STATISTICS AND ITS INTERFACE Volume 12 (2019) 331-344

A case study for Beijing point of interest data

using group linked Cox process

Yu CHEN, Rul PAN®T, RoNG GUAN?, AND HANSHENG WANG?

We develop in this article a group linked Cox process
model for analyzing point of interest (POI) data. We fo-
cus on a Beijing POI dataset, which contains more than
22 thousand POls in Beijing urban area. These POIs have
been divided into many small categories (e.g., restaurants,
movie theaters, hospitals, universities and subway stations)
by the digital map maker (e.g., Baidu Map). Empirical anal-
ysis provides substantial evidence that POIs across different
categories could be highly correlated so that those small
categories can be further grouped. To this end, we develop
here a group linked Cox process model. Specifically, within
each group, we model POI locations by a standard Cox pro-
cess so that the POI clustering effect can be well described.
Furthermore, the idea of bivariate linked Cox process is bor-
rowed and further extended to its multivariate counterpart.
Consequently, a more significant number of POI categories
can be accommodated within each group. To estimate the
model, a minimum contrast type method is developed, and
an automatically grouping method is provided. Simulation
studies are conducted to validate the proposed methodol-
ogy. At last, we apply our method to the aforementioned
real dataset, and a total of 4 groups are uncovered. This
leads to the discovery of some urban-planning-related fea-
tures.

KEYWORDS AND PHRASES: Cox Process, Group Linked Cox
Process, Location Based Service, Point of Interest.

1. INTRODUCTION

A point of interest (i.e., POI) is a specific point location
that someone may find useful or interesting, such as hospi-
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Figure 1. A map with different categories of POls.
Mapmakers mark different POls with different icons (e.g.,
forks and knives for restaurants) on the map, so that users

can quickly find their target places.

tals, restaurants, tourist attractions, universities, and many
others; see Figure 1 for a quick understanding. POIs are usu-
ally generated by digital map makers like Google Map and
Baidu Map. In the meanwhile, users can upload their cus-
tomized POIs through mobile apps, such as Facebook and
Sina Weibo. A POI specifies, at the minimum, the latitude
and longitude of the point location. Names and brief de-
scriptions (e.g., category) for POIs are usually available, and
other information such as tags and telephone numbers may
also be attached. POI data are one of the most fundamental
component for location-based service (LBS), such as restau-
rant recommendations of Yelp.

POI data have received diverse research interests recently,
and its applications range broadly across many fields. In the
field of urban planning, [21] and [19] use POI data to dis-
cover regions of different functions in a city, such as res-
idential and high-tech areas. This provides people with a
quick understanding of a sophisticated city. POI data are
also powerful in studying human activities. For example,
[16], [11] and [3] investigate human mobility using POlIs.
They combine GPS trace information and POI data to un-
cover human daily patterns and transitions between differ-
ent activities. Other than that, POI data are of great use in
the study of environmental problems. [23] and [9] use POI
data to help infer the urban air quality. The basic idea is
that some categories of POIs may have a relationship with
air quality, namely, chemical factories and power stations.
Furthermore, POI recommendation is a new topic in the mo-
bile Internet era, where restaurants or tourists attractions
are recommended to each user based on his/her historical
visitations; see [22], [8], [7] and [20]. POI recommendation
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is widely used in many LBS applications like Foursquare,
Gowalla, and Facebook Places. To summarize, POI data are
exploited by many scholars and proved to be useful in many
fields.

Typical POI data exhibit several unique characteristics.
First, POIs are equipped with latitude and longitude infor-
mation, so we model them as spatial point processes. Second,
POIs are tagged with categories, such as restaurants, hos-
pitals, and many others. In our Beijing POI dataset, more
than 22 thousand POIs are assigned to 30 different cate-
gories. Third, within the same category, POIs typically ex-
hibit a spatial clustering pattern. For example, restaurants
are likely to be clustered together. Fourth, different POI cat-
egories are often highly correlated. For example, bus stops
(one POI category) are usually close to residential areas
(another POI category). There are two challenges to ana-
lyze POI data, The first is that the number of categories
is relatively large, and there are complex spatial and cross-
category correlations. Second, the number of POlIs is enor-
mous, which could lead to massive computational cost.

To handle these challenges, we propose here a group
linked Cox process (GLCP). GLCP is a generalization of the
linked Cox process (LCP) proposed by [5]. The Cox process
is a commonly used spatial point process allowing for the
clustering effect, and its bivariate extension linked Cox pro-
cess further provides dependence between component pro-
cesses. In LCP, the first component follows a univariate Cox
process, and the intensity of the second component is the
product of a constant and the same realization as the first
one. LCP leads to co-located concentrations of both type
events, and it is widely used in zoology and botany studies
when the presence of one species is of benefit to another [14].

The newly proposed GLCP is a multivariate extension of
LCP but with a group structure. For instance in the POI
dataset, GLCP assumes that all POI categories can be di-
vided into several groups. Within each group, all POI cate-
gories are “linked”, like LCP. To estimate the model, a min-
imum contrast type method [4] is developed, and an auto-
matically grouping method is proposed. Simulation studies
are conducted to demonstrate the finite sample performance
of the methodology. We then apply our method to the afore-
mentioned real dataset, and a total of 4 category groups are
uncovered. This leads to the discovery of numerous urban-
planning-related features.

In the literature, many scholars have studied the mul-
tivariate spatial point process and the cross-process corre-
lation. [15] propose summary statistics to quantify the as-
sociation between two processes, and we focus on how to
simplify the relationship between multiple processes. [12]
use group lasso techniques to detect significant interactions
among component process, and we try to simplify the inter-
actions through a clustering approach. [17] assume that the
component processes are generated by linear combinations
of ¢ independent latent random fields. In contrast, GLCP
assumes each component process belongs to one latent ran-
dom field (i.e., we assume group structure) and allow the
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latent random fields to be dependent. Furthermore, [17] uses
cross-validation to determine ¢ and GLCP provides a path
of grouping via a hierarchical clustering type method.

We focus on the Beijing POI data and organize the rest
of this article as follows. We first introduce the Beijing POI
dataset in Section 2. In Section 3 we describe how to develop
the GLCP model using the spatial point process technolo-
gies. Its statistical properties and estimation methods are
discussed. Some simulation studies are conducted in Section
4. Finally, we provide a detailed POI data analysis using the
GLCP model in Section 5.

2. THE POI DATASET

2.1 Data description

All data used in this study are obtained from Sina Weibo.
Sina Weibo is a Twitter type social media website in Chi-
nese. It maintains a huge POI database. When a user posts a
tweet, it will automatically tag the tweet with a POL. If the
tagged POI is not satisfactory, the user is allowed to create
its own customized POI and report it to Sina Weibo, which
enables Sina Weibo to update its POI database regularly.
Also, data are obtained from Sina Weibo’s AP1. API is the
abbreviation of Application Programming Interface, which
is a set of clearly defined methods for communication be-
tween various software components. Sina Weibo’s open API
makes this POI database publicly available.

Our dataset contains 22,691 POIs in Beijing urban area.
The latitude of these POIs ranges from 39°48'N to 40°05'N,
and the longitude ranges from 116°18'E to 116°58'E. The
whole region is about 667 square kilometers, and the S50
Road in Beijing encircles it. The S50 Road is also called the
5th Ring Road, and it is a highway encircling Beijing. It is
about 10 kilometers away from the city center; see Figure 2
for the outermost circle.

The dataset contains the following essential information.
For each POI, the latitude, longitude and a category tag
are available. The latitude and longitude are with GCJ-02
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Figure 2. Ring roads in Beijing and the outermost circle
marked by the dotted line is S50 Road. The whole region
inside the S50 Road is about 667 square kilometers.



Figure 3. The heat map of POls in Beijing. The locations of
Haidian and Chaoyang District are marked by a black dotted
lines.

coordinates, which is formulated by the Chinese State Bu-
reau of Surveying and Mapping (http://www.sbsm.gov.cn/).
Both latitude and longitude are accurate to 5 decimal places.
Holding latitude at 40°N, every 1 x 10~° difference in lon-
gitude is approximately equivalent to 0.8 meters on earth
surface. Those POIs have been classified into 30 different
categories by the map vendor, and the categories include,
for instance, primary schools, banks, companies, and hos-
pitals. See Table 4 for a detailed list together with their
frequencies and relative proportion.

2.2 Clustering pattern and cross categories
dependence

For a quick understanding, we approximately treat the
urban area within Beijing 5th Road as a rectangle. We then
split it into a total of 40 x 40 = 1600 grids, and plot a heat
map based on kernel density estimation of the number of oc-
currences per grid. As shown in Figure 3, some POI clusters
(regions with the bright color) can be easily detected. The
largest cluster lies in Chaoyang District in Eastern Beijing.
Chaoyang District serves as the Central Business District
(CBD) where many international companies are headquar-
tered. The second largest center is in the middle of Bei-
jing, with attractions such as Tiananmen Square. The third
largest cluster lies in Haidian District in Northwestern Bei-
jing, where many top Chinese universities and I'T companies
are located in this area.

In Figure 4, heat maps for 2 x 3 = 6 POI categories are
provided. It can be found that the distribution patterns of
the top three categories are highly correlated since they have
similar clustering centers and spreading trends. The bottom
three also have similar patterns. We call this phenomenon
POI categories grouping effect.

Urban functional zoning might cause the POI categories
grouping effect. In many cities, land use is divided by its
function [6]. A city may have several functional zones, for
example, an industrial zone, a recreational zone, and a res-
idential zone, and the POI categories are different in differ-
ent functional zones. In order to analyze the POI data, we

propose a new point process model based on the above char-
acteristics of POI data, and exploit the grouping effect to
simplify the cross categories dependence. In the next chap-
ter, we formally describe this model.

3. THE GROUP LINKED COX PROCESS

3.1 Preliminaries

As shown in the previous subsection, strong clustering
and grouping effects are detected in our real data. Thus,
it is of interest to develop a statistical model, which can
naturally accommodate those interesting patterns. To this
end, we develop here a novel model, called group linked Cox
process.

We use the spatial point process to represent the POI
points on the map. Mathematically, let X be a spatial point
process in R?, where the origin is denoted by O, B? be the
Borel g-algebra on R?, and v be the Lebesgue measure. For
any set A € B2, let X(A) be the number of points located in
A. In this paper, we assume all point processes are simple,
that is Vs = (s1,s2) € R?, X({s}) € {0,1}. In other words,
we assume that there is at most one POI on the same lati-
tude and longitude. Denote A(-) and A®)(-,-) to be the first
and second order intensity functions.

Let {¥(s),s € R?} be a non-negative random field. A
point process X is Cox process [1] directed by ¥, if condi-
tionally on ¥ = 9, X is an Poisson process with intensity
function . Linked Cox process [5] is a bivariate Cox process
with linked intensity functions, satisfying ¥, = w1, where
11 and vy are intensity functions corresponding to two dif-
ferent component processes, and w is a positive constant.

3.2 The GLCP model

We next introduce the newly proposed GLCP model for
POI data. Let N be the total number of POI categories
and M be the number of groups, where M <« N. Let Z =
(Zy,-++, Zy) T € RM denote a M-dimensional log-Gaussian
random field. Accordingly, for any s € R?, denote the real-
ization of Z at location s as Z(s) = (Zy(s), -+, Zy(s)) " €
RM. Let p(s) = (1, - ,pum)’ = E(Z(s)) € RM and
Y = (Okyk,) = cov(Z(s)) € RM*M For any 1 < ky, ks < M,
we assume Ckl,kz (h) = E(Zkl (S) - Mkl)(ZkQ (S + h) - Mk2) =
p(R)ok, k,, where p(h) = exp{—p]/h||} is the spatial covari-
ance function. As one can see, Z is a second-order stationary
log-Gaussian process. In addition to that, its cross covari-
ance function is separable [10].

Next, conditional on Z, we generate a total of N spa-
tial point processes (denoted by X7, -, X ) as follows. Let
J(-) be a mapping from {1,--- ,N} to {1,---, M}. Simply
speaking, J(-) classifies each component point process (e.g.,
POTI of hospitals) to its corresponding group (e.g., residen-
tial functional zone). Conditional on Z, we model a compo-
nent point process X; as a Poisson process with conditional
intensity function given by

(1) Ai(8) = wi exp{Z7;)(s)},
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Figure 4. Heat maps of Cantonese cuisine (top left), Japanese cuisine (top middle), western food (top right), kindergarten
(bottom left), primary school (bottom middle), middle school (bottom right).

where w; is a positive scalar. For convenience define G(m) =
{i: J@#) =m} form e {1,---, M}. Simply speaking, G(m)
collects the indices of all the POI categories within group m.
For identification purpose, we require that max;cg(m)wi; = 1
for any 1 < m < M. As one can see, this model is an
extension of the classical bivariate linked Cox process model.

Take POI data as an example. We consider 30 POI cat-
egories as 30 different spatial point processes, which are in-
duced by M random fields, where M is to be estimated.
In the GLCP model, we link each process to exactly one
random field, i.e., we divide the 30 POI categories into dif-
ferent groups, but neither J(-) nor G(-) can be observed.
The grouping scheme needs to be inferred from the data.
In order to automate grouping POI categories, we exploit
the following two propositions of GLCP. The first proposi-
tion gives the relationship between the log-Gaussian random
field and the intensities of the point process.

Proposition 1. For each i, X; is stationary with first or-
der intensity function \; = w; exp{p g +U§(i)/2} and sec-
ond order intensity function )\1(2)(51, s2) = w? exp{2p7() +
0%} exp{oZ ;) exp(=Bls1 — s2|)}-

By Proposition 1, the first and second order intensity of
GLCP can be explicitly calculated. We find that larger p,,
and oy, values lead to larger values for both the first and

second order intensities because the mean of the latent log-
Gaussian process becomes larger. However, larger 8 value
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leads to smaller second order intensity, since the spatial de-
pendence of the latent log-Gaussian process becomes weak.
We next investigate the relationships among different pro-
cesses using cross K-functions [13].

Proposition 2. We consider two different scenarios.
Scenario 1. If the two spatial point processes (indexed by
i and j) come from the same group, that is i,j € G(m) for
some 1 <m < M, we then have

Kii(r) = Kij(r) = Kji(r) = Kj;(r)
- / exp {ow exp{—Bs|[}} ds;
B(O,r)

Scenario 2. If the two spatial processes are from two dif-
ferent groups, that is i € G(k1) and j € G(ka) with ky # ko,
we then have

Kiy(r) = / o, O s Bl ds.
B(O,r

By Proposition 2, we know that the cross K-functions
from the categories belonging to the same group should be
identical. This is not true if the categories are from different
groups. As we shall demonstrate later, this insightful find-
ing leads to an interesting and effective automatic grouping
method.



3.3 Estimation method

In this subsection, we propose a novel algorithm to auto-
matically group POI processes, which is based on the min-
imum contrast estimation method and hierarchical cluster-
ing. We first illustrate the estimation method for the GLCP
model, and then we describe the proposed grouping algo-
rithm.

3.3.1 Minimum contrast estimation

Recall that we have a total number of N categories, which
are indexed by 1 < i < N. We also assume that those cate-
gories can be assigned to different groups by an unobservable
J(+). In this subsection, we assume 7 is known and discuss
how to estimate J in the next subsection. We shall develop a
minimum contrast type method for estimating pu, 3, 8, and
Wi for every 1 < i < N. We estimate K-function K”( ) by

Kii(r) = Zslex Disrex, 10 < ls1 = s2f| < 7)/Xi(D),
( )/u( ). For the cross K-function, we

) ! ZsleXi ZSQEXJ' I(O < ||51 - SQH <

l
where \; =
have Kij(r) = (A
r)/v(D).

The theoretical solution K;;(r) is given in Proposition
2. We can then compare K;;(r) against its empirical coun-
terpart Kij(r) for arbitrary 1 < 4,57 < N. Specifically, a
contrast-type loss function can be constructed for each (4, j)
pair as

2 L= [ (k50 K40)

T1

where 0 < r; < ry < oo are two pre-specified constants.
Here p and ¢ are two tuning parameters, and (p, ¢) = (2,1/4)
has been suggested by [18]. Then, by summing over all pos-
sible (4,7) pairs, a combined loss function can be obtained
as
3) =L(%,8) =

Y. D Liy

1<k1,ko<M i€G (k1)
Jj€G(k2)

As one can see, £ is a function of ¥ and §. Accordingly,
they can be estimate by (275) = argminl(X, 8), and the
elements of 3 is denoted by 64,1 <4, < M.

Next, we estimate the first order intensity A; by i =
X:(D)/v(D), where D C R? is a pre-specified bounded re-
gion. Then, by Proposition 1, we know that i, = log(\;) —
log(w;) — 02,,,/2 for every i € G(m). By identification as-
sumption, we know that max;cg(m)wi; = 1. Let «* be the
index associated with the maximum w;-value. We then have
wi+ = 1 and A+ = max;eg(m) Ai- We thus further have y,, =
log(Ai=) — 02,,,/2 = log(max;cg(m) Ai) — 02 /2. Accord-
ingly, we can estimate fi,, = log(max;cg(m) Ai) — 62, /2.
Lastly, we can estimate w; by @; = ;\i/maxjeg(j@)) Aj.

3.3.2 The grouping algorithm

Our numerical studies confirm that the estimation
method proposed in the previous subsection works quite
well. However, it requires an important condition, that is
all the categories have been correctly assigned to their cor-
responding groups. For real data analysis, this is typically
unknown. Not only the group mapping function J(-), but
also the number of groups M. Determining the number of
groups and how the POIs are grouped becomes an essential
issue. To this end, we propose a novel grouping algorithm
as follows.

INITIALIZATION. The algorithm starts with the most com-
plicated model, where each category belongs to a different
group. In that case, the model reaches its greatest flexibil-
ity and thus the smallest loss value for £ in (3), which is
recorded by £, In this case, we define the mapping func-
tion J(© (i) = 4, which is a function from {I1,---,N} to
GO ={1,--- N}

HIERARCHICAL MERGING. After k steps (0 < k <
N — 2), we assume the mapping function has been up-
dated to be J®) which is a function from {1,---, N} to
G¥) = {1,--- N — k}, similarly, define the corresponding
GHF(m) = {i - F® (i) = m}. In the (k + 1)-th step, we
update T® to j(k+1), which should be a function defined
from {1,--- N} to G#*+Y = {1,... N — k — 1}. To this
end, two groups in G*) must be merged into a new one.
According to which two groups in G*) to be grouped, the
resulting mapping function should be different. For exam-
ple, let m; < mg be two arbitrary group ID from G*) if
the processes in G*)(my) and G*) (my) were merged into a
new group in this step, the new mapping function 7, (@;112)
would be

VARIO) if 70 (i) < my
my if 7% (i) =my .
T®E (i) -1 if T®(4)

Theml (@) =
> mso

We can then re-evaluate the loss function £ in (3) accord-
ing to different mapping function. The resulting losses are

recorded by L£™™2. Let (mj,m3) = argmin,, . L£""™M2,
JeHD — gEH) and L0+ — gmimi . As a result, pro-
1772

cesses in G®)(m*) and G (m3) are grouped together in
the (k + 1)-th step.

SOLUTION PATH. Repeat the hierarchical merging step
for N — 1 times, which leads to a total of N — 1 nested
candidate mapping functions (i.e. grouping methods). We
then collect those mapping functions by a solution path S =
{j(k) :1 <k < N-—1}. To determine the number of groups,
define

L) _ p(k)

By ICEE

) = A

and let knmax = argmax,7,. We then estimate M by M =
N — kmax and the grouping result is given by J M),
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Below we make some comments on the computational
complexity of GLCP. The computational consumption of
the GLCP algorithm mainly has the following two parts.
The first part is the estimation of the empirical K function
required by the minimum contrast method. For N compo-
nent processes, we need to calculate N2 times cross K func-
tions, and the computational cost is O(|D|N?). The second
part is the hierarchical grouping procedure. The algorithm
iterates N steps to merge all processes into a single group. In
each step ¢, we need to find the smallest £™1™2  which is an
N? summation according to (3). So in each step, there are
N? x N? inner loops, and the total computational complex-
ity of GLCP is O(|D|N? + N°). It is worth mentioning that
the GLCP algorithm is suitable for parallel computing. For
example, when selecting the optimal (mj, m3), the amount
of calculation can be distributed on multiple computing de-
vices.

4. SIMULATION STUDIES
4.1 Model setup

To demonstrate the finite sample performance of the pro-
posed estimation method, we report a number of simulation
studies in this section.

The model is simulated on a bounded domain D =
[0,d] x [0,d], where d > 0 determines the domain area (i.e.,
|D| = d?). Intuitively, the larger the domain area, the more
spatial points are likely to be observed. We consider differ-
ent (M, N) combinations, where M ranges from 1 to 4 and
N ranges from 1 to 12.

For a given M, we set § = 12, the mean parame-
ter u of each random field is independently sampled from
Uniform(5, 6), and the covariance matrix is designed to be
Y = (045) € RM*M with o, = pl"=7l, and we try different
p in {0.2,0.5,0.8} for low, medium and high correlations.
Accordingly, the Gaussian random field Z can be generated
on D, where the size of D is selected in {1,4}. The increase
in the size of D indicates more points, and the performance
of the model should be better.

Next, for a given N, we construct a group mapping func-
tion from {1,--- N} to {1,--- ,M} as J(i) = ¢ mod M +1,
where mod is the modulo operation that finds the remain-
der after division of one number by another. Once J(-) is
given, G(-) can be defined accordingly. The link parame-
ter w; is independently sampled from Uniform(0.5,1). For
every 1 < m < M, define i(m) = argmax;cg (m)wi- We
next re-define wj(,,) = 1 so that the identification condition
maX;eg(m) Wi = 1 for every 1 < m < M can be satisfied.
Thereafter, the intensity function A;(-) can be calculated
for each X; according to (1), and the GLCP process X;s
can be generated based on the intensity A;(-). To imple-
ment the minimum contrast estimation method in (2), we
fix (r1,72) = (0.01,0.15) and (p,q) = (2,1/4); see [18].

In order to study the effect of w on the estimation results
and grouping results of the GLCP, we added a set of com-
parative experiments. In this set of experiments, the size of
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Dis4, p=0.5, 8 =4, and p is sampled from Uniform(5, 6).
A total of 12 processes is divided into 4 groups, within group
m, MaX;eg(m) wi 18 set to be 1 according to the model setup,
and the other w is sampled from Uniform(w —0.05,0+0.05).
We set @ to be 0.4 and 0.8 to study the influence of w.

4.2 Performance measurements

For a given parameter setup (i.e., M, N, |D|, 8, u, 3,
and w), the GLCP data generate process is randomly sim-
ulated for 7 = 100 times /a\nd are indexed by 1 <t < T.
We then estimate M by M according to (4), and denote
the resulting estimator for the ¢-th simulation replication as
M®_ The following empirical probabilities are then com-
puted. They are, respectively, the under-fitting probability
UFP = 7713, I(M® < M), the correct-fitting probabil-
ity CFP=T7"13%", I(M® = M), and the over-fitting prob-
ability OFP = 7! Ztl(]/\i(t) > M). Even if the number
of groups is correctly estimated (i.e, M=M ), whether dif-
ferent spatial point processes are grouped correctly is not
clear. In the most ideal situation, those processes belong to
the same group should be grouped together empirically. Let
J® be the true group mapping function generated by the
tth simulation replication, and J® be the resulting esti-
mate. We then compute the true positive grouping proba-
bility as

Sy (7060 =706 1(7060) =FO))

TPGP® =
S (7060 =703))

)

and the false negative grouping probability as

apn _ S IO ATID)I(T0 £T00)
S (700 £T00)) '

Lastly, define the overall true positive grouping probability
TPGP = T 'Y, TPGP(IL’)7 and the overall false negative
grouping probability TNGP = 713", TNGP®. To verify
the computational complexity of GLCP, we recorded the
time of each simulation as TIME(t), and report the average
time consuming TIME = 7', TIME®.

Next we demonstrate the performance measurements for
the minimum contrast estimation method. We assume that
both M and the grouping function J is given already, so
that we can be purely focus on parameter estimation for
BER = (um) € RM ¥ = (055) € RM*M_and
w = (w;) € RY. Similar to the previous subsection, we
use superscript (¢) to index the parameter estimates ob-
tained in the tth simulation replication. This leads to the
following notations as g € R, p) = (ﬂ%)) € RM,
=0 = (60) € RMM and o = (") € RY. We then
compute the root mean square error (RMSE) for different
parameter estimates. Take 3 as an example, the RMSE is



Table 1. The empirical probabilities of GLCP group mapping algorithm

M| p | D| N E(X) UFP CFP OFP TPGP TNGP TIME
1 4 1453.40  0.00 090 0.10 0.97 1.00 6.6
0.2 6 2135.85 0.00 091 0.09 0.97 1.00 114
4 4 6176.98  0.00 0.96 0.04 0.99 1.00 5.0
6 8307.16  0.00 1.00 0.00 1.00 1.00 12.8
1 4 1442.03  0.00 0.83 0.17 0.96 1.00 6.0
2 | o5 6 2063.96  0.00 091 0.09 0.97 0.99 12.7
4 4 5703.52  0.00 0.93 0.07 0.98 1.00 4.9
6 8538.60  0.00 0.99 0.01 1.00 1.00 12.6
1 4 1480.21  0.00 0.70  0.30 0.87 0.92 6.1
0.8 6 2160.31  0.00 0.75 0.25 0.88 0.93 14.3
’ 4 4 5901.62 0.00 0.87 0.13 0.96 0.99 4.9
6 8597.55 0.00 0.88 0.12 0.97 1.00 11.1
1 6 2178.67  0.02 0.84 0.14 0.97 0.99 15.7
0.2 9 3136.73  0.03 0.89 0.08 0.97 0.99 56.5
4 6 8610.80  0.00 0.99 0.01 1.00 1.00 13.4
9 12477.01 0.00 099 0.01 1.00 1.00 54.9
1 6 221313 012 0.74 0.14 0.96 0.96 11.6
3 105 9 3181.36  0.07 0.83 0.10 0.97 0.98 47.0
4 6 8573.71  0.00 0.97 0.03 0.99 1.00 11.9
9 12510.61 0.00 0.98 0.02 1.00 1.00 47.3
1 6 2252.82 036 034 0.30 0.89 0.86 11.4
0.8 9 3134.13  0.38 043 0.19 0.90 0.84 44.6
4 6 912429 0.04 086 0.10 0.97 0.99 13.0
9 12333.79 0.08 0.83 0.09 0.98 0.97 45.8
1 8 2883.83 0.06 0.82 0.12 0.97 0.98 41.8
0.2 12 417591  0.02 0.88 0.10 0.97 0.99 185.0
4 8 11845.20 0.00 0.98 0.02 1.00 1.00 42.3
121675499 0.00 0.95 0.05 0.99 1.00 181.6
1 8 2866.12 0.20 0.66 0.14 0.96 0.95 34.0
4 | o5 12 422951 0.13 0.75 0.12 0.97 0.97 144.2
4 8 11886.91 0.01 098 0.01 1.00 1.00 32.6
12 16972.23 0.00 0.98 0.02 1.00 1.00 143.2
1 8 2982.89 0.68 0.16 0.16 0.93 0.78 29.9
08 12 4368.95 0.64 0.24 0.12 0.92 0.81 130.6
4 8 11589.62 0.16 0.74 0.10 0.98 0.95 31.1
12 16961.68 0.11  0.83  0.06 0.99 0.97 136.4

given by {71! Z;l(ﬁ(” —B)2}1/2, the RMSE for /i is given

a1 T .
by (T MV S (k)
defined similarly.

— )2 Y/2, 6, and & can be

4.3 Simulation results

We demonstrate the simulation results in this subsection.
Proceeding the grouping algorithm for 7 = 100 times, we
obtain Table 1. As one can see, as |D| increases, CFP, TPGP
and TNGP increase, this implies the group mapping estima-
tion can achieve higher accuracy if more data is provided.
For a fixed region of D, a larger number of processes N in-
dicates more possible grouping methods, and consequently
the lower TPGP. For larger p, GLCP trends to under-fit M,
because the more significant the correlation, the harder it
is to distinguish the latent random fields. The calculation
time TIME is measured with a single core of the E5-2680
v2 CPU.

The detailed results of parameters estimation are given
in Table 2. As one can see, as |D| increases, the RMSE of
all parameters decrease. The RMSE of w is 0 when N = M,
this is because the largest w in each group is set to be 1. It is
worth mentioning that for fixed M and |D|, as N increases,
the RMSE slightly increase. This is reasonable because, in
GLCP, processes in the same group are driven by the same
realization of the underlying random field, so in this case,
the increase in data is not as informative as increasing the
domain size |D|.

From proposition 1 we conclude that the parameters w,
u, B and ¥ together determine the intensity functions of
Cox process. Furthermore, the first order intensity function
grows linearly with w. This means that given the other pa-
rameters, the larger w means more data points, which may
lead to more accurate estimates. The results in Table 3 also
confirm this point.

Point of interest data 337



Table 2. The RMSE for the minimum contrast estimation of GLCP model

M| p |IDI]| N| E(X) RMSE(8) RMSE(z) RMSE(X) RMSE(w)

1 364.50 5.03 0.21 0.26 0.00

1 2 594.00 4.78 0.22 0.29 0.04

0.2 3 969.50 4.71 0.20 0.24 0.05

1 1724.00 1.92 0.12 0.20 0.00

4 2 2771.00 1.99 0.13 0.21 0.02

3 3990.50 2.00 0.15 0.26 0.02

1 391.50 4.53 0.26 0.30 0.00

1 2 648.50 4.61 0.21 0.22 0.04

1 05 3 961.50 5.20 0.21 0.27 0.05

1 1573.50 1.84 0.13 0.21 0.00

4 2 2650.00 1.99 0.14 0.20 0.02

3 4227.00 1.81 0.15 0.21 0.03

1 367.00 5.21 0.25 0.25 0.00

1 2 672.50 6.29 0.19 0.25 0.04

0.8 3 914.50 5.27 0.22 0.22 0.04

1 1565.50 1.89 0.15 0.26 0.00

4 2 2753.00 1.89 0.14 0.22 0.02

3 4302.50 1.94 0.13 0.23 0.02

4 1662.00 2.96 0.23 0.22 0.00

1 8 2941.50 2.99 0.23 0.20 0.04

0.2 12 4126.50 3.45 0.21 0.21 0.05

4 6490.50 1.17 0.14 0.15 0.00

4 8 11898.00 1.15 0.15 0.15 0.02

12 | 16583.00 1.13 0.13 0.13 0.02

4 1659.50 3.28 0.21 0.24 0.00

1 8 2783.50 3.15 0.23 0.22 0.04

4 05 12 4175.50 3.13 0.21 0.22 0.05

4 6479.50 1.05 0.15 0.18 0.00

4 8 11400.00 1.27 0.14 0.18 0.02

12 | 16739.50 1.21 0.15 0.17 0.02

4 1654.50 3.54 0.21 0.23 0.00

1 8 2793.50 3.22 0.22 0.25 0.04

0.8 12 4150.00 3.82 0.21 0.23 0.05

’ 4 6775.00 1.33 0.13 0.19 0.00

4 8 11597.50 1.44 0.16 0.21 0.02

12 | 16773.00 1.16 0.13 0.17 0.02

Table 3. Simulation results of different w

E(w) E(X) RMSE(3) RMSE(z) RMSE(Y) RMSE(w) UFP CFP OFP TPGP TNGP
0.4 10939 1.230 0.147 0.180 0.013 0.02 0.91 0.07 0.986 0.995
0.8 17454 1.120 0.131 0.163 0.013 0.00 0.99 0.01 0.998 1.00

In practice, the larger the range of data collection, the
more likely it is to get accurate results. When analyzing POI
data, we recommend taking the city outline as a unit. Be-
cause most POIs are highly correlated with human activity,
the value of an excessive |D| will result in a sparse number of
points on edge, which will affect the accuracy of the model.

5. APPLY GLCP TO BEUING POI DATASET

We next provide a detailed analysis for the Beijing POI
dataset mentioned above. We focus on the following aspects.
First, how different POI categories should be grouped. As
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we have shown before, some POI categories share very sim-
ilar spatial distribution characteristics, and thus should be
grouped. To this end, the proposed GLCP algorithm is used.
Second, we focus on the characteristics of the POI categories
within each group. We try to explain the grouping results
of the GLCP algorithm from the perspective of urban plan-
ning. Third, we examine the relationships between the dif-
ferent groups of POIs and their distributions. By analyzing
the Beijing POI dataset using GLCP, we find some inter-
esting phenomenon. Based on these phenomena, one may
be able to get some constructive opinions in several fields,
including city planning, location choosing.



Table 4. The GLCP grouping result of 30 POI categories in Beijing. There are four POI groups, respectively Commercial,
Residential, Diplomatic and High-tech Group. The third column represents the number of occurrences of each POI category,
the fourth column is the corresponding proportion, and the fifth column is the estimated link parameter

Group Name Category Name Frequency Proportion w
campus 1252 0.62 1.00(<0.01)
High-tech university 602 0.30 0.48(0.03)
library 157 0.08 0.13(0.01)
Western restaurant 781 0.29 1.00(<0.01)
Cafe 561 0.21 0.72(0.04)
Diplomatic Cantonese cuisine 554 0.21 0.71(0.04)
Japanese cuisine 510 0.19 0.65(0.04)
buffet 242 0.09 0.31(0.02)
residential area 5533 0.46 1.00(<0.01)
hospital 1587 0.13 0.29(0.01)
bus stop 1338 0.11 0.24(0.01)
hot-pot 1314 0.11 0.24(0.01)
convenience store 572 0.05 0.10(<0.01)
middle school 460 0.04 0.08(<0.01)
Residential Hunan cuisine 357 0.03 0.06(<0.01)
kindergarten 240 0.02 0.04(<0.01)
primary school 230 0.02 0.04(<0.01)
subway 171 0.01 0.03(<0.01)
seafood restaurant 165 0.01 0.03(<0.01)
vocational-technical school 87 0.01 0.02(<0.01)
Hubei cuisine 59 0.00 0.01(<0.01)
company 1870 0.31 1.00(<0.01)
bank 1009 0.17 0.54(0.02)
Sichuan cuisine 988 0.16 0.53(0.02)
department store 792 0.13 0.42(0.02)
Commercial mall 631 0.10 0.34(0.02)
hostel 286 0.05 0.15(0.01)
bath and massage place 259 0.04 0.14(0.01)
star hotel 188 0.03 0.10(0.02)
vacation spot 89 0.01 0.05(0.01)
/’ information given in Figure 5, we can classify the 30 POI
S ¥ categories into M = 4 groups. Based on the grouping results,
- we refer to those groups as high-tech, diplomatic, residential
and commercial groups, respectively. The detailed results
= 4 are given in the first columns in Table 4, their distribution
I N N /B a patterns are demonstrated in Figure 8.
N : - ° We next depict the merging path in Figure 6. It shows

Figure 5. 7, for Beijing POl dataset, where argmax; i, = 26,

i.e. the algorithm suggests that there should be 30 — 26 = 4
groups.

5.1 Using GLCP to group Beijing POI
categories

In this subsection, we apply the GLCP model to Beijing
POI dataset. First we next calculate the g-values according
(4), which are then depicted in Figure 5. It suggests that a
total of M = 4 groups should be formed. Together with the

how the GLCP grouping algorithm combines 30 POI cate-
gories into four groups in turn. The four subgraphs represent
the four groups obtained. In each subgraph, the letters in the
node represent the original POI category, and the number ¢
in the node indicates that its children are merged in step t.

Next, we report the parameter estimation results. At the
same time, to evaluate the significance of the coefficients,
we apply the parametric bootstrap method [2]. Specifically,
we simulate N = 30 processes from M = 4 groups based on
the fitted parameters for 7 = 100 times. Then we calculate
the standard deviation of all coefficients in simulations as
the standard error of the real data parameter estimations.
The estimated 3, and ¥ is reported in Table 5, and the
estimated w is reported in the fifth column in Table 4. For
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Figure 6. Grouping path of high-tech group (top left), diplomatic group (top right), residential group (bottom left) and
commercial group (bottom right). In each binary tree, the letters in the node represent the original component process, and
the number t in the node indicates that its children are merged in step t. VTS stands for vocational-technical school,
convenience stands for convenience store, residential stands for the residential area, middle stands for middle school, primary
stands for primary school, massage stands for bath and massage place, and star stands for star hotel.

Table 5. Estimation result of 3, and X in real data

A - 5

Group p ® 1 2 3 1
1 5.72(0.39) | 2.82(0.55) 1.47(0.50) 1.14(0.30 )  1.27(0.38)
2 12.38(2.65) | 5-46(035) | 147(0.50)  2.41(0.50)  1.38(0.30)  1.89(0.40)
3 oo 8.04(0.24) | 1.14(0.30)  1.38(0.30)  1.16(0.20)  1.28( 0.24)
4 6.73(0.29) | 1.27(0.38) 1.89(0.40 ) 1.28(0.24)  1.60(0.32)

each estimate, the front of the brackets represents real data
estimation, and the parentheses are the estimated standard
error of the parametric bootstrap method.

We also perform the following sensitivity analysis to eval-
uate GLCP in this application. For the sake of space, we
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select 3 categories from each group in the real data analysis,
which are listed Table 6. Before applying GLCP, we try to
merge the processes ¢ and j into the same group, and then
implement the GLCP grouping algorithm for 11 groups. We
want to test the stability of the GLCP algorithm with some



Table 6. Selected categories in sensitivity analysis

Residential (7-9) | Commercial (10-12)

High-tech (1-3) | Diplomatic (4-6)
library Cantonese cuisine

university Japanese cuisine
campus Western restaurant

Sichuan cuisine
company
mall

primary school
middle school
hot pot

Table 7. Bias and root mean squared error of parameters in sensitivity analysis

Trial I

B D) w

correct pre-merging  -0.023( 0.081)
incorrect pre-merging  0.185(0.242)

-0.021(0.074)
-0.192(0.143)

0.001(0.003)  0.007(0.025)
-0.038(0.038)  0.063(0.040)

r0s8

r 0.6

0.87 0.87 0.94 0.87 0.87 0.94 0.94 0.94 1

0.87 0.87 0.87 0.94 0.87 0.87 0.89 0.94 0.94

0.87 0.87 0.87 0.87 0.87 0.89 0.94 0.

r0.8

0.87 0.87 0.87 0.87 087 0.87 1 0.94 0.94

0.87 0.87 0. 0.94 0.94

- 0.6

0.89 0.94

0.87 0.87 0.87 0.87 -

0.87 0.87 0.87 0.87

0.87 0.87 0.94 0.94 -

0.87 0.87 0.87 0.87

0.87 0.87 0.87 0.87 -

0.87 0.87 0.87

Figure 7. TPGP (left) and TNGP (right) results of the sensitivity analysis.

correct and incorrect pre-merging trials. Formally, let J ()
be the grouping result of real data analysis. For each trial
that pre-merges processes ¢ and j, let j;-j (+) be the estimated
group mapping. The TPGP and TNGP indicators for jzj()
are shown in Figure 7, and the bias and root mean squared
error of parameters in different pre-merging trials are sum-
marized in Table 7. We treat the original estimates of the 12
categories as the ground truth and report average bias and
standard deviations of all parameters in the case of correct
and incorrect pre-merging trials.

From the results of sensitivity analysis, we find that
for correct pre-merging trials, parameter estimations and
grouping results are consistent with the ground truth in
most cases. For incorrect pre-merging trials, both param-
eter estimation and grouping results will be affected, but
will not lead to systemic disasters. For example, in Figure
7, the minimum value of TNGP and TPGP is 0.78, which
indicates that the overall correctness of the 12 categories is
still acceptable.

5.2 Model interpretation

We first explain the grouping results of GLCP. Accord-
ing to Figure 5, GLCP divides 30 POI categories into 4

groups. Based on the type of POI in each group, we arti-
ficially named them high-tech, diplomatic, residential and
commercial group. For example, we found residential areas,
schools, and hospitals in the third group, so they were named
as the residential group.

The first group is named as high-tech, and it is a simple
group contains POIs including university, campus, and li-
brary. The high-tech group is relatively independent of other
groups, located in the northwest part of the city (the top
left subgraph in Figure 8). It is worth noting that the li-
brary POIs is also assigned to this group, which means that
the reading needs of citizens in other regions may be de-
manding to meet. The second is the diplomatic group with
POIs such as Western restaurant and Cafe. The Diplomatic
group POIs are relatively concentrated in Beijing (the top
right subgraph in Figure 8), but they still have a strong
correlation with the commercial group, which shows that
Beijing is becoming an international city.

The residential group is the most complicated one with 13
different POIs and multiple clustering centers. In the group,
we saw POI categories that are firmly related to city life,
such as housing, education, medical care, transportation,
and diet. In the bottom left subgraph of Figure 8, we found
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Figure 8. Heat maps four POI groups obtained by GLCP, high-tech (top left), diplomatic (top right), residential(bottom left)
and commercial (bottom right).

that they were evenly scattered in the city. By comparing
w of hospitals, kindergartens, bus stops, and other POls,
we can assess the allocation of the corresponding resources.
For example, bus stop POIs are linked to residential area
POIs, and the link parameter is 0.24, which implies approx-
imately four residential area POIs share a bus stop. At the
same time, the library category does not enter the residen-
tial group, indicating that the government should strengthen
the popularity of the library.

Finally, the commercial group contains POI categories
such as companies, banks, and hotels. The main center of the
business group is in the eastern of the city, almost coincident
with the diplomatic group, in addition to several centers
in other locations. POIs in the commercial group may be
helpful for location selection issues. For example, opening
a Sichuan restaurant near other POlIs in the group may be
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a good choice. In contrast, hot pot and Hunan cuisine are
more suitable for the POI of the residential group.

Below we interpret the estimated coefficients. For 3 in Ta-
ble 5, we find all 0;; are significantly nonzero. There is still a
significant correlation between latent random fields since the
functions of different POIs in the city are intertwined and
complex. This also confirms that the correlation between
the latent random field is reasonable. The diagonal element
in ¥ is relatively large for high-tech and diplomatic group,
which indicates that the distribution of these two groups
of resources in the city is more uneven. Beijing universities
are concentrated in Haidian District in the northeast corner,
and the gathering place of foreigners is in Chaoyang District
in the east of the city.

The most significant component of i comes from the res-
idential group, among categories in the residential group,



housing, medical care, and education contributed a large
number of POIs. The estimated 8 is 12.38 with an esti-
mated standard error of 2.65; this confirms the existence of
the spatial correlation.

The results of GLCP estimation in the real data indicate
that the multivariate spatial point process of POI has com-
plex correlations, namely spatial correlation, within-group
correlation and correlation between groups. Direct model-
ing of 30 spatial point processes with complex dependencies
can be involved, while GLCP provides a simplified analytical
approach with encouraging results.

6. CONCLUDING REMARKS

This article focuses on the analysis of POI data, in order
to simplify the correlation structure between POI processes,
a new spatial point process model GLCP is proposed. The
proposed model can characterize multiple POI processes
with cross-category dependence and group structure. A key
contribution of GLCP is that it provides a data-driven way
to group POI processes and we allow the latent random
field to be correlated. GLCP combines the spatial pattern
and the categorical information to analysis multiple POI
processes, and it can be quickly scaled up to many cities.
GLCP also provides a model-driven way to clustering spa-
tial point processes; specifically, it uses a K function based
distance and a minimum contrast estimation loss grouping
criteria.

In the Beijing POI dataset, GLCP divides all POI pro-
cesses into four groups, namely commercial group, residen-
tial group, diplomatic group and high-tech group. Based on
the grouping method, we can further analyze the different
functional areas of the city. GLCP provides an alternative
way of dividing the urban functional area, based on POI
data, with no significant boundaries between the different
functional areas.

Future work may include the comparison of POI grouping
in different cities, which may help us understand the differ-
ences between cities from several aspects (e.g., economic,
social and environmental). From the perspective of simpli-
fying the correlation structure, it is worthwhile to consider
the compromise between the grouping model and the factor
model. It is also a fascinating topic to analyze POI data in
the spatiotemporal framework.
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