
Statistics and Its Interface Volume 12 (2019) 511–526

Lower-level mediation with binary measures
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In recent literature, researchers have put a lot of time and
effort in expanding mediation to multilevel settings. Unfor-
tunately, such extensions are often limited to continuous set-
tings, whereas research on multilevel mediation with binary
mediators and outcomes remains rather sparse. Addition-
ally, in lower-level mediation, the effect of the lower-level
mediator on the outcome may oftentimes be confounded by
an (un)measured upper-level variable. When such confound-
ing is left unaddressed, the effect of the mediator, and hence
the causal mediation effects themselves, will be estimated
with bias. In linear settings, bias due to unmeasured addi-
tive upper-level confounding is often remedied by separating
the effect of the mediator into a within- and between-cluster
component. However, this solution is no longer valid when
considering binary outcome measures. To assess the severity
of this transgression, we aim to tackle lower-level mediation
in binary settings from a counterfactual point of view, with
a special focus on small clusters. We do this by 1) provid-
ing non-parametrical identification assumptions of the di-
rect and indirect effect, 2) parametrically identifying these
effects based on appropriate modelling equations, 3) consid-
ering estimation models for the mediator and the outcome,
and 4) estimating the causal effects through an imputation
algorithm that samples counterfactuals. Since steps three
and four can be completed in various ways, we compare the
performance of three different estimation models (an uncen-
tered and centred separate modelling method, and a joint
approach), and two different ways of predicting random ef-
fects (marginally versus conditionally). Employing simula-
tions, we observe that the joint approach combined with a
marginal generation of random effects performs best when
sample sizes are sufficiently large. Additionally, we illustrate
our findings with data from a crossover study that assesses
the impact of experimentally induced goal conflict on the
helping behaviour of partners of individuals with chronic
pain.

Keywords and phrases: Multilevel mediation, Binary
measures, Unmeasured confounders, Counterfactuals.

1. INTRODUCTION

We must acknowledge that clustered or multilevel data
have become protagonists in numerous research fields. In
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this type of data, we always encounter a specific kind of hier-
archy, where usually, two levels can be distinguished: lower-
level measurements are nested within clusters or upper-
level units. Examples of such hierarchically nested entities
consist of relatives nested within a family, students within
classrooms, or measurement moments within an individual.
These lower-level measures show dependencies amongst each
other, as measures arising from within a family, a classroom,
or an individual, will be more alike than data arising from
two random units. Analyses that either ignore these depen-
dencies or inappropriately aggregate the data across levels,
will often lead to invalid inferences (Snijders and Bosker,
1999; Raudenbush and Bryk, 2002). Over the course of
decades, two major frameworks have been put forward that
are able to deal with such correlations: Mixed-effect Models
(MM) and Structural Equation Models (SEM). Although
SEM holds several advantages over its MM counterpart,
both frameworks turn out to be entirely equivalent when
considering balanced multilevel data within a random in-
tercept model (Rovine and Molenaar, 2000; Curran, 2003;
Bauer, 2003).

Taking the usefulness of multilevel designs into account,
expanding mediation analysis to hierarchical settings has
become an increasingly popular topic (Bauer et al., 2006;
VanderWeele and Vansteelandt, 2009; Zhang et al., 2009;
Preacher et al., 2010; Preacher, 2015; Tofighi and Kelley,
2016). When looking at the effect of a randomised expo-
sure that varies within clusters, researchers often consider
a design where the mediator and outcome too, are mea-
sured at the lower-level; this type of mediation is appro-
priately termed lower-level mediation. Until recently, the
literature on lower-level mediation has almost exclusively
relied on extending the product-of-coefficients approach to
multilevel settings (Judd et al., 2001; Kenny et al., 2003;
Bauer et al., 2006; Preacher et al., 2010). Unfortunately,
this procedure does not offer a general definition of the
causal effects that is applicable beyond the few (linear)
statistical models considered. Furthermore, these exten-
sions have mostly been executed without due attention to
the interpretation of the effects as causal parameters, nor
to the underlying assumptions needed to identify these.
Some researchers have tried to surmount these shortcom-
ings by tackling multilevel mediation from a counterfac-
tual perspective (Imai et al., 2010a; VanderWeele, 2010b,a;
Josephy et al., 2015). This has proven very fruitful, as
this framework is able to explicate the assumptions un-
derlying multilevel mediation, put forward a general (non-
parametrical) definition of the causal effects, as well as
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identify these effects based on appropriate (parametrical)
models (Pearl, 2001; VanderWeele and Vansteelandt, 2009;
Imai et al., 2010a; VanderWeele, 2010b; Pearl, 2012).

1.1 Estimation of the causal mediation
effects in four steps

When relying on the counterfactual framework to unbias-
edly estimate the causal mediation effects, we need to con-
sider four consecutive steps.

In a first step, we define non-parametrical expressions
for the direct and indirect effect. For a continuous outcome,
this is usually achieved on a linear scale (VanderWeele,
2010b; Josephy et al., 2015), while a linear-, risk ratio-
(RR), and odds ratio (OR)-type definition have been used
for categorical measures (Imai et al., 2010b; VanderWeele,
2013; Loeys et al., 2013; Bind et al., 2016). We will focus
on deriving these expressions on a linear scale.

As a second part of this step, the assumptions needed to
identify the above-mentioned effects are recited. One very
important assumption in lower-level mediation studies en-
tails the absence of unmeasured upper-level confounders
of the mediator-outcome relationship. This type of con-
founding (also labeled upper-level endogeneity, Wooldridge
(2010)), is very common in many contexts and may lead
to serious bias in the estimation of the intervening effect.
Hence, we will place emphasis on this assumption in partic-
ular.

In a second step, we identify parametrical expressions
for the causal mediation effects based on modelling equa-
tions that satisfy the assumptions explicated in the pre-
vious step. Traditionally, most such attempts were made
with a continuous scaled mediator and outcome in mind
(VanderWeele, 2010b; Josephy et al., 2015).

In the third step, we require unbiased and efficient es-
timation of the regression coefficients of the mediator and
outcome models. This unbiasedness depends upon the as-
sumptions mentioned during the first step of this process;
if, for example, the assumption of ‘no upper-level endogene-
ity of the mediator-outcome relation’ is not met, a tra-
ditional multilevel model for the outcome (with the me-
diator as a predictor) will estimate its regression coeffi-
cients with bias (Zhang et al., 2009; Josephy et al., 2015). In
two-level linear settings, Centering Within-Clusters (CWC),
was proposed to solve such potential confounding issues
(Neuhaus and Kalbfleisch, 1998). Unfortunately, when the
outcome is binary, CWC no longer yields proper param-
eter estimates, although the resulting bias may often be
small (Goetgeluk and Vansteelandt, 2008; Brumback et al.,
2010).

Alternatively, the mediator and outcome can also be
modelled jointly under a slightly more stringent set of con-
ditions (Bauer et al., 2006; Josephy et al., 2015). Such a
joint modelling approach allows for unmeasured cluster-
specific common causes of the mediator and the outcome,

by estimating a covariance term between both random in-
tercepts (Bauer et al., 2006; Skrondal and Rabe-Hesketh,
2014). Consequently, we aim to focus on joint modelling in
order to confront issues with upper-level endogeneity of the
mediator-outcome relation.

Finally, a fourth step aims to estimate the causal medi-
ation effects themselves. Typically, the expressions derived
during the second step are conditional on the cluster-specific
random effects. In linear settings, these effects cancel each
other out when the expressions are defined on a difference-
scale, but unfortunately, this is no longer the case with a
binary outcome. Consequently, if we want to obtain ex-
pressions for the mediation effects that are marginalised
over the random effects, we need to sample these effects
from their assumed distribution and average them out. Re-
searchers can rely on two possible mechanisms for the sam-
pling of random effects: a first possibility draws the ran-
dom effect from a marginal zero-centred distribution (i.e.,
the marginal sampling (co)variances), while a second re-
lies on a distribution that is conditional on the cluster
identifier (i.e., the posterior (co)variances) (Tingley et al.,
2014). Since it has been stated that the latter might un-
derestimate the variance of the random effects distribution
(Skrondal and Rabe-Hesketh, 2004), we aim to quantify and
compare the performance of both methods.

1.2 Our work

In summary, we aim to investigate which multilevel
estimation models are able to effectively eliminate un-
measured upper-level confounding of a binary media-
tor and outcome. In addition, we will focus on a ran-
domised binary exposure that varies within small clus-
ters, as limited group sizes have proven difficult for
the available estimation techniques (Breslow and Clayton,
1993; Rodriguez and Goldman, 1995). These settings are
often encountered in practice, e.g. when studying dyads
(McMahon et al., 2003), twins (Ortqvist et al., 2009), or few
repeated measures within each individual (Senn, 2002). On
top of this, we want to evaluate if, and how, the link-function
and/or a conditional versus marginal sampling of the upper-
level residuals, may affect the estimation of the mediation
effects.

To answer these questions, we conduct a large simula-
tion study in which we compare three estimation models
for mediator and outcome (an uncentered separate mod-
elling approach, a separate approach that relies on CWC,
and a joint method), two link-functions for our binary mea-
sures (logit and probit), and two ways in which to generate
the random effects (marginally vs. conditionally). In this
respect, our work distinguishes itself from other papers on
lower-lever mediation, as most of these either 1) do not of-
fer a generalisable approach to lower-level mediation from a
counterfactual point-of-view, 2) do not investigate the case
of a binary outcome and/or mediator, or 3) do not eval-
uate performance measures based on extensive simulation
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studies (Judd et al., 2001; Kenny et al., 2003; Bauer et al.,
2006; Raykov and Mels, 2007; Montoya and Hayes, 2017;
Vuorre and Bolger, 2017).

2. ILLUSTRATING EXAMPLE

We consider data from a crossover study that aims to as-
sess the impact of experimentally induced goal conflict (i.e.,
the amount of interference between helping your partner
and other goals) on the helping behaviour of partners of in-
dividuals with chronic pain (ICP) (Kindt et al., 2018). Dur-
ing this study, 68 couples1 (with one person having chronic
pain) were asked to perform a series of household activities,
while the sequence of goal conflict was randomly manipu-
lated: partners were either first asked to stay available for
help while simultaneously working on a puzzle task (i.e.,
the goal conflict condition) and then simply asked to be
available (i.e., the control condition without goal conflict),
or the other way round. After each series of chores, cou-
ples reported on several intra- and interpersonal outcomes,
as well as the partners’ quantity and quality of help. We
will focus on the effect of goal conflict (a binary exposure)
on the amount of help provided by the ICP’s partner (the
binary outcome, high vs. low amount of help). Addition-
ally, we wanted to check if this relation is mediated by the
partner’s amount of autonomous helping motivation, as per-
ceived by the ICP (a binary mediator, high vs. low amount
of helping motivation). As all three dichotomous variables
are measured within every couple and each couple is only
measured at two time points, we and up with a binary lower-
level mediation question and a limited cluster size.

3. STEP 1 - NONPARAMETRIC
DEFINITION & IDENTIFICATION OF

THE CAUSAL EFFECTS

Traditionally, mediation analysis has been formulated,
understood, and implemented within a framework of linear
regression models. Unfortunately, this line of thinking can-
not offer general definitions of the causal effects beyond a
few specific models and its conclusions cannot be generalised
to nonlinear models for discrete measures. In response, re-
searchers have proposed the counterfactual framework to in-
clude the definition, identification, and estimation of causal
mediation effects without any reference to one specific sta-
tistical model (VanderWeele and Vansteelandt, 2009; Pearl,
2010; Imai et al., 2010a; Pearl, 2012).

3.1 The counterfactual framework

Before we introduce a nonparametric definition for the
causal effects, let us explain the concept of ‘counterfactual
outcomes’ in settings where all variables are measured at

1We use data from 56 out of the original 68 couples, running a complete
case analysis, as missingness proves problematic for the joint approach
implemented through MPLUSR©-software.

the lower-level. A ‘counterfactual’ or ‘potential’ outcome
Yij(x) represents the outcome that we would, possibly con-
trary to fact, have observed for measurement j within clus-
ter i, had the exposure Xij been manipulated to a value x
(Rubin, 1978). When considering a dichotomous exposure
(with value 0 for baseline/no exposure, and 1 otherwise),
we can define two possible potential outcomes for each mea-
surement within a cluster: Yij(0) and Yij(1). Keeping this
in mind, the measure- and cluster-specific total effect of X
on Y is defined as the difference between both counterfac-
tuals: Yij(1)−Yij(0). Unfortunately, since only one of these
counterfactuals is observed for each measurement, this effect
cannot be estimated. The population average of the total
causal effect E[Yij(1) − Yij(0)], on the other hand, can be
identified under specific assumptions (cfr. next section).

Similarly, counterfactuals for the mediator, Mij(0)
and Mij(1), and nested counterfactuals for the outcome,
Yij(x,Mij(x

∗)), can be devised (Robins and Greenland,
1992; Pearl, 2001). The latter counterfactual represents the
value for the outcome Yij , when Xij is set to x and Mij is
fixed at the value it would obtain when Xij = x∗. Nested
counterfactuals allow us to rephrase the average total ef-
fect of X on Y to include a mediator: E[Yij(1,Mij(1)) −
Yij(0,Mij(0))] = E[Yij(1)− Yij(0)]. This enables us to par-
tition the total causal effect (TCE) into a total natural
indirect (TNIE) and a pure natural direct effect (PNDE)
(Hafeman and Schwartz, 2009; VanderWeele, 2013)2:

TCE =E[Yij(1,Mij(1))− Yij(0,Mij(0))](1)

=E[Yij(1,Mij(1))− Yij(1,Mij(0))

+ Yij(1,Mij(0))− Yij(0,Mij(0))]

=TNIE + PNDE

3.2 Causal and modelling assumptions to
identify the causal mediation effects

In order to identify the above-defined non-parametrical
effects in randomised lower-level mediation settings, we need
to postulate the following set of assumptions (VanderWeele,
2010b; Josephy et al., 2015):

(i) There are no unmeasured upper- or lower-level con-
founders of mediator and outcome.

(ii) There are no confounders of mediator and outcome,
caused by exposure.

(iii) There is no carry-over effect when lower-level measures
represent time points.

For lower-level mediation in clusters of size two, assumptions
(i)-(iii) can be summarised by the (lack of) arrows within
the diagram in Figure 1 (Robins and Richardson, 2010).

2Note that we define non-parametrical expressions for the direct and
indirect effect on a linear scale, in contrast to e.g., VanderWeele (2013);
Loeys et al. (2013); Bind et al. (2016).
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Figure 1. This causal diagram represents assumptions
(i)-(iii), which are needed to identify the causal effects in a
randomised lower-level mediation setting with clusters of size
two. Xi1, Mi1 and Yi1 represent the respective values of the
exposure, mediator, and outcome for the first measure within
cluster i, while Xi2, Mi2 and Yi2 reflect these variables for
the second measurement. Absence of a unidirectional arrow

indicates the absence of a direct causal effect, while a
bidirectional arrow captures an unmeasured common cause.

Note however that including the red arrow in Figure 1,
allows for a correlation between the unmeasured cluster-
specific common causes of the outcome (V ) and those of the
mediator (U). Because both unmeasured confounders are
correlated, we are able to define one confounder in terms of
the other, without a loss of generality. For example, we can
define an unspecified function h such that V = h(U), which
enables us to express the upper-level confounder V as a func-
tion of U , as to explicate their correlation. Consequently,
this arrow directly violates assumption (i): there are un-
measured upper-level confounders of the mediator-outcome
relation. Josephy et al. (2015) showed that in linear lower-
level mediation settings, this assumption is not necessary for
the identification of the causal effects. In this manuscript,
we wish to additionally demonstrate the redundancy of this
assumption for binary lower-level mediation.

In addition to these three causal assumptions, we will con-
sider the following modelling assumptions throughout the
paper:

(iv) Unmeasured upper-level confounders of mediator and
outcome exert an additive effect on both variables3.

(v) There is no unmeasured heterogeneity among clusters
in the effect of exposure on mediator, nor in the effect
of exposure and mediator on the outcome.

Unlike the previous three assumptions, assumptions (iv) and
(v) cannot be represented on a causal diagram; hence, they
are not depicted in Figure 1.

4. STEP 2 - PARAMETRIC
IDENTIFICATION OF THE CAUSAL

EFFECTS

Now that we possess non-parametric definitions of the
causal effects, we can pursue their identification based on

3This assumption is made on the scale of the parametrical models for
mediator and outcome

parametrical models for our binary mediator and outcome.
Let us consider the following multilevel models, with i the
cluster, and j a within-cluster observation:

E[Mij |Xij , Ui] = g−1
M

(
δM + αXij + Ui

)
(2)

E[Yij |Xij ,Mij , Ui] = g−1
Y

(
δY + ζ ′Xij + βMij

+ φXijMij + h(Ui)
)

where g−1
M and g−1

Y represent known inverse link functions
for mediator and outcome, respectively. In these equations,
δM and δY represent the intercepts, while α, β, ζ ′, and φ
represent the effects of exposure on mediator, mediator on
outcome, exposure on outcome, and the interaction between
exposure and mediator on the outcome, respectively. Note
that we additionally assume that these effects are homoge-
neous across clusters, in accordance with assumption (v).
Since the unmeasured upper-level confounders of the medi-
ator (Ui) and the outcome (h(Ui)) are allowed to correlate,
this induces unmeasured cluster-specific confounding of the
M -Y relationship (see red arrow in Figure 1).

Under this data-generating mechanism, all assumptions
introduced in section 3.2 are met (except for the upper-level
confounders of assumption (i), of which we aim to prove its
redundancy under a lenient set of modelling assumptions).
This enables us to operate Pearl’s mediation formula (Pearl,
2001, 2010) to derive the total, pure natural direct, and total
natural indirect effect for each measurement j within cluster
i.

For example, when gM = gY = probit (and hence with Φ
representing the standard normal cumulative distribution),
we find a “ij-th”-specific total natural indirect effect :

E[Y ij(1,Mij(1))− Yij(1,Mij(0))|Ui)]

=
(
Φ(δM + Ui)− Φ(δM + α+ Ui)

)(
Φ(δY + ζ ′ + h(Ui))

− Φ(δY + ζ ′ + β + φ+ h(Ui))
)

(3)

The parametrical derivations and expressions for the causal
effects can be found in the appendix, for both gM = gY =
logit and gM = gY = probit.

5. STEP 3 - ESTIMATION MODELS FOR
THE MEDIATOR AND OUTCOME

Now that we know how to identify the causal mediation
effects, a next logical step aims to predict the counterfac-
tuals. Before we can achieve this, however, we first need to
estimate the regression parameters in equation (2) with the
aid of appropriate estimation models. To this end, the fol-
lowing sections summarise three potential approaches4.

4Note that the next equations represent estimation models, in contrast
to causal model (2) from the previous section.
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5.1 Separate modelling of a binary mediator
and outcome

One approach fits the mediator and outcome measures
through separate multilevel models:

E(Mij |Xij , ui) = g−1
M

(
dM + aXij + ui

)
(4)

E(Yij |Xij ,Mij , vi)

= g−1
Y

(
dY + c′Xij + bMij + fXijMij + vi

)
with ui �Xij and vi �Xij ,Mij , XijMij

Here, ui and vi represent the random intercepts for M and
Y , respectively. These upper-level residuals are assumed to
be normally distributed with mean zero and variance σ2

M

for ui and σ2
Y for vi. Note that this uncentred (UN) sepa-

rate modelling approach assumes that the upper-level resid-
uals are independent of the predictors. If, however, there
is upper-level confounding of the M -Y relation, both ran-
dom intercepts will be correlated and (because ui predicts
Mij) Mij and vi will be correlated as well. This is in direct
violation of the assumption that vi �Xij ,Mij and, as a re-
sult, the model for the outcome will estimate the regression
coefficients of equation (2) with bias.

In linear multilevel settings (i.e., when gM and gY both
represent the identity-link), this issue can be tackled by
separating within- from between-cluster effects (Louis,
1988; Neuhaus and Kalbfleisch, 1998; Begg and Parides,
2003; Zhang et al., 2009; Kenward and Roger, 2010;
Preacher et al., 2010; Pituch and Stapleton, 2012). Such
centering within-clusters (CWC) can be achieved by
regressing a continuous dependent variable on the cluster-
mean centred values of the predictors: (Xij − Xi) and
(Mij − M i). In these expressions, Xi and M i denote
the averages of the exposure- and mediator-scores within
cluster i (MacKinnon, 2008). Subtracting these means from
the raw scores will remove any cluster-specific effects that
may influence the predictors and hence, any possible impact
of unmeasured upper-level confounders. Consequently, the
parameter coefficients of equation (2) may be estimated
without bias in the presence of upper-level endogeneity,
as the upper-level residuals will not correlate with the
within-cluster deviations.

A similar approach is possible for a binary outcome:

E(Mij |Xij , ui) = g−1
M

(
dM + a(Xij −Xi) + ui

)
(5)

E(Yij |Xij ,Mij , vi)

= g−1
Y

(
dY + c′(Xij −Xi) + b(Mij −M i)

+ f(XijMij −XM i) + vi
)

with ui � (Xij −Xi) and vi � (Xij −Xi),

(Mij −M i), (XijMij −XM i)

Again, both upper-level residuals are assumed to be inde-
pendently and normally distributed with mean zero and
fixed variance. Unfortunately, when a binary outcome is

modelled on the logit- or probit-scale, CWC no longer yields
proper parameter estimates for the within- and between-
cluster effects (although in practice this bias may often be
small (Goetgeluk and Vansteelandt, 2008; Brumback et al.,
2010)).

5.2 Joint modelling of a binary mediator and
outcome

A second approach jointly models the mediator and out-
come. This can be achieved by either relying on multi-
variate techniques, or by tricking univariate software into
modelling the mediator and outcome in a multivariate way
(Bauer et al., 2006). The set of equations are identical to
model (4) except that now, ui and vi are allowed to covary:
(ui, vi) ∼ N(0,Σ).

Here, the upper-level residuals are assumed to be multi-
variate normally distributed, with zero mean and covariance
matrix Σ. This matrix is defined by the variances of ui and
vi on its diagonal (τ2M and τ2Y , respectively), and by the
covariance between both upper-level residuals (τMY ) else-
where. Since this set of models allow both random intercepts
to covary, unmeasured upper-level M -Y confounding may
be accounted for through the modelling of this correlation.
As this estimation model equals the true data-generating
model (2) from section 4, we expect unbiased estimators for
the regression coefficients in the outcome model.

6. STEP 4 - ESTIMATION OF THE CAUSAL
EFFECTS THROUGH MONTE CARLO
POTENTIAL OUTCOME GENERATION

Once an expression is derived for the direct or indirect
effect of interest (such as expression (3)), we could simply
plug in the parameter estimates for the fixed and random
effects of the above described estimation models. However,
this approach requires a new derivation for the expressions
of the causal effects each time a different outcome or me-
diator model is considered. This can be remedied through
a Monte-Carlo approach, which we explain in the following
paragraph.

Recall that for a randomised binary exposure X, we
observe Yij(Xij ,Mij(Xij)) for each within-cluster mea-
sure. However, in order to estimate the population av-
eraged indirect effect, we also require the counterfactual
outcome Yij(Xij ,Mij(1 − Xij)) for every measurement.
In an algorithm proposed by Imai et al. (2010a), we can
obtain a Monte Carlo draw from the potential outcome
Yij(x,Mij(x

∗)) by using model predictions:

A Fit models for the observed mediator and outcome vari-
ables, such as described in section 5.

B Simulate estimated model parameters from their sam-
pling distributions (e.g., 1000 draws).

C Repeat the following three processes within a single
draw from step B: (i) predict both potential values of

Binary lower-level mediation 515



the mediator (Mij(0) and Mij(1)) for each measure
within each cluster, (ii) predict the potential outcomes
for each within-cluster measurement given the predicted
values of the mediator (Yij(0,Mij(0)), Yij(1,Mij(0)),
Yij(0,Mij(1)), and Yij(1,Mij(1))), (iii) compute the
causal mediation effects, averaged over clusters and mea-
surements within clusters.

D Compute summary statistics such as point estimates and
confidence intervals, over all simulated draws.

7. ESTIMATION TECHNIQUES AND
SOFTWARE IMPLEMENTATIONS

Estimation models aside, there exist a lot of different esti-
mation techniques and software implementations that allow
us to fit the above-mentioned statistical models and generate
potential outcomes. Let us briefly go over several options.

7.1 Step 3 - Estimation of the regression
parameters

Josephy et al. (2016) concluded that generalised linear
mixed models (GLMMs) that rely on Maximum Likelihood
(ML) estimation through Adaptive Gaussian Quadrature
(AGQ) provided the most reliable estimates when analysing
binary probit-regression models within small clusters. For
dyadic cluster sizes, AGQ operated on par with Diagonally
Weighted Least Squares (DWLS) estimation, but took the
upper hand as the cluster size increased. With a preference
for AGQ or DWLS as estimation techniques, our next ob-
stacle aims to identify appropriate software implementations
for our modelling approaches.

Let us take a look at possible implementations that allow
us to jointly model the mediator and outcome. Bauer et al.
(2006) first introduced a joint approach for linear mixed
models (LMMs) in SAS R© by fitting a multivariate model re-
lying on the univariate multilevel Proc Mixed procedure. Ex-
tending this line of thinking to GLMMs, would require the
specification of random effects in combination with a resid-
ual covariance structure that differentiates mediator from
outcome. Unfortunately, Proc Glimmix cannot integrate
marginal covariances within AGQ, while Proc NLmixed is
unable to model residual covariances in the first place.

Structural Equation Models (SEM), where a categori-
cal outcome is considered a crude approximation of an un-
derlying continuous variable, offer a second possibility. As
SEM naturally considers data in a multivariate way, it al-
lows the joint modelling of mediator and outcome. Within
(D)WLS-estimation, a binary measure that simultaneously
acts as both a dependent and independent variable (i.e., an
endogenous variable), is treated as its underlying continu-
ous measure during the entire estimation process. As such,
(D)WLS encounters problems when estimating the param-
eter coefficient of a binary mediator within the outcome
model. Fortunately, ML-estimation treats the mediator as

its underlying measure when it serves as a dependent vari-
able, while considering its observed values when the medi-
ator serves as a predictor. In contrast to Rosseel (2012)’s
lavaan-package within R, where only (D)WLS-estimation is
currently able to deal with endogenous categorical variables,
MPLUS R©-software can model such mediators values through
ML-estimation with AGQ (Muthén and Muthén, 2010).

With these considerations and limitations in mind, we
will consider ML-estimation through AGQ for the joint and
separate modelling methods in the third step. The uncentred
and centred separate modelling approaches will be fitted
with the aid of the lme4 -package (version 1.1-17) within R

version 3.5.0 (Bates et al., 2015), while the joint approach
will take place within the MPLUS-software (version 7.4).

7.2 Step 4 - Estimation of the causal
mediation effects

Conveniently, Tingley et al. (2014) developed the R-
package mediation in which separate models for M and Y
can be inserted to generate estimates for the causal me-
diation effects with the aid of the algorithm described in
section 6. We do, however, have a few concerns regarding
the implementation as described in Imai et al. (2010a).

First, as this package can only model the mediator and
outcome separately, it cannot quantify any unmeasured
upper-level confounding of M and Y through a covariance
term between both random intercepts. As a consequence,
the random effects will not be able to appropriately deal
with upper-level endogeneity of mediator and outcome.

Two, the authors do not provide any recommendations
concerning which estimation techniques ought to be used
in which settings, and hence do not explicitly recommend
the use of AGQ when the fitted models for the mediator
and/or outcome constitute GLMMs. As such, uninformed
researchers might not be aware that they are relying upon
the Laplace approximation by default and consequently,
shoulder the approach’s shortcomings when dealing with
non-normal data within small clusters (Tuerlinckx et al.,
2006; Josephy et al., 2016).

Three, in the third step of their algorithm (see sec-
tion 6), the authors rely on a conditional approach for gen-
erating the random effects: the upper-level residuals are
assumed to follow a normal distribution, conditional on
the estimated random effect within that cluster and the
estimated conditional variance. It has been pointed out
that this method may not lead to a realistic sampling
distribution (Skrondal and Rabe-Hesketh, 2004). Rather, a
marginal sampling process, in which all random effects are
drawn from a normal distribution with a zero mean and a
standard deviation based on the estimated variance compo-
nent, may lead to better estimates of the causal mediation
effects. In response, we compare the performance of two pos-
sible random effect generating mechanisms within the fourth
estimation step: a conditional vs. a marginal procedure. As
MPLUS is currently unable to provide conditional variances,
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Table 1. A summary of the parameter values for the
data-generating mechanism, according to one of two possible

link functions

Link-function
Parameter Probit-link Logit-link

δM 0.00 0.00
α 1.00 1.70
δY −0.70 −1.20
ζ′ 0.50 0.85
β 0.80 1.35

we only compare both approaches within the two separate
modelling techniques.

8. SIMULATION STUDY

In the following sections, we compare five different ap-
proaches for estimating the causal mediation effects: (1) an
uncentered (UN) and (2) centred separate (CWC) approach,
and (3) a joint modelling procedure (Joint) with marginal
random effects (“-Marg”), alongside (4) an uncentered (UN)
and (5) a centred separate (CWC) approach with condi-
tional random effects (“-Marg”). For example, we will re-
fer to the Joint approach with a marginal random effects
generation as “Joint-Marg”. The detailed code on software
implementation can be found in the appendix.

To inspect the performances of these procedures, we com-
pare them through simulations. For this, we generated bi-
nary mediator and outcome values within small clusters, ac-
cording to random intercept probit- or logit-models (a sum-
mary of the parameter values can be found in Table 1). For
simplicity, our data generating mechanism omits an interac-
tion between exposure and mediator in the outcome model:

P (Mij = 1|Xij , ui) = P (M∗
ij > 0|Xij , ui)(6)

= P (δM + αXij + ui + εMij > 0)

P (Yij = 1|Xij ,Mij , vi)

= P (Y ∗
ij > 0|Xij ,Mij , vi)

= P (δY + ζ ′Xij + βMij + vi + εYij > 0)

with (ui, vi) ∼ N(0,Σ)

Here, M∗
ij and Y ∗

ij represent the underlying latent variables
of the binary mediator and outcome, respectively, such that
Mij = 1 if M∗

ij > 0, and Yij = 1 if Y ∗
ij > 0. In these equa-

tions, the lower-level residuals of the latent variables, εMij and

εMij , are both i.i.d. drawn from a normal distribution with

mean zero and a variance, σ2, that changes according to the
link function (for the probit-link, σ2 = 1, for the logit-link

σ2 = π2

3 ). The random intercepts are sampled from a multi-
variate normal distribution with zero means and covariance
matrix Σ:

Σ =

(
τM ρ

√
τMτY

ρ
√
τMτY τY

)

For the different simulation settings, we vary several param-
eters: we consider different clusters sizes (2 vs. 5), a varying
number of clusters (sample size n = 50, 100, 300), two link
functions for generating the mediator and outcome mea-
sures (probit- and logit-link)5, the presence or absence of
unmeasured upper-level confounding of mediator and out-
come (ρ = 0 vs. ρ = 0.50), and three different intracluster
correlations for the latent response variables. As the latent
iccl is defined as the proportion of between-cluster versus
total variance in the latent responses (e.g., for the media-

tor, iccl =
V ar(ui)
V ar(M∗

ij)
= τM

τM+σ2 ), this value depends upon the

variance of the lower-level residuals and hence, on the link
function. As such, a latent iccl of 0.10, 0.30, and 0.50 cor-
responds to a respective random intercept variance of 0.11,
0.43, and 1.00 for the probit-link, and of 0.36, 1.41, and 3.29
for the logit-link (with iccMl = iccYl ).

In total, 1000 simulations are generated for different com-
binations of cluster size, sample size, link-function, iccl, and
ρ. The five above-introduced methods are compared over
these settings in terms of convergence, relative bias, mean
squared error (MSE), and coverage. The relative bias is de-
fined as the averaged difference between the estimated (e.g.

β̂) and true parameter values (e.g. β), divided by the lat-

ter (so that the relative bias equals β−β̂
β ); as such, a rela-

tive bias enclosing zero indicates an unbiased estimator. The
MSE is estimated by summing the empirical variance and
the squared bias of the estimates, simultaneously assessing
bias and precision: the lower the MSE, the more accurate
and precise the estimator. The coverage is defined as the
proportion of the 95% Wald-confidence intervals that en-
compass their true parameter value; coverage rates nearing
95% represent nominal coverages of the intervals. Lastly,
in order to conclude model convergence, a model fit must
yield both estimates and standard errors. To ensure a fair
comparison between methods, we only present results for
simulation runs in which all five methods converge.

9. RESULTS

Below, we discuss the results of the simulation study for
the probit-link in detail, and for clusters of size two and five.
In addition, we report the results comparing the logit- and
probit-link for clusters of size two.

9.1 Convergence

Here, we compare the results of three rather than five
approaches, since both ways of generating the random in-
tercepts overlap up until step 4 of our estimation process;
hence, their convergence is identical. Generally, convergence
improves as the sample size n and the number of measure-
ments within a cluster increase (see left part of Figure 2).
Note that for 300 clusters most approaches reach 100% con-
vergence, except for the joint approach when the iccl is low.

5Note that the coefficients of the logit-link are about 1.7 times larger
compared to those defined for the probit-link (see Table 1).
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Figure 2. Model convergence of the five approaches comparing cluster sizes for the probit-link (left), and comparing
link-functions for cluster size two (right), with different iccl’s (0.1, 0.3 and 0.5) and sample sizes (50, 100 and 300).

In contrast to changes in sample and cluster size, conver-
gence is rather unaffected by the presence of unmeasured
upper-level confounding of the mediator-outcome relation.
Moreover, convergence is unaffected by the intracluster cor-
relation for UN and CWC, whereas it seems to improve for
the joint approach with increasing iccl. Lastly, convergence
fares slightly better for all approaches when the logit-link,
rather than the probit-link is used (see right part of Fig-
ure 2). Overall, the joint approach shows the most difficulty
in reaching convergence.

9.2 Relative bias

First of all, for the direct and indirect effect estimators
we typically observe that the relative bias decreases as the
number of clusters and the number of measurements within
each cluster increases (see Figure 3). Only when there is
upper-level endogeneity of mediator and outcome, does the
relative bias of the indirect effect increase instead of decrease
with larger samples, for both uncentred approaches. Second,
both causal mediation effects are not influenced by an in-
crease in the iccl for the joint approach (with ‘CWC-Cond’
a close second), while it does impact others, especially when
ρ �= 0: in this case, their relative bias increases with rising
icc. Third, when comparing link functions, we see no obvi-
ous changes in the performance of the joint approach, nor
for both conditional approaches to generating the random
effects (see Figure 4). Both marginal approaches, however,
exhibit a strong increase in relative bias when relying on the

logit-, compared to the probit-link. Overall, we observe that
the joint approach provides the least biased estimates.

9.3 MSE

The MSE declines with increasing sample size and num-
ber of within-cluster measures, as well as with a rising iccl
(see Figure 5). Furthermore, we do not observe any differ-
ences in MSE when comparing settings with and without
unmeasured upper-level confounding of the M-Y relation,
nor when comparing link functions. The only deviation from
this consists of a slightly increased MSE for the direct effect
estimator of both CWC approaches when comparing logit-
to probit regression (see Figure 6). All settings considered,
the MSE is generally lowest for the joint modelling approach
and CWC.

9.4 Coverage

For both causal mediation effects, the coverage of their
95% confidence intervals is typically better when the cluster
size equals two rather than five, and when the intracluster
correlation is low (see Figure 7). This observation holds for
all methods, although the joint approach and ‘CWC-Cond’
are least influenced by such changes. Additionally, when the
iccl is high, we often observe a decrease in coverage as the
upper-level sample size increases, for both UN-approaches
and ‘CWC-Marg’. Also, the presence of unmeasured upper-
level confounding of M and Y does not seem to impact
the joint approach or ‘CWC-Cond’ that much, whereas the
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Figure 3. The relative bias of the direct (left) and indirect (right) for the five approaches modelled with a probit-link, for
different upper-level correlations between the random intercepts (zero or 0.5), cluster sizes (2 and 5), different iccl for the

mediator and outcome (0.1, 0.3 and 0.5), and sample sizes (50, 100 and 300). These results stem from simulation runs where
all methods converged.

Figure 4. The relative bias of the direct (left) and indirect (right) for the five approaches modelled within clusters of size two,
for different upper-level correlations between the random intercepts (zero or 0.5), link-functions (probit and logit), different

iccl for the mediator and outcome (0.1, 0.3 and 0.5), and sample sizes (50, 100 and 300). These results stem from simulation
runs where all methods converged.
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Figure 5. The MSE of the direct (left) and indirect (right) for the five approaches modelled with a probit-link, for different
upper-level correlations between the random intercepts (zero or 0.5), cluster sizes (2 and 5), different iccl for the mediator and
outcome (0.1, 0.3 and 0.5), and sample sizes (50, 100 and 300). These results stem from simulation runs where all methods

converged.

Figure 6. The MSE of the direct (left) and indirect (right) for the five approaches modelled within clusters of size two, for
different upper-level correlations between the random intercepts (zero or 0.5), link-functions (probit and logit), different iccl
for the mediator and outcome (0.1, 0.3 and 0.5), and sample sizes (50, 100 and 300). These results stem from simulation runs

where all methods converged.
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Figure 7. The coverage of the direct (left) and indirect (right) for the five approaches modelled with a probit-link, for different
upper-level correlations between the random intercepts (zero or 0.5), cluster sizes (2 and 5), different iccl for the mediator and
outcome (0.1, 0.3 and 0.5), and sample sizes (50, 100 and 300). These results stem from simulation runs where all methods

converged.

Figure 8. The coverage of the direct (left) and indirect (right) for the five approaches modelled within clusters of size two, for
different upper-level correlations between the random intercepts (zero or 0.5), link-functions (probit and logit), different iccl
for the mediator and outcome (0.1, 0.3 and 0.5), and sample sizes (50, 100 and 300). These results stem from simulation runs

where all methods converged.
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Table 2. The estimates of the indirect, direct, and total effect of goal conflict on the observed amount of help, mediated by
the partners’ amount of autonomous helping motivation. The estimates (with empirical standard errors, se) and

percentile-based 95% confidence intervals are provided for the five estimation methods

Indirect Effect Direct Effect Total Effect
Estimate (se) 95%-CI Estimate (se) 95%-CI Estimate (se) 95%-CI

UN-Cond -0.009 (0.015) (-0.042; 0.016) -0.390 (0.086) (-0.561; -0.210) -0.398 (0.087) (-0.555; -0.212)
UN-Marg -0.009 (0.015) (-0.042; 0.015) -0.409 (0.087) (-0.589; -0.218) -0.417 (0.091) (-0.585; -0.230)
CWC-Cond -0.002 (0.008) (-0.020; 0.014) -0.317 (0.112) (-0.486; -0.131) -0.318 (0.097) (-0.492; -0.133)
CWC-Marg -0.002 (0.008) (-0.022; 0.012) -0.324 (0.114) (-0.518; -0.124) -0.326 (0.107) (-0.519; -0.122)
Joint-Marg -0.005 (0.010) (-0.029; 0.012) -0.392 (0.093) (-0.562; -0.212) -0.397 (0.088) (-0.564; -0.218)

other methods show a steep decrease in coverage, especially
when samples sizes are large. Again, the link function does
not seem to impact the coverage of the joint and both con-
ditional approaches, whereas it tends to decrease for both
marginal approaches when comparing the logit- to the pro-
bit-link (see Figure 8). Generally, the joint approach and
‘CWC-Cond’ provide the best coverage.

9.5 Summary

The convergence issues that the joint approach experi-
ences are mostly limited to very small sample sizes (and
even then never fall below 75%). When the joint model con-
verges, however, there are numerous advantages to using the
joint approach over others: it provides the least biased es-
timates, small standard errors (resulting in small MSE’s),
and offers coverages that are at least as good or better than
the other approaches considered.

9.6 Analysis of the example

We illustrate these five approaches by applying them to
our example data. Here, we assess whether of not the ef-
fect of goal conflict (the binary exposure) on a high vs. low
amount of help (the binary outcome) is mediated by a high
amount of autonomous helping motivation from the partner,
as perceived by the patient (i.e., a high versus low amount
of autonomous motivation, the binary mediator). Within
the third step of our estimation procedure, we model the
mediator and outcome according to the estimation mod-
els (4) and (5), where gM = gY = probit and with f = 0
(i.e., without an interaction).

This dataset demonstrates a small upper-level sample size
(n = 56) with two measures in each cluster, a medium
to small latent icc’s (0.32 for M and 0.16 for Y ), and a
high (nonsignificant) amount of unmeasured upper-level M -
Y confounding (estimated at 0.78, with p = 0.45). In such
settings, our simulation study suggests that (when the mod-
els are correctly specified) the joint approach is most likely
to yield unbiased estimates for both mediation effects (as
can be seen in Figure 3).

When goal conflict is present, we observe a total effect
that indicates a decrease in the observed amount of help
from high to low of about 32% to 42%. Additionally, we ob-
serve a significant direct, but no indirect effect for all five

estimation procedures (see Table 2). For both effects, we see
that the uncentred estimates are larger than those of both
CWC-approaches. For the intervening effect, we can addi-
tionally observe that the estimates of the Joint approach
lie somewhere in between the centred and uncentred ap-
proaches, while the estimates for the joint approach of the
direct effect are very close to the estimates of both uncen-
tred approaches. Overall, we can conclude that the partner’s
amount of autonomous helping motivation (a perceived by
the patient) does not mediate the effect of goal conflict on
the observed amount of help.

It is worth noting that although section 3.2 shows that
assumption (i) can be relaxed to exclude upper-level con-
founders for some estimation models, the other assumptions
still need to hold in order for our inferences to be valid.
Unfortunately, there is no way of checking the plausibility
of assumptions (i)), (ii), and (iv). Concerning assumption
(iii), we cannot exclude the possibility of a carry-over ef-
fect, as there was no notable wash-out period in this study.
There is also no way of checking assumption (v), as random
slopes are unidentifiable in designs with a mere two mea-
surements within each cluster. These restrictions should be
kept in mind when interpreting results.

10. DISCUSSION

In this paper, we provided an overview of several possi-
ble estimation techniques that allow us to evaluate lower-
level mediation in binary settings (with a specific focus
on small cluster sizes). Additionally, we presented an ex-
tensive simulation study in which we assessed the im-
pact of several data features on the convergence, rela-
tive bias, mean squared error, and coverage of the esti-
mates of the various methods. We found that jointly mod-
elling the mediator and the outcome provided the best per-
formance measures (combined with a marginal approach
to simulating the random effects), especially in the pres-
ence of unmeasured upper-level confounding of mediator
and outcome. A separate modelling approach that centres
the lower-level variables within-clusters and draws the ran-
dom effects conditionally, comes in as a close second, con-
firming the reports of Goetgeluk and Vansteelandt (2008);
Brumback et al. (2010). These authors stated that although
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CWC no longer yields proper parameter estimates when the
outcome is binary, the resulting bias is often small. Un-
surprisingly, not centering the lower-level predictors pro-
vided very biased estimates in the presence of upper-level
mediator-outcome endogeneity (irrespective of the assumed
random effects distribution).

These conclusions in mind, we must acknowledge several
limitations to this manuscript. For one, we restricted our
simulations to settings where the intracluster correlations
for mediator and outcome are identical, as allowing them to
vary independently of each other would have incremented
the computational demands by sixfold. However, varying the
icc the particular setting where the probit-link was used in
the presence of upper-level M -Y confounding and with clus-
ters of size two, supported the conclusions summarised here
(results not shown).

Two, there exists a non-parametrical implementation of
the algorithm that we described in step 4 of the estima-
tion process. This alternative assesses mediation based on
bootstrapping mediator and outcome values, rather than
on simulated draws from the estimated parameter distri-
butions. We did not incorporate this procedure within our
study (in accordance to Imai et al. (2010a)’s mediation-
package), as the bootstrapping process takes up an enor-
mous amount of time in multilevel samples. However, our
(and Imai et al. (2010a)’s) sole reliance on a parametrical
approach might provide suboptimal estimates for the causal
mediation effects, especially when estimation procedures are
used that may produce biased estimates (e.g., the uncentred
approaches in the presence of upper-level endogeneity of M
and Y ).

Three, we only considered complete data in our simu-
lations as missingness in either mediator or outcome will
cause Mplus to produce error messages when the method
of integration is specified as ‘Gaussian’ (i.e., as in Gaussian
Adaptive Quadrature). In contrast, the two separate mod-
elling approaches in R consider all available outcomes, even
when there is missingness.

APPENDIX A. IDENTIFICATION OF
CAUSAL EFFECTS

In the following sections, we derive the parametrical ex-
pressions for the causal effects when gM = gY = probit, and
when gM = gY = logit.

A.1 Probit-regression models

Consider these probit-models for a binary M and Y (with
i the cluster and j the measurement within a cluster):

E[Mij |Xij , Ui] = Φ
(
δM + αXij + Ui

)
E[Yij |Xij ,Mij , Vi]

= Φ
(
δY + ζ ′Xij + βMij + φXijMij + h(Ui)

)

with Φ representing the standard normal cumulative distri-
bution. Based on this data generating mechanism, the “ij-
th”-specific total natural indirect effect can be identified,
when the assumptions (i)-(v) from section 3.2 are satisfied:

E[Y ij(1,Mij(1))− Yij(1,Mij(0))|Ui, t)])

=
∑
m

{E[Yij |Xij = 1,Mij = m,Ui]

× P (Mij = m|Xij = 1, Ui)

− E[Yij |Xij = 1,Mij = m,Ui]

× P (Mij = m|Xij = 0, Ui)}
= P (Yij = 1|Xij = 1,Mij = 0, Ui)

× (1− P (Mij = 1|Xij = 1, Ui))

− P (Yij = 1|Xij = 1,Mij = 0, Ui)

× (1− P (Mij = 1|Xij = 0, Ui))

+ P (Yij = 1|Xij = 1,Mij = 1, Ui)

× (P (Mij = 1|Xij = 1, Ui)

− P (Mij = 1|Xij = 0, Ui))

= P (Yij = 1|Xij = 1,Mij = 0, Ui)

× (P (Mij = 1|Xij = 0, Ui)

− P (Mij = 1|Xij = 1, Ui))

+ P (Yij = 1|Xij = 1,Mij = 1, Ui)

(P (Mij = 1|Xij = 1, Ui)− P (Mij = 1|Xij = 0, Ui))

= (P (Mij = 1|Xij = 0, Ui)− P (Mij = 1|Xij = 1, Ui))

(P (Yij = 1|Xij = 1,Mij = 0, Ui)

− P (Yij = 1|Xij = 1,Mij = 1, Ui))

=
(
Φ(δM + Ui)− Φ(δM + α+ Ui)

)(
Φ(δY + ζ ′ + h(Ui))

− Φ(δY + ζ ′ + β + φ+ h(Ui))
)

as is the “ij-th”-specific pure natural direct effect :

E[Y ij(1,Mij(0))− Yij(0,Mij(0))|Ui, t)]

=
∑
m

{E[Yij |Xij = 1,Mij = m,Ui]

× P (Mij = m|Xij = 0, Ui)

− E[Yij |Xij = 0,Mij = m,Ui]

× P (Mij = m|Xij = 0, Ui)}
= (P (Yij = 1|Xij = 1,Mij = 0, Ui)

− P (Yij = 1|Xij = 0,Mij = 0, Ui))

P (Mij = 0|Xij = 0, Ui)

+ (P (Yij = 1|Xij = 1,Mij = 1, Ui)

− P (Yij = 1|Xij = 0,Mij = 1, Ui))

× P (Mij = 1|Xij = 0, Ui)

=
(
1− Φ(δM + Ui)

)
×

(
Φ(δY + ζ ′ + h(Ui))− Φ(δY + h(Ui))

)
+Φ(δM + Ui)

(
Φ(δY + ζ ′ + β + φ+ h(Ui))

− Φ(δY + β + h(Ui))
)
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and the “ij-th”-specific total causal effect :

E[Y ij(1,Mij(1))− Yij(0,Mij(0))|Ui, t)]

=
∑
m

{E[Yij |Xij = 1,Mij = m,Ui]

× P (Mij = m|Xij = 1, Ui)

− E[Yij |Xij = 0,Mij = m,Ui]

× P (Mij = m|Xij = 0, Ui)}
= P (Yij = 1|Xij = 1,Mij = 0, Ui)

× P (Mij = 0|Xij = 1, Ui)

− P (Yij = 1|Xij = 0,Mij = 0, Ui)

× (P (Mij = 0|Xij = 0, Ui))

+ P (Yij = 1|Xij = 1,Mij = 1, Ui)

× (P (Mij = 1|Xij = 1, Ui))

− P (Yij = 1|Xij = 0,Mij = 1, Ui)

× (P (Mij = 1|Xij = 0, Ui))

= Φ(δY + ζ ′ + h(Ui))
(
1− Φ(δM + α+ Ui)

)
− Φ(δY + h(Ui))

(
1− Φ(δM + Ui)

)
+Φ(δY + ζ ′ + β + φ+ h(Ui))Φ(δM + α+ Ui)

− Φ(δY + β + h(Ui))Φ(δM + Ui)

A.2 Logit-regression models

Consider these logit-models for a binary M and Y :

E[Mij |Xij , Ui] =
1

1 + e−δM−αXij−Ui

E[Yij |Xij ,Mij , Ui] =
1

1 + e−δY −ζ′Xij−βMij−φXijMij−h(Ui)

Based on this data generating mechanism, the “ij-th”-
specific total natural indirect effect can be identified, when
the assumptions (i)-(v) from section 3.2 are satisfied:

E[Y ij(1,Mij(1))− Yij(1,Mij(0))|Ui, t)]

= (
1

1 + e−δM−Ui
− 1

1 + e−δM−α−Ui
)

× (
1

1 + e−δY −ζ′−h(Ui)
− 1

1 + e−δY −ζ′−β−φ−h(Ui)
)

as is the “ij-th”-specific pure natural direct effect :

E[Y ij(1,Mij(0))− Yij(0,Mij(0))|Ui, t)]

=
e−δM−Ui

1 + e−δM−Ui
(

1

1 + e−δY −ζ′−h(Ui)
− 1

1 + e−δY −h(Ui)
)

+
1

1 + e−δM−Ui
(

1

1 + e−δY −ζ′−β−φ−h(Ui)

− 1

1 + e−δY −β−h(Ui)
)

and the “ij-th”-specific total causal effect :

E[Y ij(1,Mij(1))− Yij(0,Mij(0))|Ui, t)]

=
1

1 + e−δY −ζ′−h(Ui)

e−δM−α−Ui

1 + e−δM−α−Ui

− 1

1 + e−δY −h(Ui)

e−δM−Ui

1 + e−δM−Ui

+
1

1 + e−δY −ζ′−β−φ−h(Ui)

1

1 + e−δM−α−Ui

− 1

1 + e−δY −β−h(Ui)

1

1 + e−δM−Ui

APPENDIX B. SOFTWARE CODE

B.1 Data generating mechanism

For the generation of probit-data with cluster size two,
sample size ‘n’, latent intracluster correlation ‘icc’, and ran-
dom intercept-correlation between M and Y of ‘rho’:

#Generate 1000 data sets for the current n, icc, and rho:
for (i in 1:1000){

#Population parameters:
iM<-0; ia<-1; iY<--0.7; ic<-0.5; ib<-0.8
#Random intercept covariance matrix (with tau<-icc/(1-icc)):
sig<-matrix(c(tau,sqrt(tau)*sqrt(tau)*rho,

sqrt(tau)*sqrt(tau)*rho,tau),byrow=T,nrow=2)
#Random intercepts for M and Y within each cluster:
ri<-mvrnorm(n,c(0,0),sig)
#Generate data for binary X, M and Y:
x0<-rbinom(n,1,0.5); x1<-1-x0
m0<-rbinom(n,1,pnorm(iM+ia*x0+ri[,1]))
m1<-rbinom(n,1,pnorm(iM+ia*x1+ri[,1]))
y0<-rbinom(n,1,pnorm(iY+ic*x0+ib*m0+ri[,2]))
y1<-rbinom(n,1,pnorm(iY+ic*x1+ib*m1+ri[,2]))
#Centring of X and M within-clusters:
xmean<-colMeans(rbind(x0,x1)); xx0<-x0-xmean; xx1<-x1-xmean
mmean<-colMeans(rbind(m0,m1)); mm0<-m0-mmean; mm1<-m1-mmean
#Convert the variables to long format:
x<-c(x0,x1); m<-c(m0,m1); xx<-c(xx0,xx1); mm<-c(mm0,mm1);
y<-c(y0,y1)

#Cluster identifier:
ind<-rep(seq(1,n),2)
#Create dataset:
data<-as.data.frame(cbind(ind,x,m,xx,mm,y)) }

B.2 Estimation models

For uncentred separate modelling by use of lme4 in R

(Bates et al., 2015):

med.UN<-glmer(m~x+(1|ind),family=binomial(link="probit"),
data=data,nAGQ=15)

out.UN<-glmer(y~x+m+(1|ind),family=binomial(link="probit"),
data=data,nAGQ=15)

For CWC-separate modelling by use of lme4 in R (Bates
et al., 2015):

med.CWC<-glmer(m~xx+(1|ind),family=binomial(link="probit"),
data=data,nAGQ=15)

out.CWC<-glmer(y~xx+mm+(1|ind),family=binomial(link="probit"),
data=data,nAGQ=15)

For the joint modelling approach in Mplus (Muthén and
Muthén, 2010):

DATA: file = mplus.raw; type = individual;
VARIABLE: names = x0 x1 m0 m1 y0 y1; usevariables = x0 x1
m0 m1 y0 y1; missing = .; categorical = m0 m1 y0 y1;
ANALYSIS: type = general; estimator = ML; integration= GAUSS;
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adaptive = on; link = probit;
MODEL: i0 BY m0@1 m1@1; i1 BY y0@1 y1@1; i0 (Mvar); i1 (Yvar);

m0 ON x0 (a); m1 ON x1 (a);
y0 ON x0 (c); y1 ON x1 (c); y0 ON m0 (b); y1 ON m1 (b);
[m0$1] (iM); [m1$1] (iM); [y0$1] (iY); [y1$1] (iY);

OUTPUT: sampstat cinterval tech3;

B.3 Generation of the random effects

For marginally generated random effects, based on the
uncentred separate modelling approach and the probit-link:

#Extract the estimates and estimated covariance matrix:
b_est<-c(fixef(med.UN),out.UN)
b_vcov[c(1:2),c(1:2)]<-as.matrix(vcov(med.UN))
b_vcov[c(3:5),c(3:5)]<-as.matrix(vcov(out.UN))
#Extract the estimated random intercept variances:
ri_varM<-med.UN@theta**2, ri_varY<-out.UN@theta**2

For conditionally generated random effects, based on the
uncentred separate modelling approach and the probit-link:

#Extract the parameter estimates and estimated covariance matrix:
b_est<-c(fixef(med.UN),fixef(out.UN))
b_vcov[c(1:2),c(1:2)]<-as.matrix(vcov(med.UN))
b_vcov[c(3:5),c(3:5)]<-as.matrix(vcov(out.UN))
#Extract the estimated conditional means and random intercept vars:
ri_meanM<-ranef(med.UN)[[1]][,1]; ri_meanY<-ranef(out.UN)[[1]][,1]
ri_cond_varM<-cond.se(med.UN)[[1]][,1]
ri_cond_varY<-cond.se(out.UN)[[1]][,1]
#With the function to extract the conditional standard errors:
cond.se<-function(object){

se.bygroup<-ranef(object,condVar=T)
vars<-attr(se.bygroup[[1]],"postVar")
se.by.clust[[1]]<-array(NA,c(n,1))
for (j in 1:n){
se.by.clust[[1]][j,]<-sqrt(diag(as.matrix(vars[,,j]))) }

return(se.by.clust)}

Simulating draws from the sampling distributions, based
on the probit-link and conditionally drawn random effects:

#Simulate draws from the sampling distribution:
b_sim<-mvrnorm(1000,b_est,b_vcov)
#Simulated draws:
for (t in 1:1000){
riMc<-rep(rnorm(n,mean=ri_meanM,sd=ri_cond_varM),each=2)
riYc<-rep(rnorm(n,mean=ri_meanY,sd=ri_cond_varY),each=2)
m_0c<-rbinom(2*n,1,pnorm(b_sim[t,1]+riMc))
m_1c<-rbinom(2*n,1,pnorm(b_sim[t,1]+riMc+b_sim[t,2]))
y00c<-pnorm(b_sim[t,3]+riYc+b_sim[t,5]*m_0c)
y11c<-pnorm(b_sim[t,3]+riYc+b_sim[t,4]+b_sim[t,5]*m_1c)
y10c<-pnorm(b_sim[t,3]+riYc+b_sim[t,4]+b_sim[t,5]*m_0c)
ie_c[t]<-mean(y11c-y10c); de_c[t]<-mean(y10c-y00c)
te_c[t]<-mean(y11c-y00c) }

#Conditional causal effects:
ie[i,1]<-mean(ie_c); de[i,1]<-mean(de_c); te[i,1]<-mean(te_c)
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