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Statistical inference of the generalized Pareto
distribution based on upper record values
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Upper records are important statistics in environmental
science and many other fields. Because upper records are
crucial for policy making, precise modeling and inference
techniques are in high demand. The generalized Pareto dis-
tribution (GPD) is commonly adopted by researchers for
modeling heavy tail phenomena in many applications. The
statistical inference of the GPD upper records is a critical
issue in record analysis. Based on upper record data, the
current parameter estimation methods of the GPD depend
on preassumed shape parameter and only estimate the loca-
tion and scale parameters. However, the shape parameter is
typically unknown in real applications. In this manuscript,
we propose a new approach that can estimate all three pa-
rameters of the GPD. The proposed estimator is used in
conjunction with a moment method and nonlinear weighted
least squares theory that minimizes the sum of squared devi-
ations between the upper records and their expectations. In
simulation studies, we compare alternative estimators and
demonstrate that the new estimator is competitive in terms
of the bias and means square error in estimating the shape
and scale parameters. In addition, we investigate the per-
formance of different threshold selection procedures by es-
timating the Value-at-Risk (VaR) of the GPD. Finally, we
illustrate the utilization of the proposed methods by ana-
lyzing an air pollution data. In this analysis, we provide a
detailed guide for selecting the threshold and upper records.
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Keywords and phrases: Generalized Pareto distribution,
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1. INTRODUCTION

Record values are defined as only observations greater (or
less) than previous values. Such values are commonly seen in
many fields, such as environmental science, sports and eco-
nomics (Chandler (1952), Coles and Tawn (1996), Sultan,
Al-Dayian and Mohammad (2008), Cramer and Naehrig
(2012)). The importance of record values has been widely
recognized by statisticians. Statistical research on record
values started with Chandler (1952) and has now spread
in many directions. To date, based on upper record values,
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studies have been conducted by Wang and Ye (2015) on
the Weibull distribution, by Balakrishnan and Chan (1998)
and Shahab, Al-Dayian and El-Beltagi (2001) on the normal
distribution, by Raqab (2002) on the generalized exponen-
tial distribution and by Soliman et al. (2010) on the in-
verse Rayleigh distribution. Although these studies provide
guidance for modeling record values, the data often deviate
from the distribution assumptions. The GPD is known as a
powerful tool for addressing extreme values and has great
potential for modeling record values (Ahsanullah (2004)).
Pickands (1975) and Balkema and De Haan (1974) noted
that exceedances over a high threshold can be asymptoti-
cally fitted by the GPD if the distribution of the complete
sample is in the maximum domain of attraction, known as
the peaks-over-threshold (POT) method in extreme value
theory (EVT). In fact, most of the common continuous dis-
tributions meet this condition (Embrechts, Klüppelberg and
Mikosch (1997)). Under the POT framework, we can ap-
ply the GPD to fit the tail region of a data set, even if
we do not know the underlying distribution. Therefore, the
statistical inference of the GPD upper records is a critical is-
sue in record analysis. For various quantitative risk analyses
and the prediction of future upper records, two fundamental
steps in the application of the GPD are parameter estima-
tion and threshold selection.

Research is ongoing for the two above mentioned steps.
First, the parameter estimation of the GPD must be based
on a prespecified shape parameter. For instance, using upper
record values, Ahsanullah (2004) derived the best linear un-
biased estimator (BLUE) and best linear invariant estimator
(BLIE) for the location and scale parameters. Notably, Sul-
tan and Moshref (2000) provided approximate confidence
intervals based on the BLUE for the location and scale pa-
rameters. Second, if the GPD record value series is unknown
and selected in advance, the key step is finding an optimal
threshold as the first record value, such that exceedances
over the threshold follow the GPD separately. On one hand,
if the threshold is below the optimal value, the GPD as-
sumption may be violated. On the other hand, the varia-
tion may be inflated if the threshold is above the optimal
value. Graphical diagnosis methods have been widely ap-
plied for threshold estimation (Davison and Smith (1990),
Dress, De Haan and Resnick (2000), Coles (2001), Scar-
rott and MacDonald (2012)). Alternatively, threshold can
be selected using goodness-of-fit test or automatic sequen-
tial goodness-of-fit tests. These practical approaches yield
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satisfactory performance. Recently, Bader, Yan and Zhang
(2018) proposed an automated threshold selection procedure
based on a sequence of goodness-of-fit tests and the stopping
rule in G’Sell et al. (2016). This approach is elective and au-
tomated and can be used to obtain the GPD record values
for statistical inference.

In real applications, however, the GPD shape parameter
is generally unknown, and in many cases the GPD record
value series is unknown and must be selected in advance. Be-
cause of these difficulties, we propose a new GPD estimator
and guide for selecting upper records. Our method is based
on a moment method and nonlinear weighted least squares
theory. The proposed estimator addresses a caveat of shape
parameter estimation for the GPD based on upper records.
The contributions of the current article are as follows. First,
we use the nonlinear weighted least squares moment esti-
mated equations to estimate the shape and scale parame-
ters simultaneously and present an optimization procedure.
Thus, the GPD can be applied without special assumptions
regarding the shape parameter. Second, we illustrate how to
select the optimal threshold above which the GPD fits the
exceedances. The chosen threshold can be regarded as the
first record for location parameter estimation, and the cor-
responding upper records can be determined. Using various
simulations, we compare the performance of four estimators
and show that the proposed weighted nonlinear least squares
moment (WNLSM) estimator is competitive compared to
other estimators. Using a realistic Beijing PM2.5 dataset,
we apply three threshold selection methods to determine
the optimal threshold and choose upper records. Following
the proposed estimation approach, we estimate the GPD
parameters and predict future upper records. These results
serve as references for environmental agencies and Beijing
residents.

The remainder of this paper is organized as follows. In
section 2, exact expressions for the single moments of the
upper record values are proposed. Based on upper records, in
section 3, we describe a new GPD parameter estimator and
introduce a recently developed threshold selection technique
to find the first record value. In section 4, we compare the
performance of different parameter estimation approaches
based on the GPD with simulated and real data sets, as well
as the performance of different optimal threshold methods
for mixture distributions with various simulation studies.
The conclusions are presented in section 5.

2. MOMENTS OF UPPER RECORD DATA

In this section, notations and definitions are given in sub-
section 2.1. In subsection 2.2, we derive the exact explicit
expressions for the single moments of the upper record val-
ues from the GPD.

2.1 Notations and definitions

Let {Xn, n = 1, 2, · · · } be an infinite sequence of inde-
pendent and identical random variables with the same dis-

tribution as the random variable X. Denote the cumula-
tive distribution function (cdf) of X as F and the probabil-
ity distribution function (pdf) of X as f . XL(1), XL(2), · · ·
are called lower record value statistics if L(i) = min{j :
j > L(i − 1), Xj < XL(i−1)}, where i ≥ 2 with L(1) = 1.
An analogous definition can be given for upper record val-
ues. Let XU(1), XU(2), · · · denote upper record values, where
U(i) = min{j : j > U(i− 1), Xj > XU(i−1)}, and i ≥ 2 with
U(1) = 1. The pdf of the lower record XL(i)(i = 1, 2, · · · ) is
given by (see Arnold, Balakrishnan and Nagaraja (1998))

fL(i)(x) =
1

Γ(i)
[− lnF (x)]i−1f(x)

and the pdf of upper record XU(i)(i = 1, 2, · · · ) is given by
(see Arnold, Balakrishnan and Nagaraja (1998))

fU(i)(x) =
1

Γ(i)
[− ln(1− F (x))]i−1f(x)

where Γ(x) is a gamma function.

2.2 Moments of the GPD upper record data

The cdf of the GPD(μ, σ, ξ) with the location parame-
ter μ, the scale parameter σ and the shape parameter ξ,
respectively, is defined as follows.

Gμ,σ,ξ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1−
(
1 + ξ

x− μ

σ

)−1/ξ

, ξ �= 0

1− exp

(
− x− μ

σ

)
, ξ = 0

(1)

If ξ ≥ 0,x ≥ μ, else μ < x ≤ μ − σ/ξ. The exponential
distribution is obtained taking ξ = 0 in (1).

The pdf of the GPD is given by

gμ,σ,ξ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

σ

(
1 + ξ

x− μ

σ

)−1/ξ−1

, ξ �= 0

1

σ
exp

(
− x− μ

σ

)
, ξ = 0

Let XU(1), XU(2), · · · , XU(n) be a sequence of n upper
record values from the three-parameter GPD. It is easy to
prove that,

XU(i) − μ

σ
=

1

ξ
[(YL(i))

−ξ − 1](2)

where YL(1), YL(2), · · · , YL(n) is a sequence of n lower record
values from the uniform distribution U(0,1). Next, we obtain
the single moments of the GPD upper record data using the
above relation in equation (2).

Theorem 2.1. For a fixed positive integer r ≥ 1, the single
moments E(Y −ξ

L(i))
r is given as

E(Y −ξ
L(i))

r = (1− ξr)−i, ξ < 1/r.(3)
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Especially, as a check put r = 1 in (3) we get

E(XU(i)) = μ− b+ b(1− ξ)−i, ξ < 1(4)

where b = σ/ξ. A simplified method of computing the GPD
single moment is given in equation (4) using the U(0,1). The
result is equivalent to the findings of Balakrishnan and Ah-
sanullah (1994), Sultan and Moshref (2000) and Ahsanullah
(2004).

3. GPD PARAMETER ESTIMATION

The survival function of a continuous random variable X
is denoted as F̄ (x) = 1 − F (x), 0 < x < ∞. Then F (x) is
regularly varying with index−ξ < 0, or simply F̄ ∈ R−ξ, if

lim
x→∞

F̄ (xλ)

F̄ (x)
= λ−ξ, λ > 0.

Heavy-tailed distributions such as the Pareto, generalized
Pareto, Log-gamma, Cauchy and Stable distributions are
examples of such functions (Park and Kim (2016)).

A principle result of EVT is the famous Pickands-
Balkema-de Haan theorem (Balkema and De Haan (1974),
Pickands (1975)) which states that, for F̄ ∈ R−ξ, the excess
loss (X − u|X > u) from such a distribution F with a large
threshold u > 0 converges to the two-parameter GPD with
ξ > 0. That is

lim
u↑xF

sup
0≤y<xF−u

|Fu(y)−Gσ,ξ(y)| = 0

where Fu(y) = P (X − u ≤ y|X > u) with the support
0 ≤ y < xF − u. xF ≤ ∞ is the right endpoint of F and
Gσ,ξ(·) is the GPD distribution function.

This relation implies that the excess distribution Fu(y)
converges to the two-parameter GPD when the threshold
u is appropriately selected whenever X is a heavy-tailed
distribution. Therefore, the location parameter μ can be es-
timated by u, because Gu,σ,ξ(x) = Gσ,ξ(x − u) with the
support set {X|X > u}.

3.1 Threshold selection

Before estimating parameters, one important step is de-
termining the optimal threshold u. If the selected threshold
is too low, the GPD approximation may be not satisfied. In
contrast, if the threshold is too high, the small sample size
may increase the variance of parameter estimation. Our so-
lution is to follow a recently developed stopping rule (Bader,
Yan and Zhang (2018)). This approach combines the se-
quential goodness-of-fit testing proposed by Choulakian and
Stephens (2001) and the stopping rule of G’Sell et al. (2016).

Consider a given sequence of candidate thresholds u1 <
· · · < um, where m can be fixed at m = n − 10 or n − 20
(Langousis et al. (2016)) and n is the sample size. For each

ui (i = 1, · · · ,m), there is a corresponding null hypothesis
given by

H
(i)
0 : The excess loss (X − ui|X > ui) follows the GPD.

(5)

The ForwardStop rule of G’Sell et al. (2016) is given by

k̂ = max

{
k ∈ {1, · · · ,m} : −1

k

k∑
i=1

log(1− pi) ≤ α

}
(6)

where α is a prespecified level and p1, · · · , pm are the corre-
sponding p-values of the m hypotheses. The rejection rule is

constructed by returning a cutoff k̂ such that H
(1)
0 , · · · , H(k̂)

0

are rejected (Bader, Yan and Zhang (2018)). This testing
method involves m times goodness-of-fit tests, as noted by

Choulakian and Stephens (2001), even if H
(i)
0 is accepted.

The reason for conducting multiple tests is that unless the

test has high power, H
(i)
0 may be accepted at a low thresh-

old by chance. In such a case, the GPD may not fit all the
exceedances above the chosen threshold.

3.2 Weighted nonlinear least squares
moment estimation method

The selected u can be regarded as the first record XU(1)

and the upper records XU(1), · · · , XU(n) are recorded from
the original sequence {X1, X2, · · · }. Under the POT frame-
work, the excess loss (X − u|X > u) converges to the two-
parameter GPD which has only shape and scale parameters.
Therefore, we are only interested in estimating the shape
and scale parameters.

Now, we introduce a new estimator for the GPD by min-
imizing the sum of squared deviations between the upper
records and their corresponding expectations. That is

(ξ̂, b̂) = argmin
(ξ,b)

n∑
i=1

[
XU(i) − E(XU(i))

]2
.(7)

Then σ̂ = ξ̂b̂ and (ξ̂, σ̂) is the least square estimator (LSE).
However, a direct fitting approach does not work well, be-
cause the expectation of the upper record values is sensi-
tive to the shape parameter ξ, as shown in equation (4).
In view of this problem, we use a nonlinear least squares
(NLS) method with a three-step fitting procedure to find
stable estimators.

The first step is to find the interim estimate using a non-
linear minimization of upper records:

(ξ̂, b̂) = argmin
(ξ,b)

n∑
i=1

{
exp(XU(i))− exp[E(XU(i))]

}2

.(8)

Before solving optimization equation (8), we can use the
concept of the moment estimation method and construct
a moment estimation equation based on the expectation of
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the upper records in equation (4). The moment estimation
equation is given as follows.

X̄U =
1

n

n∑
i=1

E(XU(i)) = b[A(ξ)− 1], ξ < 1(9)

where X̄U =
1

n

n∑
i=1

XU(i), A(ξ) =
1

n

n∑
i=1

(1 − ξ)−i. When re-

arranged, equation (9) can be written as

b =
X̄U

A(ξ)− 1
.(10)

Replacing the b in equation (8), the above optimization
equation (8) is written as:

ξ̂1 = argmin
ξ

n∑
i=1

{
exp(XU(i))

(11)

− exp

[
X̄U

A(ξ)− 1

(
(1− ξ)−i − 1

)]}2

.

From equation (10), σ̂1 =
ξ̂1X̄U

A(ξ̂1)− 1
.

Compared the equation (11) with the equation (8), this
setup equation (11) is advantageous in that the b has been
eliminated. Therefore, the shape parameter ξ can be sep-
arately estimated and is independent of b, making this
method more efficient. The result of the first step (ξ̂1, σ̂1)
is called the nonlinear least squares moment 1 (NLSM1) es-
timator.

Second, with ξ̂1 as the initial value, the following step
includes the optimization according to the upper records
and their expectations.

ξ̂2 = argmin
ξ

n∑
i=1

[XU(i) − E(XU(i))]
2

(12)

= argmin
ξ

n∑
i=1

[
XU(i) −

X̄U

A(ξ)− 1

(
(1− ξ)−i − 1

)]2

.

Then σ̂2 =
ξ̂2X̄U

A(ξ̂2)− 1
. (ξ̂2, σ̂2) is called the nonlinear least

squares moment 2 (NLSM2) estimator.

Third, with ξ̂2 as the initial value and recognizing that
XU(i) has different standard variances for various i values,
we extend the NLSM2 estimator to the weighted NLSM
(WNLSM) version by minimizing the following equation.

ξ̂3 = argmin
ξ

n∑
i=1

ωi[XU(i) − E(XU(i))]
2

= argmin
ξ

n∑
i=1

ωi

[
XU(i) −

X̄U

A(ξ)− 1

(
(1− ξ)−i − 1

)]2

where

ωi = [Var(XU(i))]
−1/2

=
A(ξ)− 1

X̄U

[
1

(1− 2ξ)i
− 1

(1− ξ)2i

]−1/2

, ξ < 1/2.

And σ̂3 =
ξ̂3X̄U

A(ξ̂3)− 1
. We will call (ξ̂3, σ̂3) the WNLSM es-

timator. One advantage of the WNLSM estimator over the
NLSM1 and 2, as will be seen in later simulation, is that it
estimates parameters in a more stable manner because, as
XU(i) moves towards the tail side, the weight ωi becomes
smaller. We apply the “optim” function in R to solve opti-
mizations, see Nelder and Mead (1965).

4. NUMERICAL ILLUSTRATION

In this section, we first conduct extensive simulation stud-
ies to compare alternative estimators and show that the
proposed WNLSM estimator is highly competitive. Second,
we investigate the performance of three threshold selection
methods under various parametric mixture distributions.
Third, we use daily PM2.5 record data from Beijing to il-
lustrate the utility of the proposed methods in detail and
identify important air pollution trends.

4.1 Simulation study of the parameter
estimation

In this simulation study, we estimate parameters only
using the proposed LS, NLSM1, NLSM2 and WNLSM es-
timators from various parametric GPD distributions. We
do not compare the existing estimation approaches cited in
section 1, because these methods provide the estimators of
the GPD location and scale parameters and assume that
the shape parameter is known. We describe the simulation
procedure as follows.

1. Generate iid observations following the GPD.
2. Select the first observation as the first upper record

XU(1).
3. Choose the upper record sequence XU(1), · · · , XU(n)

from the observations.
4. Use the proposed LS, NLSM1, NLSM2 and WNLSM

estimators to estimate (σ, ξ).
Conduct 1000 simulations under different conditions to

evaluate the mean square error (MSE) and Bias. We con-
sider four different parameter pairs for parameter estimation
based on the GPD: (μ, σ, ξ) = (0, 1,±0.1) and (0, 1,±0.4),
and records sample sizes n = 3 to 7. It should be noted
that to obtain a fixed number of upper records, the size
of the complete sample differs in each iteration. As shown
in Table 1, the WNLSM estimator performs best for most
parameter choices in terms of both the MSE and Bias.
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Table 1. Parameter estimation under the GPD based on the
upper records

n (σ, ξ) Method
MSE Bias

σ ξ σ ξ

3

(1,-0.4)

LS 6.246 1.761 2.499 -1.327
NLSM1 5.833 1.649 2.415 -1.284
NLSM2 6.231 1.760 2.496 -1.327
WNLSM 2.110 0.462 1.453 -0.680

(1,-0.1)

LS 2.971 0.366 1.724 -0.605
NLSM1 2.396 0.301 1.548 -0.549
NLSM2 2.945 0.364 1.716 -0.604
WNLSM 1.001 0.075 1.000 -0.273

(1,0.1)

LS 9.260 0.514 3.043 -0.717
NLSM1 5.571 0.357 2.360 -0.597
NLSM2 6.377 0.401 2.525 -0.633
WNLSM 2.574 0.127 1.604 -0.357

(1,0.4)

LS 4.297 0.168 2.072 -0.410
NLSM1 3.373 0.151 1.837 -0.389
NLSM2 4.205 0.167 2.051 -0.409
WNLSM 2.333 0.096 1.528 -0.311

4

(1,-0.4)

LS 2.055 0.468 1.434 -0.684
NLSM1 1.779 0.396 1.334 -0.630
NLSM2 2.042 0.465 1.429 -0.682
WNLSM 0.446 0.044 0.668 -0.209

(1,-0.1)

LS 0.818 0.054 0.904 -0.232
NLSM1 0.493 0.029 0.702 -0.171
NLSM2 0.810 0.053 0.900 -0.231
WNLSM 0.162 0.000 0.403 -0.010

(1,0.1)

LS 0.414 0.019 0.643 -0.139
NLSM1 0.219 0.011 0.468 -0.107
NLSM2 0.401 0.019 0.633 -0.138
WNLSM 0.032 0.000 0.180 0.018

(1,0.4)

LS 2.055 0.076 1.434 -0.275
NLSM1 4.126 0.084 2.031 -0.290
NLSM2 1.934 0.076 1.391 -0.275
WNLSM 0.636 0.021 0.797 -0.145

5

(1,-0.4)

LS 1.381 0.249 1.175 -0.499
NLSM1 1.140 0.200 1.067 -0.448
NLSM2 1.367 0.247 1.169 -0.497
WNLSM 0.272 0.023 0.522 -0.152

(1,-0.1)

LS 0.403 0.014 0.634 -0.119
NLSM1 0.228 0.006 0.477 -0.079
NLSM2 0.393 0.014 0.627 -0.117
WNLSM 0.072 0.001 0.268 0.026

(1,0.1)

LS 0.251 0.004 0.501 -0.062
NLSM1 0.166 0.003 0.407 -0.051
NLSM2 0.244 0.004 0.494 -0.062
WNLSM 0.043 0.001 0.208 0.032

(1,0.4)

LS 0.964 0.024 0.982 -0.153
NLSM1 4.326 0.048 2.080 -0.218
NLSM2 0.832 0.023 0.912 -0.153
WNLSM 0.226 0.008 0.475 -0.088

Table 1. (Continued)

n (σ, ξ) Method
MSE Bias

σ ξ σ ξ

6

(1,-0.4)

LS 1.862 0.331 1.365 -0.576
NLSM1 1.539 0.270 1.241 -0.519
NLSM2 1.849 0.329 1.360 -0.574
WNLSM 0.291 0.031 0.539 -0.176

(1,-0.1)

LS 0.150 0.004 0.387 -0.066
NLSM1 0.088 1.83e-03 0.296 -0.043
NLSM2 0.143 0.004 0.379 -0.064
WNLSM 0.025 1.66e-03 0.158 0.041

(1,0.1)

LS 0.126 2.58e-03 0.355 -0.051
NLSM1 0.104 2.23e-03 0.323 -0.047
NLSM2 0.118 2.55e-03 0.344 -0.051
WNLSM 0.013 1.51e-03 0.113 0.039

(1,0.4)

LS 0.973 0.013 0.986 -0.112
NLSM1 100.5 0.259 10.03 -0.509
NLSM2 0.835 0.013 0.914 -0.114
WNLSM 0.164 0.004 0.405 -0.059

7

(1,-0.4)

LS 1.129 0.192 1.062 -0.439
NLSM1 0.882 0.147 0.939 -0.383
NLSM2 1.122 0.191 1.059 -0.437
WNLSM 0.174 0.017 0.417 -0.129

(1,-0.1)

LS 0.089 0.001 0.299 -0.037
NLSM1 0.052 0.000 0.228 -0.022
NLSM2 0.086 0.001 0.293 -0.036
WNLSM 0.020 0.001 0.140 0.032

(1,0.1)

LS 0.072 9.4e-04 0.269 -0.031
NLSM1 0.053 7.2e-04 0.231 -0.027
NLSM2 0.068 9.3e-04 0.261 -0.031
WNLSM 0.004 1.9e-03 0.066 0.043

(1,0.4)

LS 0.657 0.013 0.811 0.112
NLSM1 103.5 0.209 10.17 -0.457
NLSM2 0.544 0.013 0.738 -0.115
WNLSM 0.012 0.002 0.111 -0.041

To comprehensively compare the performance of differ-
ent estimation methods, we consider ξ in a range, and
(μ, σ)=(0,1) for record sample size n = 3. Figures 1 and
2 display the Bias and MSE for σ and ξ respectively. The
Bias and MSE were estimated from 1,000 simulations. Over-
all we see that the proposed WNLSM is always superior to
other methods for both scale and shape parameters. Thus
the WNLSM estimator generally improves the estimation
quality.

4.2 Simulation study of the threshold
selection

We compare the performance of different threshold selec-
tion procedures by estimating the VaR which is the 100p
quantile of the GPD, denoted by

(13) VaRp = u+
σ

ξ

[(
F0

1− p

)ξ

− 1

]
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Figure 1. σ estimation under the GPD when (μ, σ) = (0, 1), ξ ∈ (0, 0.5) and n = 3.

Figure 2. ξ estimation under the GPD when (μ, σ) = (0, 1), ξ ∈ (0, 0.5) and n = 3.

for a given threshold u, where F0 is the proportion of the
data exceeding u. The VaR is widely used to qualify tail risk
in several fields, with p close to 1.

In addition to ForwardStop, two competing ascending
and descending goodness-of-fit tests in tail risk measures
VaR were used for comparison. These two tests can be im-
plemented two ways to ForwardStop procedure (Bader, Yan
and Zhang (2018)). Consider a fixed sequence of sorted
order candidate thresholds. Ascending goodness-of-fit test
starts from the first threshold and chooses the lowest thresh-
old until an acceptance of H

(i)
0 as given in equation (5)

happens. Descending goodness-of-fit test begins at the last
threshold and descends until a rejection of the test occurs.

The simulation samples are generated from a mixture dis-
tribution. Mixture distribution consists of a 50/50 split from
a distribution and GPD. It implies that the drawn prob-
abilities of a single observation from the distribution and
GPD are all 0.5. We consider different parameter pairs for
the VaR estimation under the mixture distributions: 50/50
mixture of Beta: (a, b) = (2, 1) and GPD: (σ, ξ) = (0.5, 0.25)
with u = 1, (σ, ξ) = (1, 0.5) with u = 2, (σ, ξ) = (2.5, 0.25)

with u = 5. 50/50 mixture of Weibull: (κ, β) = (0.45, 1)
and GPD: (σ, ξ) = (1, 0.4) with u = 0.4428726, (σ, ξ) =
(1.419845, 0.2) with u = 0.4428726. Our selections imply
that u = 0.4428726 corresponds to the 50.0th percentile of
the Weibull distribution. The cdf and pdf for these five pa-
rameter pairs mixture distributions can be seen in Figures
3 and 4.

In order to compare the performance of various threshold
selection procedures, we set up the Monte Carlo simulation
as follows.

1. Generate a random sample {X1, · · · , Xn} of size n =
200 from the given mixture distribution, and transform to
the order statistics {X1:n, · · · , Xn:n}.

2. Select the optimal threshold by below three methods
applying R package “eva” (Bader and Yan (2015)).

a). ForwardStop. In this step, uk̂ = Xk̂:n, where k̂ is given
in equation (6).

b). Ascending goodness-of-fit test. Begin with Xi:n where
i = 1 and continue for i = i+1 until the GPD null hypothesis

H
(i)
0 as given in (5) is accepted. If all are rejected, choose

threshold u = Xm:n where m as given in subsection 3.1.
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Figure 3. The distribution function F (x) and probability density function f(x) for the 50/50 mixture of the Beta:
(a, b) = (2, 1) and the GPD with three parameter pairs.

Figure 4. The distribution function F (x) and probability density function f(x) for the 50/50 mixture of the Weibull:
(κ, β) = (0.45, 1) and the GPD with two parameter pairs. The change-point at u = 0.4428726.

c). Descending goodness-of-fit test. Begin withXi:n where

i = m and continue for i = i− 1 until H
(i)
0 is rejected.

3. Fit the GPD with the excess X − u|X > u to obtain

the GPD parameter estimators ξ̂ and σ̂, which are used to
estimate VaR given in equation (13).

4. Repeat above steps 1,000 times to compute the Bias
and MSE of each VaR estimator.

Table 2 presents the MSE and Bias of the VaR 95%,
98% and 99%. Overall we see that there is no clear-cut win-
ner in estimating the VaR. ForwardStop is, however, more
stable and less sensitive to ascending and descending tests.
First, in terms of the MSE, on one hand, based on the Beta
and GPD mixture distributions, ForwardStop and ascending
procedures perform best almost across all VaR extreme lev-
els considered and all tested significance levels. On the other
hand, based on the Weibull and GPD mixture distributions,
ForwardStop and descending tests form a better result for
VaR 98% and 99%, but ForwardStop and ascending meth-
ods perform better for VaR 95% under all conditions. Sec-

ond, in term of the Bias, based on all mixture distributions,
no approach outperforms in all setting. For example, when
significance level α = 0.05, ForwardStop gives the smallest
Bias for VaR 95% and 98% based on the Beta and GPD
mixture distributions with one exception, and for all VaR
extreme levels considered under the Weibull and GPD mix-
ture distributions.

4.3 Beijing PM 2.5 data analysis

We analyze recent daily PM2.5 data from Beijing col-
lected in autumn and winter, from September 1, 2016 to
February 28, 2017 and September 1, 2017 to February 28,
2018, because air pollution is most serious in these two sea-
sons in Beijing. The sample size is 361. We focus on the regu-
larity and trend of extreme pollution conditions to establish
an appropriate model for forecasting the record-breaking de-
gree of contamination. Then, an effective risk protection pro-
gram can be established so that people can quickly respond
to extreme pollution events.
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Table 2. VaR estimation under the mixture distribution

α Method
MSE Bias

VaR 95% VaR 98% VaR 99% VaR 95% VaR 98% VaR 99%
50/50 mixture of Beta(2,1) and GPD(0.5,0.25) with u = 1

0.01
ForwardStop 0.046 0.180 0.504 0.023 -0.100 -0.266
Ascending 0.047 0.176 0.499 0.036 -0.119 -0.336
Descending 0.057 0.195 0.584 0.001 -0.083 -0.166

0.05
ForwardStop 0.046 0.193 0.550 -0.004 -0.076 -0.161
Ascending 0.045 0.182 0.510 0.012 -0.112 -0.283
Descending 0.059 0.210 0.626 -0.027 -0.093 -0.135

0.1
ForwardStop 0.048 0.198 0.590 -0.011 -0.066 -0.121
Ascending 0.045 0.186 0.516 0.001 -0.106 -0.249
Descending 0.061 0.213 0.618 -0.028 -0.097 -0.143

50/50 mixture of Beta(2,1) and GPD(1,0.5) with u = 2

0.01
ForwardStop 0.551 3.507 13.2 0.018 -0.464 -1.228
Ascending 0.542 3.328 12.5 0.044 -0.635 -1.752
Descending 0.675 3.869 16.7 0.014 -0.281 -0.636

0.05
ForwardStop 0.580 3.922 15.9 -0.016 -0.238 -0.504
Ascending 0.548 3.464 12.8 0.001 -0.511 -1.332
Descending 0.752 4.180 18.8 -0.057 -0.220 -0.212

0.1
ForwardStop 0.632 4.167 18.1 -0.026 -0.144 -0.168
Ascending 0.551 3.618 13.7 -0.016 -0.427 -1.064
Descending 0.775 4.313 20.6 -0.063 -0.231 -0.183

50/50 mixture of Beta(2,1) and GPD(2.5,0.25) with u = 5

0.01
ForwardStop 1.166 4.385 12.2 0.162 -0.440 -1.272
Ascending 1.193 4.280 12.1 0.224 -0.543 -1.629
Descending 1.482 4.948 14.9 0.072 -0.321 -0.718

0.05
ForwardStop 1.204 4.743 13.2 0.038 -0.318 -0.765
Ascending 1.141 4.443 12.3 0.101 -0.509 -1.357
Descending 1.690 5.274 14.7 -0.045 -0.388 -0.667

0.1
ForwardStop 1.282 4.895 13.8 0.004 -0.276 -0.575
Ascending 1.146 4.515 12.4 0.051 -0.476 -1.196
Descending 1.707 5.267 14.6 -0.042 -0.409 -0.722

50/50 mixture of Weibull(0.45, 1) and GPD(1, 0.4) with u = 0.4428726

0.01
ForwardStop 0.396 2.631 9.813 0.034 0.135 0.334
Ascending 0.433 3.439 14.1 0.067 0.438 1.076
Descending 0.469 2.344 8.525 0.004 -0.003 0.092

0.05
ForwardStop 0.398 2.370 8.903 -0.003 -0.016 0.043
Ascending 0.398 2.755 10.5 0.025 0.197 0.516
Descending 0.531 2.264 8.573 -0.023 -0.169 -0.217

0.1
ForwardStop 0.432 2.365 9.399 -0.024 -0.066 0.026
Ascending 0.392 2.566 9.515 0.005 0.101 0.302
Descending 0.557 2.282 8.440 -0.028 -0.196 -0.258

50/50 mixture of Weibull(0.45, 1) and GPD(1.419845, 0.2) with u = 0.4428726

0.01
ForwardStop 0.292 1.328 4.082 -0.031 0.063 0.245
Ascending 0.302 1.768 6.352 -0.028 0.319 0.878
Descending 0.374 1.283 3.729 -0.045 -0.050 0.037

0.05
ForwardStop 0.306 1.186 3.370 -0.033 -0.070 -0.067
Ascending 0.295 1.417 4.509 -0.040 0.123 0.409
Descending 0.428 1.236 3.128 -0.038 -0.203 -0.327

0.1
ForwardStop 0.333 1.168 3.251 -0.037 -0.114 -0.150
Ascending 0.298 1.305 3.944 -0.044 0.044 0.219
Descending 0.442 1.247 3.077 -0.029 -0.211 -0.367

The first task is to find a suitable threshold, such that the
GPD fits the observed PM2.5 exceedances over this thresh-
old. In the threshold selection process, we combine three
different approaches to find the optimal threshold, includ-

ing ForwardStop, ascending and descending goodness-of-fit
tests. Second, derive the exceedances over the chosen thresh-
old from the above three threshold selection methods. Then
the PM2.5 upper record statistics can be obtained. Third,
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Table 4. Threshold selection and upper records prediction

Threshold Upper records Method XU(s+1) XU(s+2)

10
11, 18, 80, 86, 101, 133, 162, 165,
183, 241, 242, 254, 365, 393, 430

LS 480 535
WNLSM 479 532

188 241, 242, 254, 365, 393, 430
LS 467 509

WNLSM 468 511

Table 3. Threshold selection and parameter estimation

Threshold Parameter LS WNLSM

ForwardStop 10
ξ 0.080 0.077
σ 13.4 13.8

Ascending 10
ξ 0.080 0.077
σ 13.4 13.8

Descending 188
ξ 0.114 0.136
σ 26.9 25.1

estimate the parameters of (ξ, σ) with the upper record
values using the LS and WNLSM methods. The results of
threshold selection and parameter estimation are presented
in Table 3.

After parameter estimation of the GPD, the main interest
is the further upper record prediction. The most well-known
predictor is the best linear unbiased predictor (BLUP) (see
Ahsanullah (1995) subsection 4.4). Theorem 2.1. is ap-
plied to obtain the BLUP of the future upper record values
XU(s+1) and XU(s+2) based on the first s observed records.
Table 4 displays the results of threshold selection and up-
per records prediction. Notably, the future upper records are
similar based on the LS and WNLSM techniques. These val-
ues can serve as references for environmental agencies and
Beijing residents.

5. CONCLUSION

In practice, the shape parameter of the GPD is typically
unknown; however, the existing estimation methods all as-
sume that the shape parameter is known. We proposed a
new procedure to estimate all the parameters of the GPD
for upper record values. The new estimator appropriately
addresses a caveat of the GPD shape parameter estimation.
Our method is adapted from the moment method and non-
linear weighted least squares theory in the optimization pro-
cedure. It provides analytical solutions and is computation-
ally efficient and stable. Using extensive numerical studies,
we found that the performance of the proposed WNLSM es-
timator is highly competitive in estimating the parameters
of the GPD. In addition, to investigate the performance of
the ForwardStop rule, ascending and descending goodness-
of-fit tests, various simulation studies were conducted. The
results showed that no testing procedure outperformed in
all conditions. However, ForwardStop is more stable and less
sensitive to other two competing threshold selection proce-
dures.

From a practical perspective, the proposed method was
applied to the Beijing daily PM2.5 data. In this application,
we used the ForwardStop rule and ascending and descending
goodness-of-fit tests to select thresholds and upper records.
Based on the records, future upper record statistics were
predicted by a BLUP. These results serve as references for
environmental agencies and Beijing residents. In summary,
the proposed method was successfully applied to environ-
mental data, and important knowledge with respect to the
degree of air pollution was attained.
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