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Photographic diary: a new estimation approach to
PM2.5 monitoring
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Air pollution is a global environmental problem that has
been particularly severe in China over the past few years.
Among all air pollutants, PM2.5 is one of the most hazardous
to human health; therefore, monitoring and reducing PM2.5

pollution has become an issue of fundamental importance.
Despite the comprehensive air quality monitoring system
established by Chinese government, it is still a problem in
China. Developing an effective and more economical way
to monitor PM2.5 has become a pressing challenge. In this
study, we explore a promising solution: the possibility of
recovering PM2.5 values using a new haze indicator known
as a photographic diary. Based on the related literature,
our method is a cost-effective way to monitor PM2.5 at any
location and at any point in time with an acceptable accu-
racy. The government could use our method to conduct data
quality monitoring and detect outliers. We also constructed
features that the general public could use and interpret di-
rectly. Our method allows them to monitor air quality and
protect the environment using their cellphones.

Keywords and phrases: PM2.5 pollution, Haze indicator,
Photographic diary.

1. INTRODUCTION

Air pollution has recently become an important public
health problem worldwide (Carvalho-Oliveira et al., 2017).
Of all the air pollutants, PM2.5 is a key contributor, es-
pecially in China (Wang et al., 2017). PM2.5 refers to fine
particulate matter with aerodynamic diameter of 2.5 μm or
less (Zhang et al., 2017). PM2.5 is particularly hazardous
due to its extremely small size; it is small enough to en-
ter the human bloodstream, become lodged deeply in the
lungs, accumulate in the respiratory system, and eventu-
ally lead to severe health problems (Chowdhury and Dey,
2016). It also has harmful impacts on agriculture (Burney
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and Ramanathan, 2014), the climate (Huang et al., 2014),
ecosystems (Mahowald, 2011) and other aspects of the envi-
ronment in general (Guo et al., 2014). Therefore, monitoring
air pollutants, especially PM2.5 concentrations, has caught
the attention of governments and researchers (Liang et al.,
2015).

To this end, the Chinese government has established a
comprehensive air quality monitoring system. It costs a total
of 1.82 billion yuan in investments on the construction of the
monitoring system, according to Ministry of Environmen-
tal Protection of the People’s Republic of China (MEPC)
(MEPC, 2015). The system includes several air monitoring
stations that typically use a suite of sensors to monitor six
air pollutants, i.e., PM2.5, SO2, NO2, PM10, CO, and O3.
The monitoring stations make relatively accurate measure-
ments; however, they are usually sparsely and preferentially
located. Up to January 2015, the MEPC (www.zhb.gov.cn)
has PM2.5 data for 338 cities (Liang et al., 2016), account-
ing for only half the total number of cities in China. Fur-
thermore, since PM2.5 varies dramatically over short dis-
tances (Cheng et al., 2017), the number of monitoring sta-
tions within any given city is very insufficient. For example,
Beijing–a city with a population of more than 20 million
and a land area of 16,410 km2 (Zhao, 2016), has only 12
state-controlled monitoring stations. Therefore, developing
an effective and economical way to monitor PM2.5 has be-
come an important and challenging problem.

Various alternatives have been proposed as solutions in
past studies; these can be classified as direct and indirect
methods. The direct methods aim to develop low-cost sen-
sors to monitor air quality (Alvarado et al., 2015; Gao et al.,
2016). Although these kinds of sensors can be deployed on a
large scale and record data in real time, the accuracy of their
measurements need to be further improved (Chen et al.,
2017). For the indirect methods the use of imaging data has
been widely adopted. One type of imaging data used are re-
motely sensed satellite images, which are global images ac-
quired from satellites (Wang and Christopher, 2003). Many
researchers rely on them to estimate ground-level PM2.5 (Lin
et al., 2015). However, such images have relatively low spa-
tial and temporal resolutions (Levy et al., 2013; Crosson
et al., 2012). They are also affected by unstable meteorolog-
ical or geographical conditions (Ma et al., 2014).

Compared to this, ground photos are more easily to ob-
tain at any given time or place. They can be conveniently

http://www.intlpress.com/SII/


obtained using a cellphone or surveillance camera. There-
fore, the possibility of estimating PM2.5 values from ground
photos is worth exploring. Mao et al. (2014) estimate the
haze factor using the atmospheric scattering model. Li et al.
(2015) make further improvements by considering both the
transmission and depth. However, the ground photos they
used were taken at different sites; therefore, large visual vari-
ations in the scenes might cause significant problems with
estimation accuracy. In our work, ground photos are taken
automatically by a camera fixed on the window of an office
at Peking University; therefore, our photos share a back-
ground and only the difference in air quality causes a dif-
ference in the photos. The photos we analyzed were taken
hourly from 08:00 to 12:00 from December 20th, 2016 to
March 9th, 2017. These photos constitute our photographic
diary data, and some of them are displayed in Figure 1 and
Figure 2. As it is expected, photos taken when air quality
was good are typically clear; see Figure 2(a). In contrast,
photos taken under poor air quality conditions are likely to
be vague; see Figure 2(b). This suggests that PM2.5 values
could be estimated from photographic diary data with rea-
sonable accuracy.

Figure 1. There were 100 photos in our photographic diary.
Each photo showed a playground, a close view of cars, and
the faraway mountain. The diary can provide an intuitive

understanding of air quality in Beijing.

Therefore, in this work, we propose a linear regression
method to estimate PM2.5 values with that data and con-
struct several meaningful features derived from it. The first
feature is the proportion of blue pixels, where the color
was carefully defined according to HSI space (Gonzalez and
Woods, 2006). This was done because of the intuition that
a blue sky often indicates a good air quality. As Figure 2
shows, the sky is very blue when the PM2.5 value is low.
The second feature is inspired by the idea of Sure Indepen-
dence Screening (SIS); further discussion of this idea can be
found in Fan and Lv (2008). SIS is a very well-known idea
and has many extensions. Here, we take each pixel as a vari-
able and select the one most correlated with PM2.5. To the

Figure 2. A view from an office at Peking University, showing
different air quality days. They share the same background

but are very different in terms of other details. In the
Figure 2(a), every detail of the faraway trees and mountains
can be seen where the PM2.5 value is 5. In the Figure 2(b),
hardly any detail can be seen when the PM2.5 value is 366.

best of our knowledge, very few researchers have estimated
PM2.5 in this way. The third feature considers air clarity by
transmission, calculated according to the atmospheric scat-
tering model (He et al., 2011). This model describes the
formation of a hazy image as a result of atmospheric inter-
action between particulate matter and light. The light from
the scene will become very attenuated before reaching the
camera due to the scattering and absorption of the haze par-
ticles. Therefore, we use the clarity feature to measure the
loss of such a visual effect.

Our paper provides three major contributions. Firstly,
our method is cost effective. The data used can be collected
easily either by mobile devices (e.g., cellphones) and/or
surveillance cameras, any of which are cheap. Secondly,
our method uses photographic diary data, which is high-
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resolution at any location and point in time. This is be-
cause the devices that produce the photographic diary data
could theoretically cover any place in which human activity
occurs. Finally, our method is reasonably accurate to an ac-
ceptable level. In terms of real data analysis, our model per-
forms competitively when compared to some state-of-the-art
methods. It is the simplest one that offers the best data in-
terpretability.

The rest of this paper is organized as follows. Section 2
introduces notations and features and is then followed by
a descriptive analysis of the latter. In Section 3, we present
our model results and compare it with those from some other
methods. We also demonstrate a potential application of our
model. We conclude this article with some interesting topics
for future study in Section 4.

2. DATA AND DESCRIPTIVE ANALYSIS

2.1 Introduction to the data

The PM2.5 values we collected were measured by
the state-owned WanLiu monitoring station (see the
Beijing Municipal Environmental Monitoring Center
(http://www.bjmemc.com.cn/) for more details). The
histogram of PM2.5 measurements is given in Figure 3(a).
It shows that all PM2.5 values are positive and that the
distribution is heavily skewed. Therefore, we conducted a
log transformation for the PM2.5 values as the response
variable of interest. The distribution of these values is
given in Figure 3(b), which shows an approximately
symmetric distribution. We define the response vector
as Y = (Y1, Y2, . . . , YT )

� ∈ R
T with T = 206, and Yt

corresponds to the log transformed PM2.5 value measured
at time point t.

Figure 3. Left-hand panel: the histogram of PM2.5

concentration, showing a heavily right-skewed distribution.
Right-hand panel: the histogram of the response variable,

showing an approximately symmetric distribution. The skewed
distribution in the latter is eliminated using logarithmic

transformations.

Let D = {(DR
t , D

G
t , D

B
t ) : 1 ≤ t ≤ T} be the pho-

tographic diary data, where DR
t (DG

t , DB
t ) is the red

(green, blue) pixel matrix obtained at time point t, then
DR

t = (DR
t,mn) ∈ R

M×N , where DR
t,mn ∈ [0, 1] with

1 ≤ m ≤ M(M = 1280) and 1 ≤ n ≤ N(N = 960).
DG

t and DB
t are defined in a similar manner. We follow

Hamilton (2004) and define a gray pixel matrix as Dt =
0.299DR

t +0.587DG
t +0.114DB

t . Next, we define a hue pixel
matrix as DH

t = (DH
t,mn) ∈ R

M×N , following Gonzalez and

Woods (2006). Here, DH
t,mn = θ if DB

t,mn ≤ DG
t,mn, and

DH
t,mn = 360− θ in other instances, where

θ=cos−1

[
{(DR

t,mn−DG
t,mn)+(DR

t,mn−DB
t,mn)}

2{(DR
t,mn−DG

t,mn)
2+(DR

t,mn−DB
t,mn)(D

G
t,mn−DB

t,mn)}
1
2

]
.

The first feature is called the “Blue Pixel Proportion”
(BPP). It measures the amount of blue in a photo. A photo
taken when air quality is good should generally include a sky
with a large number of blue pixels. In contrast, a photo taken
when air quality is bad would include a sky with a smaller
number of blue-colored pixels. According to the standard-
ized X11 color names (the X.org source code, 1989), we de-
fine a pixel (m,n) as “sky blue” if the value of its hue is
DH

t,mn = 197◦. In practical terms, there are few pixels whose
hue values equal exactly 197◦. Therefore, we define a pixel
(m,n) ∈ Ω to be a “blue pixel” ifDH

t,mn ∈ [197◦−a, 197◦+b],
where a, b > 0 are both tuning parameters selected using the
marginal two-fold cross-validation method1. Our empirical
results suggest the best choice is about a = 37 and b = 35.
The tuning parameters a and b are selected using the cross-
validation method. This lead to the first feature, the BPP,
to be BPP = (BPP1, BPP2, . . . , BPPT )

� ∈ R
T , where

BPPt =
1

MN

∑
(m,n)∈Ω

1
{
DH

t,mn ∈ [197◦ − a, 197◦ + b]
}
,

and 1(·) is the indicator function.
The second feature is called the “Most Correlated Pixels”

(MCP) and is inspired by SIS (Fan and Lv, 2008). We con-
sider each pixel as a variable and look for those that are the
most correlated with our response variable of interest. For
a pixel (m,n) ∈ Ω = {(m,n) : 1 ≤ m ≤ M, 1 ≤ n ≤ N}, we
define Dmn = (D1,mn, D2,mn, . . . , DT,mn)

� ∈ R
T as the the

grey value vector across the time period. Then the absolute
value of the sample correlation coefficient between the pixel
(m,n) and the response variable Y is

|ρ̂(Dmn, Y )| =

∣∣∣∣∣∣
∑T

t=1(Dt,mn −Dmn)(Yt − Y )√∑T
t=1(Dt,mn −Dmn)2

∑T
t=1(Yt − Y )2

∣∣∣∣∣∣ ,
where Dmn =

∑T
t=1 Dt,mn/T and Y =

∑T
t=1 Yt/T . We de-

fine (m(i), n(i)) as the pixel associated with the i-th largest

1We first randomly split the data into two equal-sized parts. One was
used for training the other for testing. Next we constructed a BPP
feature for a given value of a and b. We then conducted a marginal
regression on the training dataset with the log transformed PM2.5

values as the response variable and BPP as the predictor variable.
This lead to a univariate regression model. The corresponding squared
prediction error is then computed, and the (a, b) combination with the
lowest prediction error is selected.
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value of {|ρ̂(Dmn, Y )| : (m,n) ∈ Ω}, where 1 ≤ i ≤ MN .
This leads to MCP = (MCP1,MCP2, . . . ,MCPT )

� ∈ R
T ,

where MCPt =
∑I

i=1 Dt,m(i)n(i)
/I with I = 500.

The third feature is called the “Air Clarity Quantile”
(ACQ) and it concerns air clarity. We follow He et al. (2011)
and, for each pixel (m,n) ∈ Ω, define air clarity as

Tt,mn = 1− min
(x,y)∈Φ(m,n)

{
min

C∈{R,G,B}

(
DC

t,xy

A

)}
,

where

A = max

{
min

(x,y)∈Φ(m,n)

(
min

C∈{R,G,B}
DC

t,xy

)}
∈ R

M×N .

A is the atmospheric background light and Φ(m,n) =
{(x, y) : |x − m| ≤ 15, |y − n| ≤ 15, x ≥ 1, y ≥ 1}
is a local patch centered at (m,n). Air clarity refers to
the portion of light that reaches the camera without be-
ing scattered and helps distinguish cloudy days from hazy
days. On hazy days, the increased PM2.5 concentration can
change the light refraction and reduce Tt,mn. In contrast,
Tt,mn is high on a cloudy day. This leads to the third fea-
ture becoming ACQ = (ACQ1, ACQ2, . . . , ACQT )

� ∈ R
T ,

where ACQt = Q̂q(Tt,mn), the q-th sample quantile of
{Tt,mn : (m,n) ∈ Ω} with q = 0.3. The quantile q is a
tuning parameter selected using the marginal two-fold cross-
validation method2.

2.2 Descriptive analysis of the features

Descriptive statistics for the features are shown in Ta-
ble 1. For the BPP, the mean is 0.35, which is reasonably
close to its median of 0.36. The maximum is 0.60, which
was recorded at 08:00 on March 9th, as Figure 4(a) shows.
The corresponding PM2.5 value is 13, which suggests that
the air quality was good. The minimum value is 0.03, which
was recorded at 08:00 on January 5th, as Figure 4(b) shows.
The corresponding PM2.5 value is 280, which suggests the
air quality was bad. Next, we consider the MCP feature.
The maximum value is about three times the minimum. We
present a heatmap in Figure 5 to show the positions of the
most correlated pixels. It uses white to black to represent
different |ρ̂(Dmn, Y )| values from 0 to 1. The positions of
the most correlated pixels, which are around trees, are plot-
ted in the darkest color. The MCP of Figure 6(a) is 0.28,
which is much smaller than that of Figure 6(b) (i.e., 0.47).
This reveals that severe air pollution leads to a large MCP.
Furthermore, if the grey values of the pixels are larger, the

2First we randomly split the data into two equal-sized parts. One was
be used for training and the other for testing. Next, we constructed an
ACQ feature for a given q. We then conducted a marginal regression on
the training dataset, with the log transformed PM2.5 concentration as
the response variable and ACQ as the predictor variable. This lead to
a univariate regression model. Then corresponding squared prediction
error is computed, after which the tuning parameter q with the lowest
prediction error is selected.

corresponding pixels would appear more white. This con-
clusion is consistent with the visual intuition from Figure 6.
A similar phenomenon is also observed for the third feature,
ACQ. The ACQ of Figure 4(a) is 0.39, which is much larger
than the ACQ of Figure 4(b) (i.e., 0.20). This indicates that
the ACQ is larger on a better air quality day. The range
of the ACQ is from 0.09 to 0.55, suggesting that the ACQ
changes significantly over time.

Table 1. Summary statistics: the mean, standard deviation
(SD), minimum (Min), median, and maximum (Max) for each

feature

Feature Mean SD Min Median Max

Blue Pixels Proportion (BPP) 0.35 0.13 0.03 0.36 0.60
Most Correlated Pixels (MCP) 0.29 0.08 0.18 0.26 0.54
Air Clarity Quantile (ACQ) 0.28 0.10 0.09 0.27 0.55

Figure 4. The upper photo corresponds to the largest BPP,
0.60. The lower photo corresponds to the smallest BPP, 0.03.
The ACQ of the upper panel, 0.39, is much larger than the

ACQ of the lower panel, 0.20.
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Figure 5. The heatmap uses different colors to represent
varying |ρ̂(Dmn, Z)| values for different pixels. It shows the

color and the position of the most correlated pixels.

According to the Technical Regulation on Ambient Air
Quality Index published by the MEPC, we classified the
continuous PM2.5 values into four different categories A, B,
C, and D, representing good, moderate, unhealthy for sen-
sitive groups, and very bad air quality, respectively. Further
detailed descriptions are given in Table 2. We used boxplots
to further explore the potential relationship between each
feature and PM2.5 value; see Figure 7.

For Figure 7(a), the median of BPP decreases monotoni-
cally as the air quality worsens from A to D. Among all the
categories, category D has the least variability. This shows
that when photos are taken when air quality is very bad,
the proportion of blue pixels in these photos are very simi-
lar. In Figure 7(b), the MCP is positively correlated with the
PM2.5 value; specifically, there is a monotonically increasing
trend between the median of the MCP and the categories A
to D. Figure 7(c) shows a monotonically decreasing pattern
between the median of the ACQ and the different categories
A to D. Among all the categories, category A has a much
larger median ACQ value than the other categories do. This
suggests that a considerable proportion of light can be easily
scattered by PM2.5 on a hazy day. Therefore, ACQ is effec-
tive at distinguishing between haze-free and hazy weather.

3. THE MODEL AND POTENTIAL
APPLICATIONS

3.1 Regression analysis

To model the relationship between the PM2.5 value and
the model features, we used the following linear regression:

(1) Y = β0 + β1BPP + β2MCP + β3ACQ+ ε,

where β0 is the intercept, βi is the coefficient corresponding
to the i-th feature with 1 ≤ i ≤ 3, and ε is the random error
term. All the features were standardized to have a mean

Figure 6. The upper photo, taken when the air quality was
good, corresponds to an MCP of 0.28; the lower photo, taken
when the air quality was bad, corresponds to an MCP of 0.47.
The view of the corresponding pixels in the lower photo is

whiter and more likely to disappear than it in the upper one.

of 0 and a variance of 1. We conducted an ordinary least
squares estimation, and the estimated coefficients are shown
in Table 3. The corresponding standard errors, t-values, and
p-values are also reported. The adjusted R-squared value of
our model is 0.79.

All coefficients are significant at the 0.05 level. The signs
of the estimated coefficients also met our expectations. The
estimated coefficient of the first feature, BPP, in particu-
lar, is −0.37 (SE=0.08). This means that a rise in BPP is
often accompanied by a decline in PM2.5 value when the ef-
fects of the other features are controlled for, because a larger
proportion of blue pixels often indicates better air quality.
The estimated coefficient of the second feature, MCP, is 0.82
(SE=0.07). This suggests that MCP is positively correlated
with PM2.5 values when all the other independent variables
are held constant; in other words, the PM2.5 values increase
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Table 2. PM2.5 Value Scale

Level
PM2.5 Concentration
in China (μg/m3)

Air Quality
Grade

Category Health Implications Cautionary Statement (for PM2.5 )

1 0∼35 Good A
Air quality is considered

satisfactory, and air pollution
poses little or no risk.

None.

2 35∼75 Moderate B

Air quality is acceptable;
however, for some pollutants

there may be a moderate health
concern for a very small number
of people who are unusually
sensitive to air pollution.

Active children and adults,
and people with respiratory

conditions such as asthma, should
limit prolonged outdoor exertion.

3 75∼115
Unhealthy for

Sensitive Groups
C

Members of sensitive groups
may experience health effects.

The general public is not
likely to be affected.

Active children and adults,
and people with respiratory

conditions such as asthma, should
limit prolonged outdoor exertion.

4 115∼150 Unhealthy

D

Everyone may begin to
experience health effects;

members of sensitive groups
may experience more
serious health effects.

Active children and adults,
and people with respiratory
conditions such as asthma,

should avoid all outdoor exertion;
everyone else, especially children,
should limit outdoor exertion.

5 150∼250 Very Unhealthy

Health warnings of emergency
conditions. The entire
population is more
likely to be affected.

Active children and adults,
and people with respiratory
conditions such as asthma,

should avoid all outdoor exertion;
everyone else, especially children,
should limit outdoor exertion.

6 More than 250 Hazardous
Health alert: everyone
may experience more
serious health effects.

Everyone should avoid
all outdoor exertion.

when the MCP values increase. For the third feature, ACQ,
the estimated coefficient is −0.16 (SE=0.07). This suggests
a negative correlation between ACQ and PM2.5 value when
the effect of other features was adjusted for. As the ACQ
value increases, the corresponding PM2.5 value decreases,
revealing that clearer air often suggests better air qual-
ity.

Table 3. Regression coefficients of the model, estimated with
a small sample of T=206 and the corresponding standard

errors, t-values, and p-values

Feature
Estimated
Coefficient

Standard
Error

t-value p-value

Intercept 3.52 0.04 79.35 < 0.001
Blue Pixels Proportion
(BPP)

-0.37 0.08 -4.73 < 0.001

Most Correlated
Pixels (MCP)

0.82 0.07 12.57 < 0.001

Air Clarity Quantile
(ACQ)

-0.16 0.07 -2.28 0.024

Adjusted R squared 0.79
P-value of F-Test < 0.001

3.2 Competing methods

For comparison purposes, this study also considered sev-
eral competing methods. Prediction accuracies were eval-
uated using 5-fold cross validation. The dataset was di-
vided equally into five subsets and the method was re-
peated five times. Each time, four subsets were put together
to form a training set while the other was used as a test
set. The observed values in the test set were defined as
Y ∗ = (Y ∗

1 , Y
∗
2 , . . . , Y

∗
T∗)� = (Yt1 , Yt2 , . . . , YtT∗ )

� ∈ R
T∗

,
where 1 ≤ T ∗ ≤ T , and 1 ≤ t1 ≤ t2 ≤ · · · ≤ tT∗ ≤ T .
Then we defined the corresponding model predicted val-
ues as Ŷ ∗ = (Ŷ ∗

1 , Ŷ
∗
2 , . . . , Ŷ

∗
T∗)� = (Ŷt1 , Ŷt2 , . . . , ŶtT∗ )

� ∈
R

T∗
. Therefore, we defined the out-sample R squared value

as 1 −
∑T∗

t=1(Ŷ
∗
t − Y ∗

t )
2/

∑T∗

t=1(Y
∗
t − Ȳ ∗

t )
2, where Ȳ ∗

t =∑T∗

t=1 Y
∗
t /T

∗. The average value of all five trials was denoted
R2

out. We repeated the process randomly a total of 500 times
and compare the R2

out values of the different methods. The
specific competing methods tested were gradient boosting,
support vector regression, random forest, and a neural net-
work. The R2

out values are summarized in the boxplot in
Figure 8, which shows that the performances of the differ-
ent methods are comparable. However, the linear model (1)
is clearly the simplest one with the best interpretability.
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Figure 7. Boxplots of the three features for the different air
quality categories A, B, C, and D, which represent good,
moderate, unhealthy for sensitive groups, and very bad air

quality, respectively.

Figure 8. The boxplot of the out-sample R squared value for
different models. From left to right, the methods on the
horizontal axis are linear regression, gradient boosting,

support vector regression, random forest, and neural network,
respectively.

3.3 Detecting outliers

One potential application of this model is in the detec-
tion of outliers, for which we used a residual plot. As shown
in Figure 9, we found that there was one potential outlier,
which is a value that seems to have been recorded incor-
rectly. This outlier was generated by the 89th photo, which
was taken at 11:00 on January 17, 2017 (see Figure 10).
The PM2.5 value actually recorded was 7, but the model es-
timated a PM2.5 value of 105; there was a clear discrepancy
between the two, and we were inspired to investigate the
reason for it.

Figure 9. The residual plot of the linear model. The 89th
photo appears to have been estimated incorrectly, as there is
a clear discrepancy between the model estimated PM2.5 value

and the actual value recorded.

Figure 10. The photo taken at 11:00 on January 17, 2017.

Firstly, we accessed a weather report website
(www.tianqi.com) to check the weather on that par-
ticular day. The data on this site comes from the China
Meteorological Administration. We found that this day was
a hazy day, as recorded by the weather report. Secondly, we
constructed a time series plot for the hourly PM2.5 value
recorded at WanLiu station on that day; see Figure 11, and
noticed that all recorded PM2.5 values were far above 100
except for the time point in question. Finally, we studied
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all the stations within 30 km around WanLiu Station. We
found that all the PM2.5 values recorded were far above 100,
with a minimum of 129 measured at ZhiWuYuan station;
see Table 4 for details. Therefore, all evidence suggests that
the estimated PM2.5 value seems realistic.

Figure 11. A time series plot for the PM2.5 value recorded for
24 hours on January 17, 2017. There is an outlier at 11:00.

Table 4. PM2.5 values from air quality monitoring stations
around WanLiu Station. Letters “a” to “p” represent the
following different stations, respectively: BeiBuXinQu,

ZhiWuYuan, AoTiZhongXin, XiZhiMenBei, MenTouGou,
GuanYuan, DongSi, NongZhanGuan, DongSiHuan, GuCheng,

FengTaiHuanYuan, WanShouXiGong, YongDingMenNei,
TianTan, and NanSanHuan.

Site PM2.5 Site PM2.5 Site PM2.5

a 134 g 144 l 169

b 129 h 155 m 161

d 163 i 143 n 149

e 159 j 147 o 142

f 133 k 140 p 154

4. CONCLUSION

In this study, we explored an approach to estimate and re-
cover PM2.5 values from a photographic diary. Our method
provides a cost-effective way to monitor PM2.5 values at
any location and any time, with acceptable accuracy, when
compared to those found in the related literature. The gov-
ernment can use our method to detect outliers and manage
data quality. The general public can also directly interpret
the features we constructed, giving them a chance to moni-
tor air quality and protect the environment using their cell-
phones.

To conclude this paper, we discuss the limitations of our
work, which could also direct a number of interesting topics
for future study. The firstly limitation is that our photos
were taken only in the morning. This was because the cam-
era was fixed on a west-facing window, and light reflections
from the window glass may have affected the quality of pho-
tos taken in the afternoon. In the future, we may add a po-
larizing mirror to the camera lens to reduce the reflection.

Then we can use more photos taken at more points in time.
Secondly, our model only analyzed photos taken at one fixed
location; however, in the future, it can be extended to an-
alyze those taken at different locations nearby. Thirdly, we
used only three explanatory variables here; in the future, we
may consider using additional explanatory variables related
to PM2.5. For example, meteorological conditions, weather
data, and seasonal factors have been proven important in
previous studies (Liang et al., 2015), and we may integrate
these variables into our model for better accuracy. Lastly, we
only estimated PM2.5 in this work. Our method has actually
provided a promising approach to estimate the concentra-
tions of other pollutants. We believe it could still work as
an effective evaluation method in situations where the main
pollutant is PM10. Furthermore, this method could provide
a promising way to build a system to comprehensively eval-
uate several air pollutants.
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