aj

‖1/21

pj∑
k=1

βjk,

where y∗ = y −
∑

k �=j XAk
β
(t)
Ak

.

5. Repeat step 4 until convergence, e.g., ‖β̂(t+1)−β̂(t)‖2 ≤ ε,
where ε is some tolerance level, e.g., ε = 10−5.

5. SIMULATION STUDIES

In this section, we use some simulations to demonstrate
the finite sample performance of the nonnegative hierarchi-
cal lasso both in low-dimensional and high-dimensional set-
tings and compare the results with nonnegative lasso, non-
negative adaptive lasso and nonnegative elastic-net.

5.1 Simulation

Similar to Huang et al. [13], we consider the following
settings:

case1: In this case, there are 16 groups, each with 5
predictors. Suppose that the between-group correlation is

0 while the within-group is 0.5, i.e., each group is simu-
lated independently by a multivariate normal random vector
N(0,Σ) with Σ being the covariance matrix of each group
such that all the non-diagonal entries equal to 0.5 and the
diagonal elements 1. Set ε ∼ N(0, 1). Since there exists bi-
level hierarchical structure in our estimator and the group

level dj ∝ ‖βAj‖
1/2
1 , we let

d = (
√
10,

√
8.5,

√
2.5, 0, . . . , 0︸ ︷︷ ︸

13

),

and

β =(0.5, 2, 2, 2.5, 3︸ ︷︷ ︸
5

, 1, 1.5, 2, 2, 2︸ ︷︷ ︸
5

,

1.5, 1, 0, 0, 0︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
65

).

case2: In this case, there are 100 groups, each with 5
predictors. In each group, the coefficients are either all non-
zero or all zero. Like Huang et al [13], we first simulate
Rj , j = 1, . . . , 500 independently from the standard nor-
mal distribution. Then we generate Zj , j = 1, . . . , 100 from
the normal distribution with cov(Zj1 , Zj2) = 0.5|j1−j2| for
j1, j2 = 1, . . . , 100, j1 �= j2. To normalize, the predictors
(X1, . . . , X500) are generated by

X5(j−1)+k = Zj/2 +
√
3R5(j−1)+k/2,

j = 1, . . . , 100, k = 1, . . . , 5.

We still set ε ∼ N(0, 1) and

d = (
√
7.5,

√
7.5,

√
10,

√
10,

√
5, 0, . . . , 0︸ ︷︷ ︸

95

),

and

β =(1.5, . . . , 1.5︸ ︷︷ ︸
5

, 1.5, . . . , 1.5︸ ︷︷ ︸
5

, 2, . . . , 2︸ ︷︷ ︸
5

,

2, . . . , 2︸ ︷︷ ︸
5

, 1, . . . , 1︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
475

).

case3: Both the predictors and random errors are gen-
erated similarly to case2 except that there exists both the
important and unimportant variables in some groups. Let

d = (
√
5,
√
10, 2,

√
3, 1, 0, . . . , 0︸ ︷︷ ︸

95

),

and

β =(1, 1, 1, 1, 1︸ ︷︷ ︸
5

, 2, 2, 2, 2, 2︸ ︷︷ ︸
5

, 1, 1, 1, 1, 0︸ ︷︷ ︸
5

,

1.5, 1.5, 0, 0, 0︸ ︷︷ ︸
5

, 1, 0, 0, 0, 0︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
475

).
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case4: Both the predictors and random errors are simu-
lated in the same way as in case3 except that the sample
size is increased from 5 to 20 while the number of groups is
decreased to 25. Postulating the number of nonzero coeffi-
cients in the 1,3,5 groups is generated independently by a
discrete uniform distribution DU(1, 20). To be general, the
nonzero components from the first group are simulated in-
dependently by a normal N(1.5, 0.3) random variable. Simi-
larly, the nonzero components from the third group are sim-
ulated independently by a normal N(2, 0.2) random variable
and the fifth by a normal N(2.5, 0.1) random variable. Set
β61 = β62 = · · · = β500 = 0.

case5: In this case, the model has groups of different
sizes. Set p = 500, J = 29 with group sizes p1−4 =
5, p5−8 = 15, p9−29 = 20. In each group, the coefficients
are either all non-zero or all zero. The data are gener-
ated as follows. The predictors (X1, . . . , X500) are gener-
ated by a multivariate normal random vector N(0,Σ). Let
Σp×p = diag(Σ1,2,Σ3,4,Σ5, . . . ,Σ29), with Σ1,2 being the
covariance matrix for groups 1 and 2 and Σ3,4 for groups
3 and 4, Σj , j = 5, . . . , 28 being the covariance matrix for
groups j = 5, . . . , 28. Set (Σ1,2)ij = 1i=j + 0.51≤i �=j≤5 +
0.56≤i �=j≤10 + 0.31≤i≤5,6≤j≤10 + 0.36≤i≤10,1≤j≤5 such that
within-group correlation is 0.5 and between-group correla-
tion is 0.3 for group 1 and 2. Similarly, (Σ3,4)ij = 1i=j +
0.51≤i �=j≤5+0.56≤i �=j≤10−0.51≤i≤5,6≤j≤10−0.56≤i≤10,1≤j≤5

such that within-group correlation is 0.5 and between-group
correlation is −0.5 for group 3 and 4. For Σj , j = 5, . . . , 8,
we choose a compound symmetry structure with ρ = 0.5
while for Σj , j = 9, . . . , 29 we choose ρ = 0.2. The response
is calculated based on model (1) with

β = (1, . . . , 1︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

, 2, . . . , 2︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
485

).

case6: Both the predictors and random errors are simu-
lated in the same way as in case3 except that the number of
groups is increased to 200 so that there are 1000 predictors.
Let

d = (
√
7.5,

√
8, 0, . . . , 0︸ ︷︷ ︸

198

),

and

β = (1.5, 1.5, 1.5, 1.5, 1.5︸ ︷︷ ︸
5

, 2, 2, 2, 2, 0︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
990

).

case7: The same as case6, except that ε ∼ t(8), a t distri-
bution with degree of freedom equal to 8.

case8: The same as case6, except that ε ∼ 0.9N(0, 1) +
0.1N(0, 10), a mixed normal distribution.

For these cases, all the simulations are repeated 100 times
randomly. Within each replication, our simulated data con-
sists of a training set of size 100. To show the performance
of nonnegative hierarchical lasso compared to nonnegative

lasso, nonnegative adaptive lasso and nonnegative elastic-
net, we use BIC criterion to select the tuning parameters
and the simulation results are summarized in Table 1. L1 is
the l1-norm of estimation errors in group/individual level,

namely, ‖d̂ − d∗‖1 and ‖β̂ − β∗‖1. Similarly, L2 is the l2-
norm of estimation errors in group/individual level, namely,

‖d̂ − d∗‖22 and ‖β̂ − β∗‖22. ME represents the model error

which is computed as (β̂−β∗)TE(XXT )(β̂−β∗). FP counts
the the number of groups/variables that are false positive.
Since the false negative, i.e., the number of nonzero groups
or individuals which are not selected is very small, we omit
it here. In the parentheses are the corresponding standard
deviations.

From Table 1, with any group size and group structure,
it can be seen that the nonnegative hierarchical lasso is sig-
nificantly superior to, and very occasionally inferior to the
other methods in group-level both in low-dimensional and
high-dimensional set-ups. When the group size is relatively
small, this superiority is more obvious. In individual-level,
nonnegative hierarchical lasso performs as well as nonneg-
ative adaptive lasso for low dimensionality but attains a
lower L1, L2 and VF as the dimensionality grows. As for
ME, nonnegative hierarchical lasso also perform the best,
followed by nonnegative adaptive lasso, nonnegative elastic-
net and nonnegative lasso. Similar results can be obtained
under two types of Non-Gaussian error-a t distribution t(8)
and a mixed normal distribtion 0.9N(0, 1) + 0.1N(0, 10).

5.2 Simulation with group mis-specification

Set p = 600, J = 60 with all of the group sizes equal to
10. In each group, the coefficients are either all non-zero or
all zero. The predictors (X1, . . . , X600) are generated inde-
pendently by a standard normal distribution N(0, 1). The
response is calculated based on model (1) with

β = (0.5, . . . , 0.5︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
10

, 0.5, . . . , 0.5︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
570

).

The group information is mis-specified such that the ca-
sual variables X9 −X10 are grouped with the null variables
X11 −X20 and the casual variables X29 −X30 are grouped
with the null variables X31−X40. Thus, the group sizes are
changed to p1 = 8, p2 = 12, p3 = 8, p4 = 12, p5−60 = 10.
The percentage of X9 −X10 and X29 −X30 being selected
over the 100 replications and their variation ranges are re-
ported in Table 2. To examine the selection abilities of all
these methods, we plot the percentage of the 100 replica-
tions when a nonzero coefficient is selected. The results are
given in Figure1.

5.3 Computational efficiency

In this section we briefly assess the computational effi-
ciency of our algorithm IHT-LLA. We compare IHT-LLA
with the hierarchically iterative algorithm (HI) used in [12].
The simulation data is generated as follows: we fix n = 100
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Table 1. Simulation results for case1-8

Method ME
Groups Variables

L1 L2 FP L1 L2 FP

n = 100, p = 80, J = 16, ε ∼ N(0, 1)
NLasso 0.25(0.09) 0.75(0.55) 0.19(0.20) 2.38(2.05) 1.72(0.39) 0.32(0.12) 3.45(2.88)
NEnet 0.23(0.09) 0.61(0.50) 0.15(0.18) 1.99(1.78) 1.75(0.40) 0.34(0.13) 3.08(2.26)

NALasso 0.16(0.07) 0.33(0.36) 0.09(0.13) 0.71(1.03) 1.50(0.36) 0.27(0.11) 1.12(1.36)
NHLasso 0.16(0.06) 0.22(0.35) 0.07(0.18) 0.28(0.68) 1.50(0.38) 0.26(0.12) 1.11(1.27)

n = 100, p = 500, J = 100, ε ∼ N(0, 1)
NLasso 0.66(0.17) 3.91(1.97) 1.11(0.68) 13.85(7.21) 4.87(0.88) 1.04(0.30) 15.85(8.86)
NEnet 0.64(0.20) 4.38(2.09) 1.33(0.72) 14.91(8.02) 5.29(0.95) 1.21(0.40) 17.26(9.74)

NALasso 0.44(0.14) 2.18(1.12) 0.63(0.40) 6.79(3.79) 3.92(0.74) 0.80(0.27) 7.26(4.21)
NHLasso 0.35(0.12) 1.09(0.90) 0.56(0.54) 1.61(1.55) 3.22(0.83) 0.58(0.23) 3.27(3.37)

n = 100, p = 500, J = 100, ε ∼ N(0, 1)
NLasso 0.60(0.18) 2.70(1.40) 0.69(0.46) 9.28(5.45) 3.41(0.62) 0.70(0.20) 11.48(6.66)
NEnet 0.49(0.11) 3.76(1.48) 1.10(0.65) 13.50(4.37) 3.82(0.97) 0.76(0.29) 16.76(6.01)

NALasso 0.43(0.33) 1.98(2.67) 0.68(1.14) 5.20(7.38) 2.82(1.45) 0.70(0.57) 6.17(8.87)
NHLasso 0.22(0.08) 0.24(0.19) 0.05(0.14) 0.06(0.24) 2.01(0.48) 0.32(0.13) 2.99(1.67)

n = 100, p = 500, J = 25, ε ∼ N(0, 1)
NLasso 0.51(0.16) 3.04(3.07) 2.88(5.58) 5.82(2.99) 3.58(0.74) 0.74(0.25) 12.01(6.62)
NEnet 0.52(0.15) 2.96(3.14) 2.86(5.58) 5.33(3.40) 3.65(0.80) 0.78(0.25) 11.16(7.35)

NALasso 0.42(0.12) 2.63(2.54) 2.02(4.46) 5.33(2.44) 3.77(0.67) 0.89(0.31) 11.85(4.64)
NHLasso 0.29(0.10) 1.67(3.54) 2.48(5.84) 0.89(1.96) 2.67(0.59) 0.49(0.18) 5.13(2.89)

n = 100, p = 500, J = 29, ε ∼ N(0, 1)
NLasso 0.39(0.15) 0.98(0.69) 0.24(0.25) 3.38(2.51) 1.82(0.37) 0.41(0.17) 4.20(3.59)
NEnet 0.27(0.11) 0.83(0.54) 0.22(0.18) 2.69(2.16) 1.75(0.36) 0.38(0.16) 3.17(2.46)

NALasso 0.23(0.10) 0.79(0.53) 0.22(0.19) 2.40(1.76) 1.73(0.39) 0.40(0.18) 2.86(2.16)
NHLasso 0.11(0.05) 0.16(0.29) 0.07(0.17) 0.23(0.51) 1.19(0.32) 0.22(0.09) 0.51(1.28)

n = 100, p = 1000, J = 200, ε ∼ N(0, 1)
NLasso 0.40(0.09) 0.80(0.61) 0.17(0.17) 2.98(2.85) 1.48(0.27) 0.31(0.09) 3.15(3.00)
NEnet 0.17(0.09) 0.67(0.52) 0.16(0.18) 2.68(1.95) 1.23(0.31) 0.23(0.09) 2.86(1.99)

NALasso 0.15(0.07) 0.82(0.81) 0.27(0.30) 2.34(2.53) 1.23(0.38) 0.21(0.10) 2.34(2.54)
NHLasso 0.12(0.06) 0.29(0.54) 0.12(0.30) 0.45(0.99) 1.03(0.38) 0.16(0.09) 1.07(2.14)

n = 100, p = 1000, J = 200, ε ∼ t(8)
NLasso 0.59(0.24) 1.21(0.79) 0.29(0.23) 4.41(3.23) 1.84(0.36) 0.42(0.15) 4.68(3.41)
NEnet 0.41(0.20) 1.24(0.75) 0.31(0.24) 4.54(2.91) 1.75(0.39) 0.38(0.15) 5.01(3.13)

NALasso 0.23(0.12) 1.52(1.28) 0.58(0.53) 4.10(3.60) 1.58(0.63) 0.29(0.16) 4.11(3.61)
NHLasso 0.19(0.09) 0.51(0.54) 0.25(0.31) 0.83(1.00) 1.26(0.46) 0.22(0.12) 1.84(1.89)

n = 100, p = 1000, J = 200, ε ∼ 0.9N(0, 1) + 0.1N(0, 10)
NLasso 0.95(0.36) 1.82(1.47) 0.48(0.48) 5.87(5.34) 2.66(0.57) 0.81(0.26) 6.06(5.56)
NEnet 0.89(0.34) 1.90(1.41) 0.49(0.49) 5.87(4.98) 2.69(0.56) 0.83(0.25) 6.15(5.41)

NALasso 0.35(0.14) 1.92(1.21) 0.68(0.55) 4.67(3.11) 2.03(0.69) 0.46(0.22) 4.71(3.13)
NHLasso 0.34(0.19) 1.08(1.05) 0.55(0.67) 1.66(1.73) 1.82(0.79) 0.43(0.24) 3.19(3.39)

Table 2. Simulation results for group mis-specification

Nlasso Nnet Nalasso Nhlasso

pct.X9 0.21 0.20 0.69 1.00
pct.X10 0.18 0.17 0.67 1.00
pct.X29 0.17 0.18 0.63 1.00
pct.X30 0.18 0.16 0.58 0.98
range.X9 0.097-0.553 0.098-0.554 0.060-0.809 0.156-0.853
range.X10 0.010-0.606 0.031-0.605 0.003-0.680 0.220-0.743
range.X29 0.031-0.452 0.031-0.498 0.117-0.261 0.074-0.172
range.X30 0.036-0.559 0.051-0.559 0.046-0.131 0.009-0.397

with the first 50 samples serve as a training set whereas
the remaining as the test set, and vary the value of p from

60 to 480 with group size all equal to 3. That is, the num-
ber of groups is increased from 20 to 160. The covariates

(x1, . . . , xp) are simulated from a multivariate normal dis-
tribution with the pairwise correlation between xi and xj set
to be corr(i, j) = 0.5|i−j|. The model built on the training

set can be expressed as

yi =

8∑
j=1

xijβ
∗
j + εi, i = 1, . . . , 50,
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Figure 1. Top left: frequency of X1-X10 and X30-X40 being selected of the nonnegative lasso, nonnegative adaptive lasso and
nonnegative hierarchical lasso estimates. Solid dot: nonnegative lasso. Triangle: nonnegative adaptive lasso. Solid square:
nonnegative adaptive lasso. Star: nonnegative hierarchical lasso. Top right: box plot of nonnegative lasso. Bottom left: box

plot of nonnegative adaptive lasso. Bottom right: box plot of nonnegative hierarchical lasso.

Figure 2. Left: CPU times (in seconds) required to fit the
entire coefficients path. Right: mean-squared error on the test

set. Solid dot: ITH-LLA. Triangle: HI.

where εi ∼ N(0, 1). In every simulation the nonzero coeffi-
cients β∗

j , j = 1, . . . , 8 are all equal to 1.5. Both IHT-LLA
and HI do their works in R. To show the efficiency of our al-
gorithm, Figure2 presents the CPU times required to fit the

entire coefficients path and the mean-squared error (MSE)
on the test set, all averaged over 10 runs.

As we shall see, our algorithm IHT-LLA is faster than the
hierarchically iterative algorithm (HI), and performs better
in terms of prediction accuracy.

6. AN APPLICATION

In this section, we focus on the application of the nonneg-
ative hierarchical lasso in financial market. The performance
of the nonnegative hierarchical lasso with grouping infor-
mation considered is tested to track the S&P 500 index, a
market-capitalization-weighted index of the 500 largest U.S.
publicly traded companies by market value to represent the
largest publicly traded corporations in America.

We apply the nonnegative hierarchical lasso to index
tracking mainly for the following:

Firstly, it is costly to select all of the assets. In appli-
cation, one always construct a sparse index tracking port-
folio against the costly full replication. On the other hand,
a large quantity of stocks also cause the problem of high-
dimensionality. Thus, our method is a fast and effective way
to induce sparsity.

Secondly, nonnegative constraints are the conventional
restraints especially in financial field as the short-sale con-
straints. Since the index is compiled via the market capital-
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ization weight which is positive, it is natural to introduce
the nonnegative constraints for better replication.

Finally, there exist group structures in stock market. For
instance, there are relationships between stocks from the
same stock block or industry. Incorporation of such informa-
tion can improve the predictive accuracy. The nonnegative
hierarchical lasso, as a bi-level selection method, gains the
ability to achieve this aim.

We use the proposed nonnegative hierarchical lasso to an-
alyze the data from the closing prices of stocks that make
up the S&P 500 index, from Feb. 1, 2018 to Sept. 26, 2018.
There are 159 observations, and 504 predictors in this data.
To demonstrate the predictive accuracy of the proposed ap-
proach, the data are divided into two parts, the first 119
observations are regarded as a training set and the remain-
ing are used as a test set. In this work, we let Pi,j be the
prices of the jth constituent stock and pi be the S&P 500
index. To eliminate the relativity of observations, we trans-
form the closing price to the daily return, i.e.

xij =
Pi−1,j

Pi,j
− 1, i = 2, 3, . . . , n,

yi =
pi−1

pi
− 1, i = 2, 3, . . . , n,

where xij and yi stand for the return of the jth constituent
stock and S&P 500 index, respectively. Therefore, the sta-
tistical model built on the training set can be described to
a linear regression model:

yi =

504∑
j=1

xijβ
∗
j + εi, i = 1, . . . , 118, s.t. β∗

j ≥ 0,

where β is assumed to be sparse for sparse replication.
Since the true grouping structure is unknown in practice,

we consider a data-driven clustering method which provides
an adaptively choice of the number of groups depending
on the size of selected model. Note that the hierarchical
lasso is a bi-level selection procedure with group-level dj ∝
‖βAj‖

1/2
1 , j = 1, . . . , J and we conjecture the reasonability

of clustering two variables into the same cluster with almost
the same size of group-level dj , j = 1, . . . , J . Therefore, our
clustering method can be described as follows:

(a) Let each group consists of one variable and use the

nonnegative hierarchical lasso to get the solution d̂j , j =
1, . . . , J for each variable.

(b) Fix the number of groups, e.g., 50,60,70, . . . ,200,
and the membership of groups could be determined by the
d̂j , j = 1, . . . , J from (a).

(c) For a given size of selected model, we determine the
number of groups by a CV-like method, e.g., divide the
dataset into 5 parts, four of which as the training set and the
remaining as the test set. Then we can model the training
set by nonnegative hierarchical lasso to compare the mean
square error of the test set, respectively. Denote the corre-
sponding number of groups with the smallest MSE by k∗.

(d) Choose the number of groups around k∗, e.g., k∗ −
10, k∗ − 9, . . . , k∗ + 9, k∗ + 10, and do (b) and (c) again to
find the final optimal number of groups.

For comparison, we also considered the nonnegative lasso,
nonnegative adaptive lasso and nonnegative elastic-net from
Wu and Yang [34], Yang et al. [35] and Wu et al. [33]. The
BIC is also used to select the regularization parameters of
these three methods. For evaluation purpose, the Absolute
Mean Tracking Error (AMTE), is defined as

TrackingErrorMean =

∑
(|errt|)
T

,

where errt = yt − ŷt and ŷt is the fitted or predicted value
of yt, for t = 1, 2, . . . , T .

Our aim is to resort to a small subset of the constituent
stocks to replicate the index. Thus, we tune the tuning pa-
rameter to select 35 or 50 stocks to demonstrate the fit-
ted and predicted results of our approach as compared to
nonnegative lasso, nonnegative adaptive lasso and nonnega-
tive elastic-net. By the aforementioned data-driven cluster-
ing method, we set the number of groups is 117(or equiv-
alently,72) when the size of selected model is 35 (or equiv-
alently,50). The results for Absolute Mean Tracking Error
(AMTE) are given in Table 3. We only show the predicted
results with different number of selected stocks (35 VS 50) in
Figure3-4. Since the predicted result of nonnegative elastic-
net is thus similar to that of nonnegative lasso, it is omitted
for brevity. It can be seen from Table 3 that the nonnega-
tive hierarchical lasso outperforms other methods in terms of
AMTE, then the nonnegative adaptive lasso, and worst the
nonnegative elastic-net and nonnegative lasso. Also, increas-
ing the number of selected stocks could slightly improve the
performance of prediction. Similar conclusions can be drawn
from the predicted results in Figure3-4 and the nonnegative
hierarchical lasso could be a better choice for long-term pre-
diction, which can be shown in Figure3-4.

Table 3. The fitted and predicted Absolute Mean Tracking Error (AMTE)

non-lasso non-elastic net non-adaptive lasso non-hierarchical lasso

Fitted AMTE(35) 0.157% 0.155% 0.074% 0.069%
Predicted AMTE(35) 0.135% 0.135% 0.107% 0.086%
Fitted AMTE(50) 0.087% 0.086% 0.043% 0.061%

Predicted AMTE(50) 0.128% 0.128% 0.103% 0.078%
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Figure 3. Predicted results for real data with 35 stocks: S&P 500 index (solid line), predicted value (dashed line), nonnegative
lasso (Top), nonnegative adaptive lasso (Middle), nonnegative hierarchical lasso (Bottom).

7. CONCLUDING REMARKS

In this paper, we propose the nonnegative hierarchical
lasso for bi-level selection both in low-dimensional and ultra
high-dimensional linear regression model, and prove its nice
statistical properties under certain appropriate conditions.
Since its theoretical properties in cases where p � n, to
the best of our knowledge, have not been explored. We also
derive the oracle inequalities in cases where the number of
covariates is much larger than the sample size.

The nonnegative hierarchical lasso, however, has the lasso
penalty as its inner penalty so that it shares some draw-
backs with the usual lasso. For example, a single strong

predictor could draw other predictors in the same group
into the model, which prevents the nonnegative hierarchical
lasso from achieving consistency for the selection of individ-
ual variables. For further improvements, the lasso penalty
could be replaced by adaptive lasso, MCP or SCAD. We
could also consider the composite l1/2 penalty, i.e. using the
l1/2 penalty as both the outer and inner penalties. Further
work is needed to study the properties of this class of esti-
mators and compare their performance.

Besides, we only focus on the nonnegative hierarchical
lasso in the context of linear regression models. The pro-
posed approach can be applied to other regression models
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Figure 4. Predicted results for real data with 50 stocks: S&P 500 index (solid line), predicted value (dashed line), nonnegative
lasso (Top), nonnegative adaptive lasso (Middle), nonnegative hierarchical lasso (Bottom).

when both the group and individual sparsity are desired.

Specifically, it can be naturally extended to the general-

ized linear models, Cox regression and robust regression.

Therefore, it is of interest to further study the theoretical

properties and computational algorithms with different loss

functions.
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APPENDIX: PROOFS OF THEOREMS

Proof of Lemma 2.1 As stated in Section 2.
Let Q∗(d, α) be the criteria of equation (4) and Q(β)

be the criteria of equation (5). Suppose that (d̂, α̂) is a lo-

cal minimizer of Q∗(d, α). We will show β̂jk = d̂jα̂jk, j =
1, . . . , J, k = 1, . . . , pj is a local minimizer of Q(β) in the
following.

Denote βjk = djαjk. Since

Q∗(d, α)

=
1

2

n∑
i=1

(
yi −

J∑
j=1

dj

pj∑
k=1

αjkxi,jk

)2
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+ λ1

J∑
j=1

dj + λ2

J∑
j=1

pj∑
k=1

αjk

=
1

2

n∑
i=1

(
yi −

J∑
j=1

pj∑
k=1

βjkxi,jk

)2

+ λ1

J∑
j=1

dj + λ2

J∑
j=1

pj∑
k=1

(dj)
−1βjk.

Thus for any β ≥ 0, we have d̂(β) = argmin
d≥0

Q∗(d, α).

Therefore

d̂j(β) = (
λ1

λ2
)−

1
2 (

pj∑
k=1

β̂jk)
1
2 , , j = 1, 2, . . . , J.(25)

Substitute (25) into Q∗(d, α), it is easy to obtain that

Q∗(d̂, α̂)

=
1

2

n∑
i=1

(
yi −

J∑
j=1

pj∑
k=1

β̂jkxi,jk

)2

+ λ1

J∑
j=1

(
λ1

λ2
)−

1
2 (

pj∑
k=1

β̂jk)
1
2

+ λ2

J∑
j=1

pj∑
k=1

(
λ1

λ2
)

1
2 (

pj∑
k=1

β̂jk)
− 1

2 β̂jk

=
1

2

n∑
i=1

(
yi −

J∑
j=1

pj∑
k=1

β̂jkxi,jk

)2

+ 2
√
λ1 · λ2

√√√√ pj∑
k=1

β̂jk,

which is equal to Q(β̂) with λ = λ1 · λ2.

Proof of Lemma 3.1 As stated in Section 3. Let β̂ be the
nonnegative hierarchical lasso estimator for a given λ, then
from the definition of β̂

1

2
‖Y −Xβ̂‖22 + 2

√
λ

J∑
j=1

√
β̂j1 + . . .+ β̂jpj

≤ 1

2
‖Y −Xβ∗‖22 + 2

√
λ

J∑
j=1

√
β∗
j1 + . . .+ β∗

jpj
.

By Cauchy-Schwarz inequality

J∑
j=1

√√√√ pj∑
k=1

β∗
jk −

J∑
j=1

√√√√ pj∑
k=1

β̂jk

≤
J1∑
j=1

√√√√ pj∑
k=1

β∗
jk −

J1∑
j=1

√√√√ pj∑
k=1

β̂jk

≤
J1∑
j=1

[( pj∑
k=1

β∗
jk

)− 1
2 ∥∥β̂Aj − β∗

Aj

∥∥
1

]

≤
J1∑
j=1

[∥∥β∗
Aj

∥∥− 1
2

1

(
|Aj |‖β̂Aj − β∗

Aj
‖22
) 1

2

]

≤ ηn

( J1∑
j=1

‖β̂Aj − β∗
Aj

‖22
) 1

2

,

where ηn =

√
J1∑
j=1

|Aj |
‖β∗

Aj
‖1
.

Since
J1∑
j=1

‖β̂Aj−β∗
Aj

‖22 ≤ C∗
n‖β̂−β∗‖22. Then by the above

inequalities we have

4
√
ληn
√
C∗

n|β̂ − β∗‖2
≥ ‖Y −Xβ̂‖22 − ‖Y −Xβ∗‖22
= ‖Xβ∗ + ε−Xβ̂‖22 − ‖Y −Xβ∗‖22
= ‖X(β̂ − β∗)‖22 + 2ε′X(β∗ − β̂).

Let ε∗ be the projection of ε to the span of {X1, X2, . . . , Xp}
in the sense that ε∗ = X(XTX)−1XT ε, then

2εTX(β̂ − β∗) = 2ε∗TX(β̂ − β∗)

≤ 2‖ε∗‖2‖X(β̂ − β∗)‖2

≤ 4‖ε∗‖22 + ‖X(β̂ − β∗)‖22
2

.

Thus combine the above inequalities, we have

‖X(β̂ − β∗)‖22(26)

≤ 8
√
ληn
√

C∗
n|β̂ − β∗‖2 + 4‖ε∗‖22.

Since E‖ε∗‖22 = σ2tr(X(XTX)−1XT ) = pσ2, then

‖X(β̂ − β∗)‖22(27)

≤ 8
√
ληn
√

C∗
n|β̂ − β∗‖2 + 4Op(pσ

2).

Note that λmin is the smallest eigenvalue of XTX
n , then we

have

‖β̂ − β∗‖22

≤ 8
√
λC∗

nηn‖β̂ − β∗‖2
nλmin

+
4Op(pσ

2)

nλmin

≤ 32λη2nC
∗
n

n2λ2
min

+
‖β̂ − β∗‖22

2
+

4Op(pσ
2)

nλmin
.

Then condition (A2) gives

‖β̂ − β∗‖22 ≤ 64λη2nC
∗
n

n2λ2
min

+
8Op(pσ

2)

nλmin
(28)
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≤ Op

(
pσ2

nλmin

)
.

Proof of Theorem 3.1 As stated in Section 3. Define β̃ =
(β̃11, β̃12, . . . , β̃JpJ

)T by

β̃jk =

{
β̂jk 1 ≤ j ≤ J1, 1 ≤ k ≤ pj ,

0 J1 + 1 ≤ j ≤ J, 1 ≤ k ≤ pj .

Then by KKT conditions for any β̂jk �= 0 we can obtain that

(Y −Xβ̂)TXjk =
√
λ

1√
β̂j1 + . . .+ β̂jpj

.

By the definition of β̃ and the non-negativity of β̂, we can
validate that

(Y−Xβ̂)TX(β̂ − β̃)

=
√
λ

J∑
j=1

pj∑
k=1

(β̂jk − β̃jk)√
β̂j1 + . . .+ β̂jpj

=
√
λ

J∑
j=1

‖β̂Aj‖
− 1

2
1 (‖β̂Aj‖1 − ‖β̃Aj‖1)

=
√
λ

J∑
j=J1+1

‖β̂Aj‖
1
2
1 .

Similarly to the proof of Lemm1, the definition of β̂ im-
plies

1

2
‖Y −Xβ̂‖22 + 2

√
λ

J∑
j=1

‖β̂Aj‖
1
2
1

≤ 1

2
‖Y −Xβ̃‖22 + 2

√
λ

J∑
j=1

‖β̃Aj‖
1
2
1 .

It is easy to prove that

2
√
λ

J∑
j=1

(‖β̂Aj‖
1
2
1 − ‖β̃Aj‖

1
2
1 )

≤ 1

2
‖Y −Xβ̃‖22 −

1

2
‖Y −Xβ̂‖22

=
1

2
‖X(β̂ − β̃)‖22 + (Y −Xβ̂)TX(β̂ − β̃).

Note that λmax denotes the largest eigenvalue of the Gram
matrix XTX/n and by Lemma 1, it is easy to get

√
λ

J∑
j=J1+1

‖β̂Aj‖
1
2
1 ≤ 1

2
nλmax‖β̂B2‖22

≤ nλmax

2
‖β̂ − β∗‖22 ≤ nλmaxOp

(
pσ2

nλmin

)
.

Now we establish the lower bound of the
J∑

j=J1+1

‖β̂Aj‖
1
2
1 ,

it is easy to prove that

J∑
j=J1+1

‖β̂Aj‖
1
2
1 ≤
( J∑

j=J1+1

‖β̂Aj‖1
) 1

2

≤ ‖β̂B2‖
1
2
1 ≤ ‖β̂B2‖

1
2
2 .

Then combine the above two inequalities, we have

√
λ ≤ nλmax

2
‖β̂B2‖

3
2
2 ≤ nλmaxOp

(
pσ2

nλmin

) 3
4

.

Thus by condition (A3) we can prove that

P
(
‖β̂B2‖2 > 0

)
≤ P

{
λ(λmin/p)

3
2

λ2
maxn

1
2

≤ Op(1)

}
→ 0.(29)

Then we complete the proof.
Proof of Theorem 3.2 As stated in Section 3. By Lemma

2, recall that ‖β̂ − β∗‖22 = Op

(
σ2p

nλmin

)
. Since {B1, β

∗
B1

, J1}
are fixed, and (7) implies (A2) and (A3), then the proof of
lemma 2 still works with the submatrix X1, thus we have

‖β̂B1 − β∗
B1

‖22 = Op

(
1

n

)
.(30)

Define

Vn(u) = Ln

(
β∗ +

1√
n
(uT , 0T )T

)
− Ln

(
β∗
)
,

where Ln(β) is the objective function of (5), 0 stands for
the zero vector of dimension |B2|. Then by theorem 1, the
following hold with large probability

β̂ − β∗ =
1√
n
(uT , 0T )T ,

ûn = argmin
β∗
B1

+u/
√
n≥0

{
Vn(u) : u ∈ R|B1|}.

Since the function Vn(u) can be decomposed into two
parts

Vn(u) =
1

2
‖ε−X(uT , 0T )T /

√
n‖22 −

1

2
‖ε‖22

+ 2
√
λ

J1∑
j=1

(
‖β∗

Aj
+

1√
n
uAj‖

1
2
1 − ‖β∗

Aj
‖

1
2
1

)
= − 1√

n
uTXT

1 ε+
1

2n
uTXT

1 X1u

+ 2
√
λ

J1∑
j=1

(
‖β∗

Aj
+

1√
n
uAj‖

1
2
1 − ‖β∗

Aj
‖

1
2
1

)
= V1n(u) + V2n(u).
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For the first term, by (10), it is easy to obtain that

V1n(u) →D −uTW +
1

2
uTC11u.(31)

Then for the second term, since

V2n(u) = 2
√
λ

J1∑
j=1

(
‖β∗

Aj
+

uAj√
n
‖

1
2
1 − ‖β∗

Aj
‖

1
2
1

)

= 2

√
λ√
n

J1∑
j=1

‖uAj‖1
‖β∗

Aj
+ 1√

n
uAj‖

1
2
1 + ‖β∗

Aj
‖

1
2
1

.

Then by (7), we have V2n(u) → 0, therefore

Vn(u) →D −uTW +
1

2
uTC11u.(32)

Then it follows by solving a constrained optimization prob-
lem {

min−uTW + 1
2u

TC11u,
subject to β∗

B1
+ u√

n
≥ 0.

(33)

By [3, Theorem 2], it is equivalent to{
min−uTW + 1

2u
TC11u,

subject to uj ≥ 0, j ∈ I(β∗
B1

),
(34)

where I(β∗
B1

) denotes the index set of constraints which are
active in β∗

B1
, that is, I(β∗

B1
) = {j ∈ B1 : βj = 0}. Let

D be the feasible region of the above optimization problem
and Do be the relative interior. Dj and Dj1,...,jk denote the
boundary formed by the jth constraint and the intersection
ofDj1 , . . . , Djk , respectively. D

o
j1,...,jk

represents the relative
interior of Dj1,...,jk . They can be defined as follows

Do =
{
u : uj > 0, j ∈ I(β∗

B1
)
}
,

Dj1,...,jk =
{
u : ujr = 0, jr ∈ I(β∗

B1
), 1 ≤ r ≤ k;

ut ≥ 0, t ∈ I(β∗
B1

) \ {j1, . . . , jk}
}
,

Do
j1,...,jk

=
{
u : ujr = 0, jr ∈ I(β∗

B1
), 1 ≤ r ≤ k;

ut > 0, t ∈ I(β∗
B1

) \ {j1, . . . , jk}
}
.

If û ∈ Do then by KKT conditions we have

û →D C−1
11 W.(35)

In contrast, if û ∈ Do
j1,...,jk

, by KKT conditions we obtain{
C11u−W − λj1,...,jk = 0,
ujr = 0, r = 1, . . . , k,

where λj1,...,jk is a vector of lagrangian multipliers with λj =
0, j ∈ B1 \ {j1, . . . , jk}.

Let

Bj1,...,jk =

[
C11 H
HT 0

]
,

where H denotes the |B1|×k matrix with the main diagonal
elements 1 and others 0.

We can write the inverse of Bj1,...,jk as a block matrix

B−1
j1,...,jk

=

[
Mj1,...,jk V12

V21 V22

]
.

By the elementary operation of block matrices, it is easy to
obtain that

Mj1,...,jk = C−1
11 [I −H(HTC−1

11 H)−1HTC−1
11 ].

Thus we complete the proof.
Proof of Lemma 3.2 As stated in Section 3. By the defi-

nition of β̂, we have

1

2n
‖Y −Xβ̂‖22 + λn

J∑
j=1

√
β̂j1 + . . .+ β̂jpj

≤ 1

2n
‖Y −Xβ∗‖22 + λn

J∑
j=1

√
β∗
j1 + . . .+ β∗

jpj
.

Then by the subadditivity property of the square root, we
have that

1

2n
‖X(β∗ − β̂)‖22 + λn

J∑
j=J1+1

‖β̂Aj‖
1
2
1

≤ λn

J1∑
j=1

‖β̂Aj − β∗
Aj

‖
1
2
1 +

1

n
εTX(β̂ − β∗)

≤ λn

J1∑
j=1

‖ΔAj‖
1
2
1 + max

1≤k≤p

|XT
k ε|
n

‖β̂ − β∗‖1

≤ λn

J1∑
j=1

‖ΔAj‖
1
2
1 +

J∑
j=1

max
k∈1,...,p

|XT
k ε|
n

‖ΔAj‖1.

Since β̂ ≥ 0, then

‖β̂Aj − β∗
Aj

‖1 ≤ m2‖β̂Aj − β∗
Aj

‖
1
2
1 .(36)

Consider the random event

H =

{
max

k∈1,...,p

|XT
k ε|
n

≤ λn

2m2

}
,

and for every j ∈ 1, . . . , J , define

Hj =

{
max
k∈Aj

|XT
k ε|
n

≤ λn

2m2

}
,

Aj =

{‖XT
Aj

ε‖2
n

≤ λn

2m2

}
.

Obviously,

H =

J⋂
j=1

Hj ,
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P(Aj) ≤ P(Hj).

We note that

P(Aj) = P

(
1

n2
εTXT

Aj
XAj ε ≤

λ2
n

4m2
2

)
= P

(∑n
i=1 νj,i(ξ

2
i − 1)√

2‖νj‖2
≤ dj

)
,

where ξ1, . . . , ξn are i.i.d standard normal and νj,1, . . . , νj,n
represent the eigenvalues of the matrixXAjX

T
Aj

/n which has
the same positive ones as Cn

Aj
, and dj is defined as follows

dj =
nλ2

n/4σ
2m2

2 − tr(Cn
Aj

)
√
2‖Cn

Aj
‖F

.

Applying [16, Lemma B.1] to the event Aj then we have

P(Ac
j) ≤ 2 exp

{ −d2j/2

1 +
√
2dj |||Cn

Aj
|||/‖Cn

Aj
‖F

}
.

Now choose dj to make the right-hand side of the above
inequality smaller than 2J−γ , after some computation we
have

dj ≥
√
2γlog(J)|||Cn

Aj
|||/‖Cn

Aj
‖F +

(
(2γlog(J)

|||Cn
Aj

|||/‖Cn
Aj

‖F )2 + 2γlog(J)
) 1

2 .

The subadditivity property of the square root and inequality
‖Cn

Aj
‖F ≤ √

pj |||Cn
Aj

||| imply inequality (18) holds and then

P(H) ≥ 1− 2J1−γ .
Then on the event H gives inequalities (16) and (17) im-

mediately.
Proof of Theorem 3.3 As stated in Section 3. By assump-

tion (B1) and Lemma 3 we have

κ2(s)‖ΔB1‖21 ≤ 1

n
‖XΔ‖22 ≤ 3λn

J1∑
j=1

‖ΔAj‖
1
2
1

≤ 3C∗
nJ

1
2
1 λn‖ΔB1‖

1
2
1 .

Then we have

‖ΔB1‖1 ≤ 3
2
3 J

1
3
1 C

∗ 2
3

n λ
2
3
n

κ
4
3 (s)

,(37)

which coincides with inequality (19). By (16) we obtain

‖Δ‖
1
2
1 ≤

J∑
j=1

‖ΔAj‖
1
2
1 ≤ 4C∗

n‖ΔB1‖
1
2
1 .(38)

Then we get (20) immediately.
Furthermore, by (17) we have

1

n
‖XΔ‖22 ≤ 3λn

J1∑
j=1

‖ΔAj‖
1
2
1

≤ 3λnJ
1
2
1 ‖ΔB1‖

1
2
1

≤ 3
4
3 J

2
3
1 C

∗ 1
3

n λ
4
3
n

κ
2
3 (s)

,

which is in line with (18).

To prove (21), by the KKT conditions, for any β̂jk �=
0, j = 1, . . . , J, k = 1, . . . , pj we have

1

n
XT

jk(Y −Xβ̂) =
λn

2
√
β̂j1 + · · ·+ β̂jpj

.(39)

Thus by the definition of events H yields

1

n
XT

jkX(β∗ − β̂)− λn

2‖β̂Aj‖
1
2
1

+
λn

‖β∗
Aj

‖
1
2
1

=
λn

‖β∗
Aj

‖
1
2
1

− 1

n
XT

jkε ≥
λn

2m2
.

Then using the Cauchy-Schwarz inequality, on the event
H, it holds uniformly over {jk:β̂jk �= 0, j = 1, . . . , J, k =
1, . . . , pj} that

M(β̂) ≤ 2m2

λn

∑
jk∈J(β̂)

{
1

n
XT

jkX(β∗ − β̂)

− λn

2‖β̂Aj‖
1
2
1

+
λn

‖β∗
Aj

‖
1
2
1

}

≤ 2m2

λn

∑
jk∈J(β̂)

{
1

n
XT

jkXΔ+
λn

‖β∗
Aj

‖
1
2
1

}

≤ 2m2

λn

{√
M(β̂)

‖XTXΔ‖2
n

+
λn

m1
M(β̂)

}
.

Then we have

(1− λn

m1
)

√
M(β̂) ≤ 2m2

√
λmax√

nλn
‖XΔ‖2.(40)

After some computation results in (21) immediately.

Proof of Theory 3.4 As stated in Section 3. Since (ii)
follows from theorem 3, it suffices to prove (i). Applying the
Lemma 3 and theorem 3 yields

‖ΔB2‖
1
2
1 ≤

J∑
j=J1+1

‖ΔAj‖
1
2
1 ≤ 3

J1∑
j=1

‖ΔAj‖
1
2
1

≤ 3J
1
2
1 ‖ΔB1‖

1
2
1 ≤ Op

(
C

∗ 1
3

n λ
1
3
nJ

2
3
1

κ
2
3 (s)

)
,(41)

so that P(β̂B2 = 0) → 1.
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