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Bayesian approach for clustered interval-censored
data with time-varying covariate effects

YUE ZHANG, X1A WANG, AND BIN ZHANG"

Interval-censored data arise when the failure time cannot
be observed exactly but can only be determined to lie within
an interval. Interval-censored data are very common in clin-
ical trials and epidemiological studies. In this study, we con-
sider a Bayesian approach for clustered interval-censored
data under a dynamic Cox regression model. Some meth-
ods that incorporate right censoring have been developed
for clustered data with temporal covariate effects. However,
interval-censored data analysis under the same circumstance
is much less developed. In this paper, we estimate piece-
wise constant coeflicients based on a dynamic Cox regres-
sion model under the Bayesian framework. The dimensions
of coefficients are automatically determined by the reversible
jump Markov chain Monte Carlo algorithm. Meanwhile, we
use a shared frailty factor for unobserved heterogeneity or
for statistical dependence between observations. Simulation
studies are conducted to evaluate the performance of the
proposed method. The methodology is exemplified with a
pediatric study on children’s dental health data.

KEYWORDS AND PHRASES: Cox model, Frailty, Interval cen-
soring, Reversible jump Markov chain Monte Carlo, Time-
varying coefficient, Children’s dental health data.

1. INTRODUCTION

Interval censoring is commonly referred to as a type of
sampling scheme or incomplete data. It often arises in lon-
gitudinal studies in which subjects are assessed only peri-
odically at some specific times. By interval-censored data,
the failure time is known to lie within certain time intervals,
instead of being observed exactly. For example, HIV infec-
tion time is only known to fall between the last visit time
with a negative result and the first visit time with a positive
result. Examples of interval-censored data in AIDS studies
can be found in [1, 2, 3, 4, 5]. Besides AIDS, other studies in
demographic, epidemiology and medical science also target
interval-censored data. See for example, [6, 7, 8, 9, 10, 11].

The most popular semiparametric regression model in
survival literature is the proportional hazards model, which
is also referred to as the Cox model [12]. It specifies that co-
variates have a multiplicative effect on the hazard function
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of the failure time of interest. Many approaches have been
developed for interval-censored data under the Cox model.
However, there are limitations in existing models. One ex-
ample is that the relative risk of two subjects may change
over time. Hence, it is important to detect the temporal ef-
fects on the failure time. The time-varying coeflicients in
right-censored data can be estimated by several ways, such
as the partial likelihood approach [13], histogram sieve pro-
cedures [14], and the one-step estimation procedure for the
cumulative parameter function [15, 16]. However, Cox mod-
els with time-varying coefficients for interval-censored data
are much less developed. Kneib [17] developed an extended
geoadditive Cox model that estimates the nonlinear effects
of covariates based on penalized splines. Sinha et al. [18]
treated the unobserved exact time as latent variables and
sampled from the full conditional posterior distribution via
Gibbs sampling. The estimated curves in these approaches
depend on a fixed number of knots, and the smoothness of
the curves is controlled by the prior distribution or penaliz-
ing the difference between adjacent regression coefficients.

In some recent studies, the reversible jump Markov chain
Monte Carlo (MCMC) algorithm [19] was used for auto-
matic knot selection. Kim et al. [20] used such an algorithm
for a dynamic baseline hazard function. Wang et al. [21]
proposed a Bayesian extension of the Cox model by apply-
ing an efficient reversible jump MCMC and putting dynam-
ics on all coefficients as well as the baseline hazard, which
were specified as piecewise constants. However, their meth-
ods only considered the case in which the subjects are in-
dependent, which may not be realistic in some applications.
For instance, a lot of clinical trials are multi-center studies,
especially for rare diseases. Thus, the correlation of sub-
jects within each cluster becomes crucial and needs to be
addressed in the analysis. The motivating example is a lon-
gitudinal oral health study conducted in Flanders (Belgium)
— the Signal Tandmobiel [22]. The aim of this project was
to assess the oral health condition of Flemish school chil-
dren and to determine the benefit of the intervention. The
outcome of interest here is the time to the emergence of
permanent tooth 24, which is interval-censored due to the
annual examination scheme. Children involved in this study
were from five provinces. The correlation of the subjects
within the same province is nonignorable.

In this paper, we propose a frailty Cox regression model
when the subjects are correlated. The model also allows the
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existence of time-varying coefficients. A Bayesian approach
is discussed with efficient implementation. The remainder of
the paper is organized as follows. Section 2 discusses the gen-
eral data structure, the model and the associated likelihood
function. Section 3 describes prior specifications and poste-
rior computation details. Section 4 shows simulation results
of the proposed method and compares with Wang’s model
[21]. Children’s dental health data is analyzed in Section 5.
Conclusions and discussions are enclosed in Section 6.

2. MODEL AND THE LIKELIHOOD

Assume that there are n clusters in a study and m; sub-
jects in each cluster, i = 1,2, ...,n . Hence there are a total of
N =3Y"" | m; subjects in the study. Let T} ; denote the sur-
vival time for the j** subject in the i*" cluster, j = 1,...,m;.
The p-dimensional vector x;; represents the p covariates
and w; denotes the unobserved frailty random variable for
the 3" cluster. For interval-censored data, the unobserved
event time 7T; ; is located in the censoring interval (L; j, R; ;).
The contribution of the j** subject in the i*” cluster to the
observed data likelihood is

Pr(Ti; € (Lig, Rij]lwi, @i 5)
= Pr(T5; > Lijlwi, zij) — Pr(Ti; > Ry jlwi, i ).
Under the Cox model with time-varying regression coeffi-
cients, the hazard function for the j** subject in the 3"

cluster can be written as

Bt)},

where Ao (t) is an unknown baseline hazard function common
to all the subjects and B(t) is the p-dimensional regression
coefficient function of main interest. This is a shared frailty
model, which is a common type of the frailty model used for
within-cluster dependence. Note that the “shared frailty”
implies that individuals in the same cluster share the com-
mon frailty. The frailty w; is assumed to follow a parametric
distribution, which can either take the form of finite mean
frailty distributions including but not limited to the gamma
or the log-normal distribution; or take the form of infinite
mean distributions such as the positive stable distribution
[25].

In the above model, both Ao(¢) and B(t) are assumed
to be left continuous step functions, where both the num-
ber of jumps and the locations of the jumps are random
and are estimated. A fine time grid is specified as T =
{0=70 <71 <7 < .7 < ...<7g < oo} It con-
tains all the potential jump points of the functions. The
length of each time interval may be taken to be sufficiently
small to approximate any hazard and coefficient function.
Let A = Ao(7), and B3, = B(7%) denote the baseline haz-
ard function and the coefficient function evaluated at each
grid point k, kK =1,..., K; dN; ;1 indicates whether or not
the event time 7; ; falls within the k' interval of the grid,

A(t|wi, @5, 5) = Ao(t)w; exp {:BZTJ
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ie, dN; ;= I(T;; € (Th—1,7x]); Yijr denotes the at-risk
variable. If dN; j, = 1 for some value k, Y; j; =1 for [ <k
and Y; ;; =0 for I > k, while Y; ; , = (T, — 76—1)/Ay for
| =k, where Ay, = 7, — T,,_1 is the width of the k" interval.
The augmented likelihood function for the j** subject of the
it" cluster is

Ci (O dN; j e, Yi gk b ey wis i)

K
= [T vwwi exp(@l;8,) 4o

Jk}a
m; and © = { A\, Bk =

x exp{—AgArw; exp(x; ]ﬂk)

where i = 1,2, ...,
LK}

n,j =12 ..,

3. PRIOR AND POSTERIOR
3.1 Prior

In the following description, we use 0(t) to denote either
log Ap(t) or one element in the p-dimensional vector B(t).
Assume that the number of jumps P in §(¢) follows a discrete
uniform distribution ranging from 1 to K. For a fixed P,
the jump times 0 < 7 < T2 < .7, < ... < Tp = TK
are randomly selected from all time grids except the last
one. Given P and the jump times, a hierarchical Markov
type process prior for 6(t) proposed by Wang et al. [21] is
specified as follows

0(r1) ~ N(0, apv),
0(7p)|0(1p—1) ~ N(0(7p-1),v), p=2,3,.., P,
VNIg(a07n0)7

where ag > 0 is a hyper-parameter which can be chosen as
a large number to reflect higher uncertainty in the prior in-
put, and ZG (o, 19) denotes an inverse-gamma distribution
with a shape parameter g and a scale parameter 79 such
that the mean is 79/(ap — 1). Similar priors have been used
in generalized additive models [24, 23]. In order to compare
simulation results, we set ag = 100,y = 2,179 = 1, which
are the same as in [21]. The gamma distribution, the most
commonly used finite mean distribution, is used to model
the frailty term w;,7 = 1,...,n. For finite mean frailty dis-
tributions, we need the mean of the frailty distribution to
be unity in order for the parameters of the model to be
identifiable [25]. Thus, we assume

w; R G Y, i=1,2,..,n,
where k is the variance of the w;’s and larger values of k im-
ply greater heterogeneity among clusters. Let n = ! for
notational convenience. Vague hyper-priors for n are com-
monly used, such as the uniform distribution ¢(0,a) with
a large a or the gamma distribution G(b,b) with b close to

zero. In this paper, a vague gamma prior G(0.001, 0.001) [25]



is used, which is denoted as m,(.). The joint prior density is
proportional to

n @g

() [T ™ exp(—mw) b/

i=1

X exp {_M} T e [_{em) Oy}

2v
p>2

3.2 Posterior computation

The posterior samples are obtained under a Gibbs sam-
pling framework based on the j** subject of the i*" group
observed in the k" time interval, where i = 1,2,...,n,j =

1,2,....m;,k = 1,2,..., K, and K is the total number of

time grids. The parameters of interest include 6(¢) and the
frailty term w;’s. The event indicators dN; ;.’s, the event
time T; ;’s, and the at-risk variables Y; ; 1’s also need to be
sampled. Let D = {dN, 1, Yijx}, © = {0(t)}, W = {w;}.
The Gibbs sampling algorithm draws D, ©, v, W and 7
iteratively, where v and n are hyper-parameters.

The first step is to sample the event time 7} ;, event indi-
cators dN; j1’s and at-risk variables Y; ;’s for augmented
data given © and W. This can be decomposed into two steps.

(I) Locate the grid interval for each event time. For a finite
interval-censored subject, the event indicators dN; ji’s
follow a multinomial distribution with a size 1 and a
probability vector (e; j1,€; 2, ...,€i k), where for k =
1,2,.... K,

_ pigrl(mi € (Lij, Rij])

Cijk = )
ZTZG(Li,iji,j] Pi g
k—
exp {— 21:11 A\ w; exp(:c;f':j,@k)}
k
o — exp {— Yo Arw; exp(ngﬂk)}
pl,j,k -

if k>1,

1 —exp {—A\w; exp(mzjﬁl)} ifk=1.

Thus, if the observed interval (L; ;, R; ;] only covers one
time grid 73, then dN; ;; = 1 and all the other event
indicators equal 0. Otherwise, if (L, ;, R; ;] covers mul-
tiple time grids 74’s, dN; ;1 is sampled from the multi-
nomial distribution with the probability vector calcu-
lated based on these covered time grids 73’s. In other
words, the time interval (7,_1, 7] with dN, ;, = 1 is
sampled in this step.

Within the selected time grids, the exact time 7; ; fol-
lows a doubly truncated exponential distribution on
(Tk—1, 7] with a distribution function

Flu) = 1 —exp{—Ar(u — T—1)w; eXP(ij/@k)}
I —exp{—MAswiexp(z];B))}

Then 7T;; is sampled by the inverse distribution
method, and the at-risk variables Y; ; 1.’s are calculated
as defined in Section 2.

The next step is to sample each component of the baseline
hazard log \o(t) and the regression coefficients B(t) given
D and W. The reversible jump MCMC algorithm [19] is
applied here because the number of jumps P is random and
the dimension of the posterior distribution could vary from
iteration to iteration. The probabilities of taking a birth,
death and update move are set as 0.3, 0.3, and 0.4 [21],
respectively.

(I) Update move. In this step, both P and the jump times
are fixed. The conditional posterior distribution of 6(7,)
given D, W and all the other components in O is

(1)

) — 2
7(6(1,)[0/{0(r,)}, D, W) ox exp [M]

n mg K

X exp{ — ZZZ[(Tk € (Tp—1, Tp)) ApApw;

i=1 j=1 k=1

x eXp(ijﬁk)E,j,k}a

where 6(7,) is either logA(7,) or one component in
B(7p). The steps of computing 11, and o7 are listed in
Appendix. Since it can be shown that (1) is log-concave,
the adaptive rejection algorithm [26] is applied to sam-
ple ().

(IT) Birth move. A new jump time 7’ is “born” in this move.
This new 7' is randomly selected from the non-jump
time grids.

(III) Death move. One of current jump time 7, is removed,

where the index p is uniformly selected from the current
jump point set {1,2,..., P — 1}. Details of birth move
and death move are listed in Appendix.

The hyper-parameter v has a conjugate inverse-gamma
prior and the posterior distribution is also an inverse-gamma,
specified as

P 0(r)?
oo+ —,M0 + (1)

D~T
v®, g 2 2a0

GTp —GTp_l 2
Ly U )

p>2

The conditional posterior distribution of n given W is

n 77_1 n
e (f1a) e
i=1

F(n)n 71—7](77)7

i.e., the conditional posterior distribution of n depends on
the data only through W. The Metropolis-Hastings algo-
rithm is implemented to evaluate the posterior distribution
of i, where the acceptance rate is tuned to be around 25%.
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Table 1. Model specifications in the simulation study

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
b1 1 1 1 0.5 + sin(tw/9) 0.5 + sin(t7/9) 0.5 + sin(tw/9)
T1 B(0.5)* N(0,1)* B(0.5) B(0.5) N(0,1) B(0.5)
Bo 1 1
To N(0,1) N(0,1)

* B(0.5) denotes a Bernoulli distribution with the success probability as 0.5.

** N'(0,1) represents a standard normal distribution.

As mentioned before, a gamma distribution G(0.001,0.001)
is used as the prior m,(-) for n in the following analysis.
The frailty w; is sampled as follows

m; K
wi|©, D, ~ G(n + ZZde,kﬂ?

j=1k=1

mg K
+ Z Z IAVON eXp(ijﬁk)Yi,j,k> :

j=1k=1

4. SIMULATION

In this section, we present simulation study results to
assess the properties of the methods introduced in previ-
ous sections. Both constant and time-varying coefficients are
considered in the simulation study, where the constant co-
efficients are set to 1 and time-varying coefficient function
is A(t) = 0.5+ sin(t7/9). The time interval of interest is set
to be (0,9). In addition, we consider two types of covariates
(binary or continuous). Then we simulate the survival time
t under six models with various combinations of coeflicients
and covariates. Table 1 lists the six different models, where
Models 1, 2, 4, 5 contain one covariate and Models 3, 6 have
two covariates.

Assume that the baseline hazard function is Ag(t) =
0.1v/t, and let u = S(t) follow a uniform distribution /(0, 1).
The shared frailty w; is sampled from a gamma distribu-
tion G(1,1). The survival time is sampled with the following
steps. Firstly a random variable u is generated from the uni-
form distribution 2(0, 1). If the coefficients are constant, the
survival time is computed from the inverse survivz;l func-
tion t = S~(u) = [—15log(u)/ {wiexp(x],;B8)}]*. If at
least one coefficient is time-varying, we have u = S(t) =
So(t)*: exp{;80)} where So(t) = exp {— fot )\o(z)dz} and
t is calculated with the numerical method after taking nat-
ural logarithm on both sides of the equation. To gener-
ate the censoring intervals, the log-normal density function
LN (z;0,0.4) is used to simulate gap times. If the exact event
time occurs between two consecutive visits, the time inter-
val of the visits is taken as the censoring interval. If the
exact event time does not occur before the maximum follow
up time, the subject would be considered as right-censored
with the last visit time as the censoring point.
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For each model, 300 datasets were simulated. Each sim-
ulated dataset contains three clusters and each cluster con-
tains 100 subjects. The computation is implemented via R
3.2.2 and C++. The code is avaialble upon request from the
corresponding author. We ran 12,000 MCMC iterations with
the first 2, 000 iterations as the burn-in period. We checked
the convergence based on trace plots, autocorrelation plots
and Geweke statistics. LPML (log pseudo marginal likeli-
hood) [25] is used for model comparison. LPML is the sum-
mation over all CPO(i) (conditional predictive ordinate),
where CPO(4) is the posterior predictive probability of the
ith observation given all the other observed data under the
assumption that the current model is true. LPML is pre-
ferred in this study because the dimension of the parameters
changes from one iteration to another. Models with higher
LPML are preferred to models with lower LPML. Note that
when all frailties are equal to one, our model reduces to
Wang’s model [21].

Figure 1 displays estimated coeflicients from all six mod-
els. The upper two rows of Figure 1 contains the models
with one covariate and the lower two rows is for the models
with two covariates. Panels in the first row consist of plots
of results from the proposed model with frailty and those in
the second row present Wang’s model without frailty. Each
panel includes the median of the posterior means and the
median of 95% credible intervals of the regression coefficients
from our model or Wang’s model. By comparing each pair of
the plots, it is obvious that the proposed model outperforms
Wang’s method by capturing the true values for both con-
stant and time-varying coefficients. Besides, the proposed
model produces credible intervals for the regression coeffi-
cients that are similar or narrower in width compared to
those from Wang’s model.

Table 2 shows the estimates of frailties and model com-
parison results. Each cell contains an entry m(¢,u) to sum-
marize the posterior estimates by the 100 data replicates,
where m is the median of posterior means, ¢ is the median
of the posterior 2.5% percentiles and u is the median of
the posterior 97.5% percentiles for the frailties (w1, ws,ws)
and the inverse of the frailty variance 7. Thus the interval
(¢,u) is the median of the 95% credible intervals. The results
show that all these intervals contain the true values of the
parameters. In addition, for LPML, m, ¢, u are simply the
posterior mean, the posterior 2.5% and 97.5% percentiles of
“LPML Diftf”, where “LPML Diff” is calculated as LPML
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Figure 1. Estimate of coefficients for models with three clusters. The solid lines in the middle are the true coefficients. The
long dashed lines are medians of posterior means. The top and bottom short dashed lines are medians of 95% credible intervals.

Table 2. Estimates of frailties and model comparison results

Model 1 Model 2 Model 3
w1(0.419%) 0.281 (0.019, 0.623) 0.177 (0.001, 0.506) 0.266 (0.012, 0.605)
w2(0.936*) 0.648 (0.047, 1.363) 0.387 (0.002, 1.099) 0.588 (0.029, 1.322)
w3(2.171%) 1.436 (0.106, 3.046) 0.886 (0.005, 2.532) 1.345 (0.070, 2.897)
n(1*) 1.729 (0.031, 4.951) 1.217 (0.011, 3.905) 1.574 (0.026, 4.694)
LPML Diff 39.651 (-13.787, 82.223) 30.810 (-31.919, 154.180) 36.743 (-14.974, 97.956)
% Diff > 0 95.7% 87.0% 93.3%
Model 4 Model 5 Model 6
w1(0.419%) 0.303 (0.028, 0.644) 0.185 (0.001, 0.507) 0.272 (0.016, 0.591)
w2(0.936*) 0.685 (0.066, 1.431) 0.414 (0.003, 0.414) 0.595(0.036, 1.308)
w3(2.171%) 1.519 (0.147, 3.200) 0.915 (0.007, 2.392) 1.399(0.087, 2.984)
n(1*) 1.834 (0.035, 5.098) 1.253 (0.012, 4.163) 1.622(0.028, 4.735)
LPML Diff 36.743 (-14.974, 97.956) 32.784 (-27.650, 141.947) 35.798 (-46.414, 116.700)
% Diff > 0 96.3% 87.0% 91.3%

* True value.

The entry m(¢,u) in each cell summarizes the posterior estimates by the 100 data replicates, where m is the median of posterior
means, £ is the median of the posterior 2.5% percentiles and u is the median of the posterior 97.5% percentiles for the frailties
(w1,w2,ws) and the inverse of the frailty variance n. Thus the interval (¢,u) is the median of the 95% credible interval (CI).
“LPML Diff” is calculated as LPML of the proposed model minus that of Wang’s model [21]. For “LPML Diff”, m, ¢, u are simply
the posterior mean, the 2.5% and 97.5% percentiles of “LMPL Diff”.
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Figure 2. Estimate of coefficients in children’s dental health data. The black solid line is the posterior mean. The black dashed

lines are 95% credible intervals.

Table 3. Estimate of frailties with 95% credible intervals in the children’s dental health data

Oost Vlaanderen

Vlaams Brabant West Vlaanderen

Antwerpen Limburg
Girls 1.18 (1.02, 1.35) 1.08 (0.92, 1.25)
Boys 0.84 (0.72, 0.96) 0.81 (0.68, 0.93)

1.19 (1.02, 1.36)
0.91 (0.78, 1.05)

1.16 (0.98, 1.35)
0.93 (0.79, 1.08)

1.06 (0.89, 1.23)
0.87 (0.73, 1.00)

of the proposed model minus the LPML of Wang’s model. It
also contains the percentages of “LPML Diff” greater than
zero. Table 2 shows that the posterior mean of LPML dif-
ference is at least 30.810 and at least 87% of “LPML Diff”
is greater than zero, which further indicates that the pro-
posed model performs consistently better and consideration
of within-cluster correlation is necessary in some cases.

In order to see the performance of the proposed method
under various scenarios, we also tried the frailty model with
10 clusters, equal or unequal sample size assignment on dif-
ferent clusters as well as different magnitudes of frailties.
Although not shown here, the results all indicate that the
proposed model performs consistently better than Wang’s
model [21].

5. REAL DATA ANALYSIS

In this section, we apply the proposed model to the den-
tal health data from the Signal Tandmobiel project that was
conducted in Flanders (Belgium) to examine the oral health
condition of Flemish primary schoolchildren. The children
were divided into 15 strata, a combination of 3 educational
systems (public, municipal or private) and 5 provinces. Over
6,000 children were recruited, which represented approxi-
mately 7% of the total target population in Flanders [22].
A total of 4,468 of them were randomized and examined
annually by 16 trained dentists using the standardized and
widely accepted criteria recommended by the WHO. We fo-
cus on the time to the emergence of permanent tooth 24
(central incisor) here.

For the analysis, we considered the covariate dmf as a di-
chotomized variable which denotes the status of the primary
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predecessor of this tooth (0=sound, 1=decayed, missing or
filled). A random effect of province-by-gender was consid-
ered. Frailty is assumed to follow a gamma distribution with
an equal shape and scale parameter 7, which has a gamma
hyper-prior G(0.001,0.001). A total of 12,000 Gibbs samples
were generated with a burn-in period of 2,000 samples. The
convergence of MCMC chains was checked by trace plots,
autocorrelation plots and Geweke’s statistics.

Figure 2 presents the analysis results by applying the pro-
posed method. As tooth 24 does not emerge before age 5, the
time scale in Figure 2 is the time in years since age 5. The
results include the point estimates and the corresponding
95% credible intervals. The positive estimate indicates that
the children with a decayed primary predecessor have higher
risks than those without, which is consistent with the results
based on the iterative convex minorant algorithm [27]. How-
ever, there is an obvious trend of the coefficient estimate,
and the effect becomes weaker over time. In our study, if the
95% credible interval includes 0, then one may conclude that
the parameter is not significantly different from 0, and thus
the effect is said to be statistically insignificant [28, 29]. As
shown in Figure 2, the credible interval of the dmf effect af-
ter “Year 11”7 contains 0, which indicates that the dmf effect
becomes insignificant. All these findings were not captured
in [27]. Table 3 shows the frailty estimates. In general, girls
have higher risk than boys. Specifically, in Antwerpen and
Limburg, the two provinces in the north and adjacent to the
Netherlands, the difference between girls and boys is larger
than that in Vlaams Brabant and West Vlaanderen, the
two provinces in the middle of Belgium. Moreover, boys in
Vlaams Brabant, where the capital city, Brussels, is located,
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Figure 3. Estimate of frailties with 95% credible intervals in the children’s dental health data.

have the highest risk compared to boys in other provinces
(Figure 3). We also fitted Wang’s model [21] to the data
with the covariate dmf. The LPML value for the proposed
model and Wang’s model are —5480.8 and —5511.0, respec-
tively. In summary, the proposed model is preferred to the
models in [27] and [21].

6. DISCUSSION

In the present study, we proposed a Bayesian approach for
the clustered interval-censored Cox regression model with
time-varying covariate effects. In order to capture the tem-
poral nature of covariate effects more precisely, we have
shown that it is important to consider the dependence
structure for clustered outcomes. In our study, we used a
gamma frailty model for unobserved heterogeneity. A non-
informative hyper-prior of gamma parameter is used for het-
erogeneity among clusters. Other finite mean frailty models,
such as the log-normal frailty model, can also be applied in
the proposed model.

A key step in this procedure is to determine the number
of jumps, which will affect the estimated smoothness of the
estimated curves as well as effectiveness assessment. Previ-
ous studies usually specify a large number of jumps and then
select jumps after model fitting. This may not be appropri-
ate when prior information of jumps is not available. In our
approach, we used the reversible jump MCMC to automati-
cally select jumps during model fitting. The regression coef-
ficients and the baseline hazard are piecewise constant and
can be estimated given the number of pieces and jump loca-
tions. A dynamic prior was specified in this study to capture

the time-varying coefficients. A recent study by Rue et al.
[30] has shown that the prior should probably be adapted
to the interval length of the time grids and the number of
the time points. It can be of our major interest to improve
the dynamic prior in future studies.

Although our discussion focuses on the Cox model with
shared gamma frailty, much wider extensions and applica-
tions are feasible with the proposed Bayesian approach. In
some cases, independent frailty assumption may not hold
and the method can be extended to more general frailty
distributions, such as “correlated frailty models” [31], where
the within cluster frailty factors are correlated and the re-
striction of unobserved factors acting similarly within clus-
ters is elevated. For example, our proposed procedure can
be extended to incorporate spatial correlation in the data.

APPENDIX: DETAILS OF BIRTH MOVE
AND DEATH MOVE

Birth move

A new jump time 7, is “born” in this move. This new 7,,
is randomly selected from non-jump time grids. Let {T}’,, p=
1,2,..,P+1} and {7,,p =1,2,..., P} denote new and cur-
rent jump times, respectively. Assume 7, € (7,-1,7,), then

0(r,) and (7, ;) need to be sampled.

0(r,) = m6(7p-1) + m2{6(7p) + ul,

9(7';/)+1) = 771{9(7}) - u} =+ 7"29(7—1)-&-1),
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where weights are defined as

™ = (T;/) - 7';/)71)/(7;/&1 - T;/)
A

T2 = (T;/;H - T;/))/(T;,wrl —Tp

71)7
71)a
where wu is generated from a uniform distribution U (—eq, €g)
and ¢ is set to 1 in this study. Variable u here is an aux-
iliary variable to the old model, which helps balance out
the one dimension increase of the proposed new model.
When 7/ is near the boundaries, set 6(r9) = 6(m1) and
O(tp+1) = 0(7p). Let 0 = {0(m1),0(72),...,0(7p)} and 0’ =
{0(1),0(73), ...,0(1p4,)}. The acceptance ratio can be com-
puted with the posterior distribution = (0'|©/{6'},w,v, D),
the uniform density function m, and the Jacobian of the
transformation,

00’
00, u)

p_ Tl010/),0,0.D)
ir w(0|0/{0},w,v, D)w(u)

The acceptance probability is defined as min{1, Rpith }-

Death move

One of the current jump times 7, is removed, where the
index p is uniformly selected from the current jump point set
{1,2,..., P — 1}. Then this can be treated as an inverse step
of birth move. By using the same transformation function
of the birth move, the expression of 6(7,) can be computed
as follows

1 us 1 1
0(r,) = —{ - W_;H(Tp—l) + 7T_29(Tp) + 7T—10(Tp+1)

= (Tp+2)},

where the weights are defined as

m = (7p = Tp-1)/(Tp+1 — Tp-1),
T2 = (Tp+1 - Tp)/(Tp-i-l - Tp—l)a

and the acceptance probability is min{1, Rl;iith .

Calculation of y,, and o2

For p =1,

n m; K
p = o3 ZZZI{sk € (0,m]}x; jdN; j i

i=1 j=1 k=1

+ aoe(Tg)

1+ ag

o1 = apw/(1 4 ap);

b

forp=2,..,P—1,
n m; K
o =05 |D D> sk € (tp-1,7)}®i jAN j 1

i=1 j=1 k=1
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O(rp—1) | 0(7p+1)
+ 9 + 5
012, =w/2;
forp=P,

n m; K

pp=0p | > 3 Y sk € (tpo1,7p]}ai jdN; j

i=1 j—=1 k=1
+ 9(7’13_1),
2w
ACKNOWLEDGMENTS

We thank the Associate Editor and the three referees for
their thoughtful and constructive comments which greatly
improved the paper. Dr. Yue Zhang was supported by the
Shanghai Philosophy and Social Sciences Planning Project
(2018EJB006) and the Fundamental Research Funds for the
Central Universities (17X100040066).

Received 22 June 2017

REFERENCES

[1] DE GruTTOLA, V. G. AND LAGAKOS, S. W. (1989). Analysis of
doubly-censored survival data with application to AIDS. Biomet-
rics 45, 1-11. MR0999438

[2] JEWELL, N. P., MALANI, H. M. AND VITTINGHO, E. (1994). Non-
parametric estimation for a form of doubly censored data, with
application to two problems in AIDS. Journal of the American
Statistical Association 89, 7-18.

[3] KiM, M. Y., DE GRUTTOLA, V. G. AND LAGAKOS, S. W. (1993).
Analyzing doubly censored data with covariates, with application
to AIDS. Biometrics 49, 13-22. MR0999438

[4] Sun, J. (1996). A non-parametric test for interval-censored failure
time data with application to AIDS studies. Statistics in medicine
15, 1387-1395.

[5] SHIBOSKI, S. AND JEWELL, N. P. (1992). Statistical analysis of the
time dependence of HIV infectivity based on partner study data.
Journal of the American Statistical Association 87, 360—-372.

[6] DIAMOND, I., MCDONALD, J. W. AND SHAH, I. H. (1986). Propor-
tional hazards models for current status data: application to the
study of differentials in age at weaning in Pakistan. Demography
23, 607-620.

[7] FINKELSTEIN, D. M. (1986). A proportional hazards model for
interval-censored failure time data. Biometrics 42, 845-854.
MRO0872963

[8] FINKELSTEIN, D. M. AND WOLFE, R. A. (1985). A semiparamet-
ric model for regression analysis of interval-censored failure time
data. Biometrics 41, 933-945. MR0833140

[9] HoeL, D. G. AND WALBURG, H. E. (1972). Statistical analysis

of survival experiments. Journal of the National Cancer Institute

49, 361-372.

SELF, S. G. AND GROSSMAN, E. (1986). Linear rank tests for

interval-censored data with application to PCB levels in adipose

tissue of transformer repair workers. Biometrics 42, 521-530.

SUN, J. AND KALBFLEISCH, J. D. (1996). Nonparametric tests of

tumor prevalence data. Biometrics 52, 726-731.

Cox, D. R. (1972). Regression models and life-tables. Journal of

the Royal Statistical Society. Series B (Methodological) 34, 187—

220. MR0341758

[10]

(11]

(12]


http://www.ams.org/mathscinet-getitem?mr=0999438
http://www.ams.org/mathscinet-getitem?mr=0999438
http://www.ams.org/mathscinet-getitem?mr=0872963
http://www.ams.org/mathscinet-getitem?mr=0833140
http://www.ams.org/mathscinet-getitem?mr=0341758

(13]

(14]

(15]

(16]

(17]

(18]

19]

20]

(21]

(22]

23]

[24]

(25]
(26]

27]

ZUCKER, D. M. AND KARR, A. F. (1990). Nonparametric survival
analysis with time-dependent covariate effects: a penalized par-
tial likelihood approach. The Annals of Statistics 18, 329-353.
MR1041396

HIiGLE, J. L. AND SEN, S. (1991). Stochastic decomposition: An
algorithm for two-stage linear programs with recourse. Mathemat-
ics of Operations Research 16, 650—669. MR 1120475
MARTINUSSEN, T. AND SCHEIKE, T. H. (2002). A flexible additive
multiplicative hazard model. Biometrika 89, 28—298. MR1913959
MARTINUSSEN, T., SCHEIKE, T. H. AND SKOVGAARD, I. M. (2002).
Efficient estimation of fixed and time-varying covariate effects in
multiplicative intensity models. Scandinavian Journal of Statis-
tics 29, 57-74. MR1894381

KNEIB, T. (2006). Mixed model-based inference in geoadditive
hazard regression for interval-censored survival times. Computa-
tional Statistics € Data Analysis 51, 777-792. MR2297486
SINHA, D., CHEN, M. AND GHOSH, S. K. (1999). Bayesian analysis
and model selection for interval-censored survival data. Biomet-
rics 55, 585-590. MR1705161

GREEN, P. J. (1995). Reversible jump Markov chain Monte Carlo
computation and Bayesian model determination. Biometrika 82,
711-732. MR1380810

KiM, S., CHEN, M., DEY, D. K. AND GAMERMAN, D. (2007).
Bayesian dynamic models for survival data with a cure fraction.
Lifetime Data Analysis 13, 17-35. MR2355294

Wang, X., CHEN, M. AND YAN, J. (2013). Bayesian dynamic re-
gression models for interval censored survival data with applica-
tion to children dental health. Lifetime Data Analysis 19, 297—
316. MR3084025

VANOBBERGEN, J., MARTENS, L., LESAFFRE, E. AND DECLERCK,
D. (2000). The Signal-Tandmobiel project a longitudinal inter-
vention health promotion study in Flanders (Belgium): baseline
and first year results. Furopean Journal of Paediatric Dentistry
2, 87-96.

BREZGER, A. AND LANG, S. (2006). Generalized structured ad-
ditive regression based on Bayesian P-splines. Computational
Statistics € Data Analysis 50, 967-991. MR2210741

FAHRMEIR, L. AND LANG, S. (2001). Bayesian semiparametric re-
gression analysis of multicategorical time-space data. Annals of
the Institute of Statistical Mathematics 53, 11-30. MR1820949
IBRAHIM, J. G., CHEN, M. AND SINHA, D. (2001). Bayesian Sur-
vival Analysis. Springer, New York. MR1876598

GIiLks, W. R. AND WILD, P. (1992). Adaptive rejection sampling
for Gibbs sampling. Applied Statistics 37, 337—-348.

GOMEZ, G., CALLE, M. L., OLLER, R. AND LANCOHR, K. (2009).

(28]

29]

(30]

(31]

Tutorial on methods for interval-censored data and their imple-
mentation in R. Statistical Modelling 9, 259-297. MR2751307
LINDLEY, D. V. (1965). Introduction to Probability and Statistics
from a Bayesian Viewpoint, Part 2, Inference, Oxford University
Press. MR0168084

LEeE, P. M. (2012). Bayesian Statistics: An Introduction, 4th Edi-
tion, Wiley. MR3237439

SimpsoN, D., RUE, H., RIEBLER, A., MARTINS, T. G. AND SOR-
BYE, S. H. (2017). Penalising model component complexity: a
principled, practical approach to constructing priors. Statistical
Science 32, 1-28. MR3634300

HENS, N., WIENKE, A., AERTS, M. AND MOLENBERGHS, G. (2009).
The correlated and shared gamma frailty model for bivariate cur-
rent status data: An illustration for cross-sectional serological
data. Statistics in Medicine 28, 2785-2800. MR2750165

Yue Zhang

Department of Bioinformatics and Biostatistics
School of Life Sciences and Biotechnology
Shanghai Jiao Tong University

Shanghai 200240

PR China

E-mail address: yue.zhang@sjtu.edu.cn

Xia Wang

Department of Mathematical Sciences
University of Cincinnati

Cincinnati, OH 45221

USA

E-mail address: xia.wang@uc.edu

Bin Zhang

Division of Biostatistics and Epidemiology
Cincinnati Children's Hospital Medical Center
Department of Pediatrics

University of Cincinnati College of Medicine
Cincinnati, OH 45229

USA

E-mail address: Bin.Zhang@cchmc. org

Bayesian approach for clustered interval-censored data 465


http://www.ams.org/mathscinet-getitem?mr=1041396
http://www.ams.org/mathscinet-getitem?mr=1120475
http://www.ams.org/mathscinet-getitem?mr=1913959
http://www.ams.org/mathscinet-getitem?mr=1894381
http://www.ams.org/mathscinet-getitem?mr=2297486
http://www.ams.org/mathscinet-getitem?mr=1705161
http://www.ams.org/mathscinet-getitem?mr=1380810
http://www.ams.org/mathscinet-getitem?mr=2355294
http://www.ams.org/mathscinet-getitem?mr=3084025
http://www.ams.org/mathscinet-getitem?mr=2210741
http://www.ams.org/mathscinet-getitem?mr=1820949
http://www.ams.org/mathscinet-getitem?mr=1876598
http://www.ams.org/mathscinet-getitem?mr=2751307
http://www.ams.org/mathscinet-getitem?mr=0168084
http://www.ams.org/mathscinet-getitem?mr=3237439
http://www.ams.org/mathscinet-getitem?mr=3634300
http://www.ams.org/mathscinet-getitem?mr=2750165
mailto:yue.zhang@sjtu.edu.cn
mailto:xia.wang@uc.edu
mailto:Bin.Zhang@cchmc.org

	Introduction
	Model and the likelihood
	Prior and posterior
	Prior
	Posterior computation

	Simulation
	Real data analysis
	Discussion
	Appendix: details of birth move and death move
	Acknowledgments
	References
	Authors' addresses

