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Normal mean-variance Lindley
Birnbaum-Saunders distribution

FARZANE HASHEMI, MEHRDAD NADERI*, AND AHAD JAMALIZADEH

The generalization of Birnbaum-Saunders (BS) distribu-
tion has recently received considerable attention to provide
accurate inferential results in dealing with survival data, re-
liability problems, fatigue life studies and hydrological data.
This paper introduces a new extension of the BS distribu-
tion based on the normal mean-variance mixture of Lind-
ley distribution. Since the proposed lifetime distribution can
take positive and negative skewness and can have decreas-
ing, increasing, upside-down bathtub, increasing-decreasing-
increasing and decreasing-increasing-decreasing hazard rate
functions, it may provide more flexible model than the ex-
isting extensions of BS distribution. Some properties of the
new distribution are derived and the computationally ana-
lytical EM-type algorithm is developed for computing max-
imum likelihood estimates. Finally, the performance of the
proposed methodology is illustrated through analyzing two
real data sets.
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1. INTRODUCTION

Among the lifetime models, the BS distribution [9] is per-
haps the most widely considered and precious distribution in
applied statistics. One of the main reasons for its importance
is that the BS distribution has the advantage of considering
the basic characteristics of the fatigue process. Moreover,
the BS distribution is closely related to the normal distribu-
tion through a simple stochastic representation. Specifically,
the random variable T is said to have a BS distribution with
the shape and scale parameters o and [, respectively, if it
can be generated by the following stochastic representation:

1) =" oy + oy ]

where Y has a standard normal distribution. It can be easily
seen that the probability density function (pdf) of T is given
by
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where ¢(-) is the pdf of the standard normal distribution,
a(t,a, 8) = (\/t/_ﬂ - \/ﬂ_/t)/a, and A(t, a, ) is the deriva-
tive of a(t,a, ) with respect to ¢. Although the BS dis-
tribution originally developed from a problem of material
fatigue [9], it is recently applied in various areas of science
and in diverse fields such as econometrics, biology, genetics,
and engineering. For instance, some applications of the BS
distribution were presented in [24, 31, 32, 6, 41].

The BS distribution is often criticized for its lack of
robustness against atypical observations exhibiting highly
skewness and heavy tail. Furthermore, the other major
weakness of the BS distribution relies on the fact that its
hazard rate function can only be upside-down bathtub-
shaped [23] and it can not accommodate monotone (in-
creasing or decreasing) or bathtub-shaped. This may cause
misleading inferential results in practical applications since
many real lifetime data exhibit monotone or bathtub-shaped
hazard rate function. To overcome these deficiencies, sev-
eral generalizations and extensions of the BS distribu-
tion have been recently introduced. For example, Corderio
and Lemonte [14] proposed the exponentiated generalized
BS distribution and studied its properties. Also, the five-
parameter McDonald-Birnbaum-Saunders distribution were
explored by Cordeiro et al. [13], which is an extension of
the S-Birnbaum-Saunders distribution [12]. Some other re-
cent works on extending BS distribution can be found in
[11, 15, 19, 30, 42].

Another important approach of generalizing BS distribu-
tion is to replace the standard normal variable Y in (1) by
other random variables followed by highly skewed and heavy
tailed distributions, or by replacing ¢(-) in (2) by other
pdf of asymmetric distributions. Based on this approach,
Diaz-Garcia and Leiva-Sanchez [17] introduced the gener-
alized Birnbaum-Saunders distribution through assuming
the general elliptical distributions. Considering the so-called
skew-normal (SN) distribution [3], Vilca-Labra and Leiva-
Sénchez [44] also proposed the skew-normal Birnbaum-
Saunders (SN-BS) distribution. Vilca et al. [45] studied the
SN-BS distribution properties and showed that the rang of
skewness and kurtosis of the new model is higher than the
BS distribution. Moreover, the skew-t Birnbaum-Saunders
(ST-BS) and skew-normal-¢ Birnbaum-Saunders (SNT-BS)
distributions were respectively introduced by Khosravi et al.
[22] and Jamalizadeh et al. [18] via replacing skew-t and
skew-normal-¢ distributions in (2).
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The class of normal mean-variance (NMV) mixture dis-
tribution [33] is an attractive alternate family of skewed
distributions which contains both symmetric and asymmet-
ric models as special cases. The class of NMV distribu-
tions have been recently considered as a good alternate for
adequately modeling financial data. For example, Aas [1]
demonstrated the superiority of two special cases of GH
distribution, namely normal inverse Gaussian and general-
ized hyperbolic skew-t distributions, in evaluating Value-at-
Risk (VaR) and Tail-Value-at-Risk (TVaR) measures. Bee
et al. [7] also developed three extensions of the expectation-
maximization (EM; [16]) type algorithm for obtaining max-
imum likelihood estimate of variance-Gamma distribution.
They showed that the VG distribution is flexible enough to
accommodate skewness and leptokurtosis in order to model-
ing log-returns of financial assets. Regarding possibly skewed
and heavy-tailed data, Naderi et al. [38] proposed the nor-
mal mean-variance mixture of Lindley (NMVL) distribution
and showed that the new model can be considered as a good
alternative to existing skewed distributions for accurate in-
ference. However, practical application of models with R
support to the data defined on RT may cause boundary
bias, allocation of probability mass outside the theoretical
support [43].

Considering the aforementioned properties of NMV and
NMVL distributions and some practical limitations of BS
model, the main objective of this paper is to introduce a
new extension of the BS distribution via assuming the pdf
of NMVL model in (2). We show that the proposed new
model, called the normal mean-variance Lindley Birnbaum-
Saunders distribution (NMVL-BS), has both monotonic and
non-monotonic hazard rate function and has wide range of
skewness and kurtosis. Also, we study some mathematical
properties of the NMVL-BS distribution. To compute maxi-
mum likelihood (ML) estimate of model parameters, the Ex-
pectation Conditional Maximization (ECM) algorithm [36]
is developed. Furthermore, we offer an information-based
method for obtaining the asymptotic standard errors of the
ML estimates. The validity of the proposed distribution in
evaluating two risk measures, VaR and TVaR, is illustrated
by analizing the fire loss data.

The rest of the paper is organised as follows. Section 2
provides a brief review of the NMVL distribution. In Section
3, the NMVL-BS distribution is introduced. Some mathe-
matical properties and special cases of the new model are
presented in Section 4. We also develop an ECM-type algo-
rithm for ML estimation and provide a general information-
based method for obtaining the asymptotic standard errors
of ML estimates in Section 5. Section 6 gives two appli-
cations on real data to illustrate the performance of the
proposed methodology. Two simulations are conducted, in
Section 7, to examine the effect of outliers on model selection
and to check the finite-sample property of ML estimates. We
close the paper with a short summary in Section 8.
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2. PRELIMINARY

A random variable X is followed by a generalized hyper-
bolic (GH) distribution if its pdf is given by

fGH(x;/’[’7)\7g27 f@XﬂP) = CeXp {(CU - /,L))\/O'Q}

X K05 (\/W +A%/0?) (x + 5(%%‘72))) /

(Vo o))

where (x,pu,\, k) € R* K,.(-) denotes the third kind of
the modified Bessel function with index &, §(z, u,0?) =

2
T —
( M) , the normalizing constant is
o

("/’/X)n/2(w + (A0)?)0-5—+
V2102 K, (\/IX)

and two parameters x,v are such that y > 0,9 > 0 if
k>0,v>0,x>0if k <0and x > 0,¢ > 0if Kk = 0.
An important property of the random variable X is that
it can be written as a function of normal distribution via
the normal mean-variance mixture representation. i.e., X
admits the following stochastic representation:

3)

where the random variable Z is normally distributed with
mean zero and variance o2, N(0,0?), and W is a positive
random variable, independent of Z, followed by the gener-
alized inverse Gaussian (GIG) distribution with the pdf as

C:

X =p+Wr+w'2z

K—1

11[} K/2 w
fare (WK, X, ) = (;) m

xexp{%l (wlx—f—ww)}, w > 0.

We write W ~ GIG(k,x,%) to indicate that the ran-
dom variable W follows GIG distribution with parameters
(k,X,v). A comprehensive survey of the GH and GIG dis-
tributions can be found in [33]. Using the law of iterative
expectations, the mean and variance of X can be respec-
tively obtained as

B(X) =+ MX) 2 Rien) (vX0),

Y
Var(X) :(%) %O-QR(H,l)(\/@) + 2 [(%)R(n,z)(M)
= () Buen (V)]

where R, q)(¢) = Kuta(c)/Ky(c).
The Lindley distribution was originally proposed by Lind-
ley [27] as an alternative distribution to model failure times



and has recently found several applications. A random vari-
able W is said to have a Lindley distribution, denoted by
Lindley(7), if it is specified by the pdf

2

fo(w;T)

—T+1(w+1)e , w>0, 7>0,
where 7 is a shape parameter. It follows immediately that
the pdf of W can be formulated by a mixture of the expo-
nential and gamma distributions with a mixing proportion
T/(T+1).

Consider Lindley(7) as a mixing variable for (3). This
gives rise to the NMVL distribution introduced by Naderi
et al. [38], denoted by X ~ NMVL(u, A, 02, 7), and the pdf
and corresponding cumulative distribution function (cdf) of
which are

T

fNMVL(x;H7 )‘70-257_) :mfGH(x?Ma /\,02, 17072T)
1
+ mfGH(l‘;/’(")\7o-2a270727)7
T
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where F_,(-) represents the cdf of GH distribution. The
notation X ~ NMVL(u, A, 02, 7) will be used if X followed
by the NMVL distribution.

3. THE NMVL-BS DISTRIBUTION

If Y ~ NMVL(0,\, 1,7) in (1), then we have a random
variable T following the NMVL-BS distribution. Readily ob-
served from (1) and (3), T' can be generated by the following
stochastic representation

(4)
2
T = g a(WAX+VWZ) + \/a2(W>\+ VIWZ)2 44|

where Z ~ N(0, 1), and independent of Z, W ~ Lindley(7).
This leads to obtain the cdf and pdf of T, respectively, as

(5)
Jamviss (L, B, A, T) :A(t’ «, ﬁ)fNMVL (a(t7 «, 5)7 0,A,1,7),
Fovviss (t5 a, B, A, T) =F v (a(t’ «, 6)’ 0,A, 1, T)a

where t,c, 8,7 > 0, A € R and a(t,a, 8) and A(t, o, §) are
defined in (2). The notation NMVL-BS(a, 8, A, 7) will be
used if T adopts the pdf (cdf) (5). Figure 1 displays some
graphical representations of (5). It is clear that the density
of NMVL-BS can take various shapes depending on its pa-
rameters. We can also see that the pdf (5) is both decreasing
and skewed function. The curves on Figure 1 show that the
skewness of NMVL-BS distribution is increased by increas-
ing both o and A. Moreover, for fixed o and A, the skewness
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Figure 1. The density plots of NMVL-BS distribution for
various parameters.

tends to negative values as 7 gets large values. Therefore,
the NMVL-BS distribution is flexible and the parameters A
and 7 have substantial effects on its skewness and kurtosis.
To illustrate the effects of shape parameters on the skew-
ness and kurtosis, we obtain the skewness and kurtosis of T,
respectively as

pi3 — 3papig + 203
Ve =

(p2 — pi)t®
and o, = Fa =+ 6pdps — 3u
- (2 — pi7)? ’
1

where p, = E(T") for r = 1,2,3,4. The closed form of p,
are given in Appendix A.

From (5), the hazard rate function of NMVL-BS distri-
bution is also given by

fNMVL-BS (t7 a, ﬂ7 )\’ T)

1- FNMVL-BS (t; a, B, A, T) '

H(t) =

Table 1 provides numerical values of v; and x; for var-
ious value of shape parameters. It can be observed from
Table 1 that the NMVL-BS distribution takes wide ranges
of skewness and kurtosis. Moreover, the NMVL-BS distri-
bution has negative skewness for both small values of «
and negative values of . The plots of hazard rate func-
tion for some parameter values are drawn in Figure 2. Since
the parameter (3 is a scale parameter, it does not change
the shape of the hazard rate function. It is evident that
the hazard rate function of the NMVL-BS distribution can
be decreasing, increasing, upside-down bathtub (when A
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Table 1. Value of skewness and kurtosis based on moments of the NMVL-BS(«, 8, A\, T) distribution when 8 = 1

T=1 T=2
Yt Kt Yt Kt
Al o X X —X X Y X Y X
0.00 0.05 0.3995 0.3995 2.6837 2.6837 0.2845 0.2845 2.7865 2.7865
0.10 0.8062 0.8062 3.7700 3.7700 0.5703 0.5703 3.3539 3.3539
0.25 2.0902 2.0902 11.9450 11.9450 1.4646 1.4646 7.4516 7.4516
0.50 4.0936 4.0936 37.1941 37.1941 3.0183 3.0183 22.6399 22.6399
0.75 5.4547 5.4547 61.1426 61.1426 4.3905 4.3905 43.1644 43.1644
1.00 6.2644 6.2644 77.5102 77.5102 5.4232 5.4232 62.1806 62.1806
0.05 0.05 0.2550 0.5435 2.5026 2.8898 0.1767 0.3921 2.6908 2.8963
0.10 0.6565 0.9549 3.3723 4.1987 0.4605 0.6797 3.1492 3.5745
0.25 1.9201 2.2564 10.6925 13.2330 1.3438 1.5843 6.8317 8.0965
0.50 3.9476 4.2279 35.2593 38.9944 2.8867 3.1462 21.2279 24.0513
0.75 5.3878 5.5098 60.2986 61.7788 4.2794 4.4952 41.5670 44.6853
1.00 6.2695 6.2519 78.1662 76.7267 5.3505 5.4891 61.0748 63.1686
0.20 0.05 -0.1601 0.9525 2.1168 3.6260 -0.1396 0.7061 2.4905 3.3016
0.10 0.2229 1.3759 2.3943 5.6210 0.1373 0.9984 2.6379 4.3175
0.25 1.4062 2.7163 7.2829 17.1688 0.9833 1.9307 5.1488 10.1467
0.50 3.4477 4.5595 28.8404 43.5043 2.4765 3.5034 17.0761 28.2019
0.75 5.1092 5.6146 56.3830 62.6369 3.9114 4.7712 36.3894 48.7463
1.00 6.2280 6.1812 79.0684 73.8809 5.0910 5.6494 57.0365 65.4672
0.50 0.05 -0.7726 1.5631 1.8692 5.2507 -0.6805 1.2409 2.4149 4.3158
0.10 -0.4285 2.0191 1.3262 8.6063 -0.4197 1.5435 2.0496 5.9986
0.25 0.5467 3.4155 2.6714 24.4193 0.3384 2.5289 2.6935 14.4664
0.50 2.3333 4.9500 15.8644 48.7758 1.6604 4.0804 9.8808 35.6074
0.75 4.2121 5.6437 42.6332 61.4332 3.0676 5.1629 25.2957 54.5709
1.00 5.8000 5.9722 73.6523 67.6893 4.3935 5.8321 46.0488 67.6233
1.00 0.05 -1.1283 2.0395 1.7124 7.3752 -1.1921 1.7779 2.6053 5.8988
0.10 -0.7989 2.6085 0.6475 12.9978 -0.9446 2.1186 1.7353 8.6436
0.25 -0.0472 4.0831 0.0612 33.1348 -0.3071 3.2252 0.7775 21.2636
0.50 1.0867 5.1617 3.7762 51.1508 0.6688 4.6842 2.9161 44.3560
0.75 2.5035 5.5138 17.3809 57.3694 1.7581 5.4804 10.5157 59.0625
1.00 4.2032 5.6564 44.7300 59.9051 2.9877 5.8990 25.0997 67.2161

is positive), increasing-decreasing-increasing or decreasing-
increasing-decreasing (as A tends to negative values). As a
result, the new extended BS distribution is quite flexible
and can be used effectively in analyzing left or right skewed
lifetime data that have a monotone as well as non-monotone
failure rates.

4. GENERAL PROPERTIES

In this section, some properties of the NMVL-BS dis-
tribution are studied. As a first result, the following the-
orem represents a hierarchical stochastic representation of
NMVL-BS distribution which is useful for implementing the
ECM algorithm discussed in the next section.

Theorem 4.1. Let T ~ NMVL-BS(a,8,A\,7) and W ~
Lindley(t), then the distribution of T given W = w s

T|W =w ~ EBS(a\/E,B,Q, W w, O) ,
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where EBS denotes the extended BS distribution introduced
by Leiva et al. [25].

Proof. The proof is straightforward through using (4) and
the definition of EBS distribution. O

Proposition 4.2. Let a random wariable T — ~

NMVL-BS(a, B, A\, 7). Then:

i) T=' ~ NMVL-BS(a,, 371, A\, 7).
it) T ~ NMVL-BS(a, cB8, A\, 7), for any constant ¢ > 0.
it1) It can be shown that

T B
\/; _ \/;] ~ NMVL(0,\, 1, 7).

iv) The random variable T belongs to the class of scale miz-
ture of normal Birnbaum-Saunders distributions [4], as
A—=0.

X =

1
«a
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Figure 2. The plot of NMVL-BS hazard rate function for
some parameter values; 3 = 5.

Proof. Parts (i) and (ii) are directly obtained from the
change-of-variable method. The other parts can be easily
proved by the mathematical works. O

The NMVL-BS quantile function can be easily deter-
mined from part (ii7) of Proposition (4.2) as

Q,(u) = g [ozFfl(u) + vV a2F~1(u)? —|—4]27 u € (0,1),

where F'~!(u) is the quantile function of NMVL(0, A, 1, 7). It
is interesting to point out that the quantile function (6) can
be used as a good alternative to generate a random sample
from NMVL-BS(«, 3, A\, 7). It is also possible to investigate
the effects of the additional shape parameters A\ and 7 on
the skewness and kurtosis of the NMVL-BS distribution.

It is well-known that the classical kurtosis measure may
tends to infinity when the underline distribution is heavy-
tailed. Thus, the classical kurtosis measure becomes unin-
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Figure 3. Plots of the Bowley skewness (B) the Moors
kurtosis (M) as functions of & and X for § = 1,7 = 0.5.
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Figure 4. Plots of the Bowley skewness (B) the Moors
kurtosis (M) as functions of o and \ for § = 1,7 = 1.5.

formative precisely when it needs to be. To deal with the in-
finity problem of asymmetry measure, the Bowley skewness
(B) [21] and the Moors kurtosis (M) [37] are one of the earli-
est skewness and kurtosis measures which also exist even for
distributions without moments. The Bowley skewness and
the Moors kurtosis measures are less sensitive to outliers. In
addition, M is not sensitive to variations of the values in
the tails or to variations of the values around the median
since it is defined based on the quantiles. For the NMVL-BS
distribution, B and M are respectively defined as

Q- (3/4) + Q. (1/4) — 2Q,.(1/2)
Qr(3/4) — Q. (1/4) ’
Qr(3/8) —Q,(1/8) + Q. (7/8) — @,(5/8)
Qr(3/4) — Q-(2/8) '

Figures 3 and 4 demonstrate the form of measures B and
M as functions of three shape parameters. Form the quan-
tile function (6), it is clear that 8 has not an effect on the
measures B and M. The plots of B and M reveal that the
skewness and kurtosis of the proposed distribution are sub-
stantially depend on the all of the shape parameters.

In the following theorem, we present a transformation re-
sult for the random variable T" with NMVL-BS distribution
which can be used to construct a linear regression model
by assuming the NMVL-BS distribution for the unobserved
error terms.

Theorem 4.3. Let T ~ NMVL-BS(a, B, A\, 7). Then
the random wvariable Y = log(T), called the Log-NMVL

B:

M:

NMVL-BS distribution 589



Birnbaum-Saunders distribution, has a following pdf:
fy (o, A 7o) = Uy, o, ) fuan (u(y’ a, (1); 0, A, 1,7),

where p = log(p),
2 Yy—H
U =—cosh | =——
(y, @, p) == cos ( 5 )
and u(y,« ):gsinh y—r
) 7” a 2 *

Proof. The theorem is proved through using the change-of-
variable method. O

Consequently, the following theorem is established, which
is useful for the calculation of some conditional expectations
involved in the proposed ECM algorithm.

Theorem 4.4. Let W ~ Lindley(t) and T ~
NMVL-BS(a, B, A\, 7). Then, the conditional distribution of
W given T = t, obtained by Bayes’ rule, is

fW\T:t (w; 1, A, 0_2’ T) = W(ﬂf(u(;(w; 0.5, x",¢")
+ (1 - W(t))fcm(w§ 1.5, x%, W), w >0,

where x* = a®(t, o, B), ¥* = 27 + A2, and
m(t) =7 foy (alt,a, 8); 0,7, 1,1,0,27) /

(TfGH(a(t, a,$);0,A,1,1,0,27)
+ fonlalt @, 8); 0, 1,2,0,%)).

Moreover, forr =+1,42, ...,

porrir=0= (%) (xR0 (ViF)
+ (1 =7(t)R1s, (v X*i/}*) )

5. PARAMETER ESTIMATION VIA ECM
ALGORITHM

In this section, we demonstrate how to carry out the
ECM algorithm to compute ML estimation of the proposed
NMVL-BS distribution. The ECM algorithm is a commonly
used optimization strategy to obtain ML estimates in incom-
plete data problems. This iterative algorithm is a variant of
the EM algorithm with the maximization (M) step of EM re-
placed by a sequence of computationally simpler conditional
maximization (CM) steps.

Consider n independent random variables T =
(T1,...,T,,) " which are followed by a NMVL-BS distribu-
tion with unknown parameter vector 8 = (a, 5, A, 7). So,
the log-likelihood function for a given set of observed data

(7)
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t=(t1,...,t,) " is given by

LO[t) = 108 frnrynps (i, B, A, 7).

i=1

(8)

Although the ML estimator of 6 is theoretically obtained
by solving @ = argmaxg £(0|t), a direct maximization of
(8) can be computationally problematic, since its derivatives
with respect to parameters are difficult to compute. In order
to apply the ECM algorithm in the NMVL-BS distribution,
the hierarchical representation of (8) obtained by theorem
4.1 is

E}Wl = w; ~ EBS(OL\/E7/B7 2a _A\/Ea 0)7

9) W; ~ Lindley(7).

The hierarchical representation (9) leads to the complete-
data log-likelihood function for 8 = («, 8, A, 7) associated
with the observed responses ¢t = (t1,...,t,) and hidden
variables w = (w1, ..., wn)T, omitting additive constants, as

0e(0) = log f,,, (tilwi, 0, B,A) + > log f,, (wi;7)
=1

i=1

(10) =L (a, B, At, W) + Lea(T|W),

where £eo(7|w) = nlog (11—27) — Ty w;, and

Cer(a, B, A | £, w) = — nlog(a) — glog(ﬂ) +3 log(t: + )
=1

1 1/t B
—— Yy —(Z24+2-2
20’2 Wy (ﬁ—’_tz )

i=1
P A
i=1 '

in which (¢, 8) = a(t, 1, B).

The ECM algorithm for ML estimation of the NMVL-BS
model can be finally summarized through the following two
iterative steps.

e E-step: At iteration k, the so-called Q-function, de-
fined as the conditional expectation of the complete
data log-likelihood function (10) evaluated at %), is
computed as

(1]‘) Q(e | é(k)) = Ql(aaﬂaA | é(k)) +Q2(T | é(k))7

where for the conditional expectations ﬁ)gk)
E (WilT; = 1:,0®), and ") = B (W, !|T; =t

(2] é(k))
calculated by using (7) in Proposition 4.2,

Qu(.,1 6%) = — nlog(a) — 7 log(8)

+ Z log(t; + B)

=1



1=1
)\2 n A(k:) A n
- 7 4 w; + azg(tlaﬁ)7
i=1 1=1
Qu(r|0) =ntos () =3l
2 - © 1+T Tz 1

e CM-steps: Let S S
RS e 0% FXiaa, a®
}L 21:1 wi ) and £k = LS &(ti, BR). For updat-
ing @+ maximize (11) over a, A and 7. This leads
to the following CM estimators:

~(k
% E?:1 tiug )

(k) 72(k
G20+ _ Su + B R  of — ¢ )’
5( w(k)
ey (L=a@®) + /(@0 —1)% + 80"
T ) ’
(k1) _ £®
d(kJrl)w(k)

Since there is no closed-form solution for B (41 we up-
date § by maximizing the constrained actual observed
Q-function. So, we have

5(k+1) — argmgmel( (k+1) 3 A k+1)|t w(k))

The above procedure is iterated until a suitable conver-
gence rule is satisfied, e.g. |£(é(k+1)) —f(é(k))| is less than a
user-specified tolerance where £(§%)) is the maximized log-
likelihood function at iteration k. As an alternative stopping
criterion, we shall use the Aitken acceleration [2] method to
avoid an indication of lack of progress of the algorithm [34].
Following [10, 28], the ECM algorithm can be considered to
have reached convergence when £ (6*+1)) — ¢(6*)) <
where the asymptotic estimate of the log-likelihood at 1ter—
ation £+ 1 is

~ ~ 1 ~ A
(k+1) (k+1) (k+1)y _ (k)
Lo (04D = (00 + {64+ — 4(6®) |
in which
() _ LOFD) — 1(6®)
UOW) — (61

In our study, the tolerance ¢ is considered as 107°.

The EM algorithm may not give maximum global solu-
tion as the initial value (©(©)) is far from the real parameter
value. Therefore, the chosen starting points play an impor-
tant role in parameter estimation. We create the initial value
& and B(O) by, for example, the modified moment esti-
mates proposed by Ng et al. [39], and A0 =0 and 7 =1
[38].

To compute the asymptotic covariance of the ML esti-
mate, 6 = (&, 37 A, 7), we use the information-based method
suggested by Meilijson [35]. Formally, the empirical informa-
tion matrix is defined as

(12) I.(0]t) = Zn:s (t;10)s' (t;]0) — —S(t|0)ST(t|0)

where S(t | 8) = Z?:1 s(t;]0), and s(t; | @) are individual
scores which can be determined from the result of Louis [29]

as
‘tj,a) .

Substituting the ML estimates 6 into (12) gives

of(t10)
00

S(tj|0): :E(8£C<6|tj7wj)

00

n

0|t:Z] )

Jj=1

(13)

where §; = (8.4,5;,8,5.x,8;,-) . The explicit expressions

for the elements of §; are

2 1

i, =2 — —— —ab;
TR 147 b

§j))\ :a(tj,d,ﬁ) —/A\’UA)J',
a _ AJ J ﬁ 1 5‘ A QA
Sj,a —$(E + t_ -2) - 2~ Ea‘(tj?a’ﬁ)v

" 1 1 ’LL]' (1 tj)
Sjg=—""F%— —%x — —= —_ — =
T rh 2 202\t

As a result, the standard errors of 6 are taken as the square
roots of the diagonal elements of the inverse of (13).

A
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6. DATA ANALYSIS

In this section, the proposed model is applied to two real
data for illustrative purposes. For the sake of model com-
parison, we also consider BS, SN-BS, ST-BS, SNT-BS and
student-¢-BS (T-BS) distributions. The models in competi-
tion are compared using the AIC (Akaike Information Cri-
terion), BIC (Bayesian Information Criterion) and HQIC
(Hannan-Quinn Information Criterion), criteria defined as

AIC =2m — 20, BIC =mlogn — 20x,
HQIC = mloglogn — 24 1,.x,
where m and n are the number of free parameters and
sample size, respectively, and f,, is the maximized log-

likelihood value. It should be note that models with lower
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Table 2. ML estimates and standard errors of the fitted models on 51

BS SN-BS T-BS ST-BS SNT-BS NMVL-BS
parameter MLE SE MLE SE MLE SE MLE SE MLE SE MLE SE
a 0.565  0.073 0.619  0.107 0.431  0.096 0.451  0.145 0.654  0.094 0.855  0.163
B 8.042  0.827 6.395  1.546 8.978  0.928 14.515 1.436 5.614  0.216 14.180 0.027
A 0.558  0.437 -2.130  1.213 51.562  8.955 -4.261  0.447
v 4.301  3.455 2.011  0.829 0.221  0.311
T 7172 1.124
Lmax -96.655 -96.265 -95.728 -92.851 -94.463 -90.855
AIC 197.309 198.532 197.456 193.702 196.926 189.709
BIC 200.303 203.021 201.946 199.688 202.912 195.695
HQIC 195.813 196.287 195.212 190.709 193.933 186.716
LR-Test 11.600 10.820 9.746 3.992 7.216
2log(B12)  4.607 7.323 6.249 3.992 7.216
KS-Test 0.174 0.169 0.120 0.122 0.680 0.058
P-value 0.245 0.263 0.682 0.674 < 0.001 0.989

flood stage data

Boxplot Adjusted Boxplot

Figure 5. The standard box plot (left panel), adjusted
box-plot (mid panel) and TTT plot (right panel) for the flood
stage data.

values of AIC, BIC or HQIC are considered more prefer-
able. We also apply formal goodness-of-fit test, Kolmogorov-
Smirnov (K-S), in order to verify how well the models de-
scribes data. In general, the smaller the values of K-S statis-
tics, the better the fit to the data. Moreover, the reported
p-value of K-S test can be used as a similarity assessment of
the experimental data against the fitted distribution.

6.1 Application on the flood stage data

The first data set (S1) considered here is on the flood
stage for two stations on the Fox River in Wisconsin. The
data were originally studied by Kappenman [20] and also
analyzed by Barbiero [5].

The standard box, adjusted box and TTT (total time
on test) plots for data are presented in Figure 5. The stan-
dard box plot indicates that there are no atypical observa-
tions on the both tails, however this plot was constructed for
symmetric data. By drawing the adjusted box-plot, we can
observe that there exist some atypical observations on the
right-tail. It is also worthwhile to note that the TTT plot
is a straight diagonal for constant failure rate, and convex
(concave) for decreasing (increasing) ones. It is also first con-
cave (convex) and then convex (concave) if the failure rate
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is upside-down bathtub (bathtub) shaped. The TTT plot of
S1 demonstrates that these data seem to have a hazard rate
function that is coherent with that of the distribution with
a concave hazard rate function. Therefore, these results pro-
vide diverse evidences for proposing the NMVL-BS model
in order to describe the flood stage data.

Table 2 lists the ML results obtained by fitting the six
considered models. Results based on AIC, BIC and HQIC
indicate that the NMVL-BS distribution provides an im-
proved fit of the data over five competitors. Due to the
effect of sample size on the mentioned measures, we use
Bayes factor, Boi, and the standard likelihood ratio (LR)
tests [45] in order to highlight differences between the fit-
ted models. These tests are applied to assay the hypothesis
Hy: data are given from NMVL-BS distribution against H;:
data have arisen under one of the five competitor distribu-
tions. Specifically, for given priori probabilities IP;(0) under
H; (j =0,1), the factor By; is defined by

P(t|Ho) [ L(t|Ho)Po(0)dO

Bov= 5, = TolH) Py (0)d0"

where ((t|H;) for j = 0,1, represents the log-likelihood un-
der the model H;. Following [40], the By can be approxi-
mated by

2log(Bo1) & LR — (mo — ma)log(n),

where LR = 2(¢(t|Hy) — ¢(t|Hp)) is the standard likelihood
ratio statistic and m; is a number of free parameters un-
der H;. Using the results of LR and Bayes factor tests in
Table 2 and interpretation of Bayes factor test described in
Table 10 of Vilca et al. [45], we have a positive evidence
to reject the alternative hypotheses in favor of the NMVL-
BS distribution. It means that the NMVL-BS distribution
is significantly better than the other distributions for flood
stage data. The reported p-values of K-S test also suggests
strongly that S1 follow a NMVL-BS distribution. Finally,



Table 3. ML estimates and standard errors of the fitted models on S2

parameter

BS

SN-BS

T-BS

ST-BS

SNT-BS

NMVL-BS

MLE

SE

MLE

SE

MLE

SE

MLE

SE

MLE

SE

MLE

SE

0.150
8.151

0.004
0.046

0.223
6.922
3.577

0.007
0.039
0.303

0.078
7.815

1.939

0.069
0.179

0.458

0.112
7.227
2.295
2.244

0.099
0.219
0.555
0.555

0.217
6.977
7.838
1.718

0.007
0.038
1.810
0.480

0.297
7.515
1.628

6.753

0.001
0.042
0.023

0.063

R >R

-1133.024
2270.048
2281.064
2270.081

-1054.357
2114.714
2131.239
2114.762

-1066.965
2139.930
2156.455
2139.978

émax

BIC
HQIC

-1013.124
2034.248
2056.281
2034.312

-1042.363
2092.726
2114.759

2092.79

-1004.121
2016.242
2038.275
2016.306

Kaplan—Meier Curve
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Figure 6. The Kaplan-Meier (top panel) curve and pp-plots
for NMVL-BS, ST-BS and T-BS (down panel) of S1.

in order to highlight the outperformance of NMVL-BS dis-
tribution on S1, the Kaplan-Meier carve and pp-plots of the
three best models are drawn in Figure 6. The results of these
plots are consistent with those obtained through the AIC,
BIC, HQIC, and Bayes factor, LR and K-S tests.

6.2 Application on the fire loss data

In the second experimental real analysis, we consider
fire insurance claim data set, called beaonre in the R
package CASdatasets, which concerns claim information
from office buildings. The variable log-SumlInsured (S2)
with size 1823 is used for our illustrative purpose. We fit

the six considered distribution on the data. Table 3 dis-
plays the ML results obtained by fitting the six consid-
ered models. Results based on AIC, BIC, and HQIC sug-
gest that the NMVL-BS distribution provides the best fit
for S2.

The evaluation of risk is a major subject for the investors
who are holding a position on portfolios of risky assets. So,
the risk measures and their theories play an important role
in estimating financial losses. Among the several purposes of
the risk measure, the most important ones in practice are:
determination of risk capital and capital adequacy, man-
agement tool and insurance premiums [33]. To attain these
purposes, statistical tools play a substantial role since most
modern measures of the risk in a portfolio are statistical
quantities. For the sake of model comparison in risk mea-
sure theory, we compute VaR and TVaR measures. The VaR
is a widely risk measure used in capital markets. For a given
level g, the VaR is defined as the g-quantile of the distri-
bution. i.e. VaR, = inf{z|F(z) > ¢}. Since the VaR is
not a coherence measure (satisfying the monotonicity, sub-
additivity, homogeneity, and translational invariance prop-
erties), an alternative risk measure, TVaR is defined that
gives the expected amount of extreme loss under a given
risk. Theoretically, the TVaR of a random variable X for a
given level g is

TVaR, = E[X|X > VaR,).

Based on the result of fitting distributions, we compare the
six considered models in terms of its accuracy to predict
VaR and TVaR. Figure 7 shows the empirical VaR and
TVaR along with their predicted values obtained from the
six BS-kind distributions with levels ranging between 50%
and 100%. It can be seen that both NMVL-BS and ST-BS
distributions predict the VaR and TVaR much better than
the other models.

To assess relative changes on the theoretical prediction,
we also calculate the mean absolute relative error (MARE)
defined as

Mg

A 1 M — M;
=1

NMVL-BS distribution 593



Table 4. MARE of VaR and TVaR (in %)

Risk measures BS T-BS SN-BS ST-BS SNT-BS NMVL-BS
VaR 4.6408 3.6572 3.8417 2.6395 4.1031 1.3453
TVaR 3.2574 2.0749 2.1344 1.2395 2.5361 0.7105
Table 5. Simulation results for assessing robustness of the model on outlier with various sample sizes
noises n Criteria BS T-BS SN-BS SNT-BS ST-BS NMVL-BS
2% 250 AIC 1298.5 1294.1 1278.2 1254.9 1253.0 1247.4
BIC 1305.6 1304.7 1288.8 1269.0 1267.2 1261.6
500 AIC 2585.4 2575.3 2542.8 2496.0 2492.2 2481.1
BIC 2593.8 2588.0 2555.5 2512.9 2509.1 2498.1
1000 AIC 5161.6 5140.2 5072.7 4976.5 4967.6 4945.9
BIC 5171.4 5155.0 5087.5 4996.2 4987.3 4965.6
2000 AIC 10310.6 10269.8 10135.0 9947.1 9926.4 9886.0
BIC 10321.8 10286.7 10151.9 9969.6 9948.9 9908.5
4% 250 AIC 1327.2 1323.3 1306.7 1283.2 1279.8 1275.4
BIC 1334.3 1333.9 1317.4 1297.4 1294.0 1289.6
500 AIC 2636.6 2627.6 2593.7 2546.5 2542.8 2530.8
BIC 2645.1 2640.3 2606.5 2563.5 2559.8 2547.8
1000 AIC 5264.0 5241.3 5173.1 5075.4 5057.8 5044.2
BIC 5273.8 5256.2 5187.9 5095.2 5077.6 5063.9
2000 AIC 10508.9 10464.5 10326.6 10132.7 10111.0 10071.4
BIC 10520.0 10481.4 10343.5 10155.3 10130.8 10093.9
P — e R method. The first simulation has been done aims at showing
ol EZ?SBS T the robustness on estimating the NMVL-BS distribution in
TR "1 v which some levels of outlier are added to the simulated data.
E g T In the second simulation, we demonstrate if the proposed es-
timating approach can provide good asymptotic properties.
. fsmer 7.1 Robustness of the NMVL-BS model
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Figure 7. 52 data: model comparison in terms of VaR and
TVaR.

where n, represents the number of level considered on unit

interval, M and M are the empirical and its corresponding
predicted risk measures. The results summarized in Table 4
indicate that the NMVL-BS model outperforms the others
in empirical estimation of VaR and TVaR since it has less
amount of MARE.

7. SIMULATION ANALYSIS

In this section, two simulations are carried out to ex-
amine the performance of our model and its computational
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In this experiment, 500 Monte Carlo samples from
BS(1,3) distribution are simulated for various sample size
n = 250,500,1000, and 2000. In each replication, we also
add some outlier points with two levels 2% and 4% which
are generated uniformly on [10,20]. Then, the parameter
estimates are computed under BS, T-BS, SN-BS, SNT-BS,
ST-BS and NMVL-BS distributions with two contamina-
tions.

Table 5 summarizes the average of AIC and BIC. It can
be seen that the influence of the outliers in model section
criteria increases as the level of noisy points increase for all
models. It is clear that the NMVL-BS model is less adversely
affected by outliers, indicating that the proposed distribu-
tion is robust against the presence of outlier observations.
On the other hand, it seems that an extreme observation is
much more effective on the BS distribution, reflecting a lack
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Figure 8. A comparison of AR. bias and MSE in parameter
estimates for various sample sizes and parameters.

of enough ability to reduce the influence of outliers for BS
model.

7.2 Finite sample properties of ML
estimates

The second simulation is conducted to investigate
the finite-sample properties of the ML parameter es-
timates. We generate synthetic samples of size n =
25,50, 100, 200,400,800 and 1600 in each 500 replications
from the NMVL-BS distribution with true considered pa-
rameters = f =1and A = 7 = 0.5,2. In order to examine
the accuracies of the ML estimates, the absolute relative
bias (AR. bias) and the root mean square error (MSE) are
computed as

500

. 1
AR.bias = ﬁ Z

i=1

0, — 0
0

’ and

500

1 - 1 A 2
MSE == > (0~ 0)° + [W;@ —0] .

=1

where 6; denotes the parameter estimates of a, 8, A and 7
obtained from the ith replication. Figures 8 displays a graph-
ical representation of the AR. bias and the MSE of the four
parameter estimates as a function of sample size n. Clearly,
both magnitudes of AR. bias and MSE values converge rea-
sonably well toward zero by increasing the sample size. It
shows that the ML estimates obtained via the ECM algo-
rithm are empirically consistent.

8. CONCLUSION

In this paper, we have dealt with the new extension
of BS distribution through considering the NMVL distri-
bution in (1). The proposed model, called the NMVL-
BS distribution, has one scale parameter and three shape
parameters which can takes various forms depending on
them. We have showed that the NMVL-BS distribution
is a positive as well as negative skewed distribution that
can take wide range of skewness and kurtosis. It is in-
teresting to point out that the hazard rate function of
NMVL-BS distribution can takes decreasing, increasing,
upside-down bathtub, increasing-decreasing-increasing or
decreasing-increasing-decreasing forms allow us to use it in
practical analysis. Some properties of the NMVL-BS distri-
bution have been studied and a convenient hierarchical rep-
resentation for the NMVL-BS distribution has presented.
The feasible ECM algorithm is developed for computing
maximum likelihood estimates. Numerical results suggest
that the proposed NMVL-BS distribution can be served as
an alternative model to the BS, T-BS, SN-BS, ST-BS and
SNT-BS distributions for modeling positive experimental
data.

The utility of current work can be extended to explore the
multivariate case [26]. In addition, the finite mixture model
based on the NMVL-BS distribution can be constructed
through applying the k-bumps algorithm as an initializa-
tion strategy in the EM algorithm [8].

APPENDIX A

Let T ~ NMVL-BS(«, 8, A\, 7) and Y ~ NMVL(0, \, 1, 7).
In order to calculate skewness and kurtosis of T', by (4) and
simple mathematical work, we have

B(T) =560’ E(Y?) + 1+ JagVi,
B(T?) :%5204413(1/4) +14a28(1+ B)E(Y?)
+aBVi + %a?’ﬁzvs,

1 1
B(T®) =14 5% BY®) + La® Vs + 2ot 52(6 + D E(YV")
3 3 3
+ §a3ﬂ2(6+ V3 +3a”B(8+ 5)E(W) + 5BV,
E(T*) =1+ %ﬁ“aSE(Ys) + %B‘*oﬂw - 53a6(; +B)E(Y")
+ 324 B)Vs + B2t (3+ 4B+ B E(YH)
+2a°B2(1+ B)Vs + 60> B2 E(Y?),
where V., = E(Y"Va?Y?2+4), for r = 1,3,5,7 which are
calculated numerically. Furthermore, since YW = w ~
N(Aw,w), we have
E(Y?) =XN2E(W?)+ E(W),
E(Y*Y) =NEW*) + 6\ E(W?)+3E(W?),
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E(Y®) =XSE(WC) 4+ 15X BE(W5) + 45 2 E(W*) + 15B(W?3),
E(Y®) =)A3E(W8) + 28X E(WT) + 210\*E(WS)
+ 420\ E(W5) + 105 E(W*),

where E(W™) = %
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