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Estimation of the additive hazards model with
current status data in the presence of informative

censoring

HuiqQioNG L1*, HAN ZHANG', AND JIANGUO SUNT?

The additive hazards model is one of the most commonly
used regression models in the analysis of failure time data
and many methods have been developed for its inference
under various situations. This paper discusses the situation
where one faces current status data and also there exists in-
formative censoring or when the failure time of interest and
the observation process are correlated. Several authors have
discussed the problem and in particular, Zhang et al. (2005)
and Zhao et al. (2015) proposed an estimating equation-
based approach and a copula model-based method, respec-
tively. However, the former may not be efficient and the
latter needs some restrictive assumptions. To address these,
we propose a sieve maximum likelihood estimation approach
that can be more efficient and also does not require the as-
sumption above. For the implementation of the method, an
EM algorithm is developed and the asymptotic properties of
the resulting estimators are established. The numerical re-
sults suggest that the proposed method works well in prac-
tical situations and an application is provided.

KEYWORDS AND PHRASES: Current status data, EM algo-
rithm, Informative censoring.

1. INTRODUCTION

This paper discusses regression analysis of current sta-
tus data arising from the additive hazards model. By cur-
rent status data, we usually mean that each study subject
is observed only once and thus the failure time of interest is
known only to be either smaller or greater than the observa-
tion time. In other words, the observation on the failure time
is either left- or right-censored instead of being observed ex-
actly. One type of studies that usually yield current status
data is cross-sectional studies, which are commonly used
in many fields including demographical studies, epidemio-
logical survey, and tumorigenicity experiments (Finkelstein
and Schoenfeld, 1989; Jewell and Van Der Laan, 1995; Sun,
2006).
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To give an example of current status data, consider a
tumorigenicity experiment and in this situation, the failure
time of interest is usually the time to tumor onset and each
study animal is only observed at the death or sacrifice. In
other words, on the tumor onset, only the information about
the presence or absence of a tumor at the death is available
and thus the time to tumor onset is only known to be either
smaller or larger than the death or sacrifice time. That is,
only current status data are observed. If the tumor is non-
lethal, then it is usually reasonable to assume that the tumor
time and death time are independent. However, since most
of tumors are between lethal and non-lethal, we cannot treat
them independent and in other words, we have informative
or dependent current status data.

Many authors have discussed regression analysis of cur-
rent status data (Finkelstein and Schoenfeld, 1989; Hu et al.,
2009; Jewell and Van Der Laan, 1995; Lin et al., 1998; Sun,
1999; Martinussen and Scheike, 2002; Wen and Chen, 2011).
However, most of the proposed methods are for the situa-
tions where the failure time of interest and the observation
time can be assumed to be completely or conditionally in-
dependent given covariates. Several methods have also been
developed for regression analysis of informative current sta-
tus data (Chen et al., 2012; Li et al., 2017; Ma et al., 2015).
In particular, Zhang et al. (2005) and Zhao et al. (2015)
investigated the problem for the situation where the failure
time of interest follows the additive hazards model and pro-
posed an estimating equation-based estimation procedure
and a copula model-based method. However, the former may
not be efficient and the latter needs to assume that the un-
derlying copula model and the association parameter be-
tween the failure time and the observation time are known,
which may not be true in reality. To address these, we will
develop an efficient sieve maximum likelihood estimation ap-
proach that does not require the assumption above.

In the following, we will first describe some notation,
models and some assumptions that will be used through-
out the paper along with the resulting likelihood function
in Section 2. A sieve maximum likelihood estimation proce-
dure is presented in Section 3 with the use of some spline
functions to approximate the unknown baseline cumulative
hazard function. For the implementation of the proposed
procedure, an EM algorithm is developed and the result-
ing estimators of regression parameters are shown to be
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consistent and follow asymptotically a normal distribution.
Section 4 presents some numerical results from a simula-
tion study conducted for the assessment of the finite sample
properties of the proposed method, and they indicate that
the method works well in practical situations and is more ef-
ficient than that given in Zhang et al. (2005) as expected. An
application from a tumorigenicity experiment is provided in
Section 5 and Section 6 contains some discussion and con-
cluding remarks.

2. NOTATION, MODELS AND
ASSUMPTIONS

Consider a failure time study that involves n independent
subjects and only gives current status data. For subject 1,
let T; denotes the failure time of interest and C; the obser-
vation time that may be related to T;, ¢ = 1,...,n. For the
tumorigenicity example, T; and C; represent the tumor on-
set and animal death times, respectively. Also for subject ¢,
suppose that there exist a vector of covariates, denoted by
Z;, and a latent variable b; with mean zero and variance 7.
Both Z; and b; will be assumed to be time-independent and
some comments on this will be given below. For the covari-
ate effect on the 7;’s, we will assume that given Z; and b;,
T; follows the additive hazards frailty model given by

(1)

(Lin et al., 1998; Zhang et al., 2005). In the above, A (t) is
an unknown baseline hazard function and [ represents the
vector of regression parameters.

In this paper, we will focus on the situation where the
C;’s may depend on both the T;’s and the covariate. For
this, by following Zhang et al. (2005), we will assume that
given Z; and b;, C; follows the proportional hazards frailty
model specified by

(2)

where Ag(t) is an unknown baseline hazard function and
~ denotes the vector of regression parameters. Of course,
instead of the model (2), one may employ other models such
as the model (1) to describe the effects of covariates on the
C;’s and some comments on this will be given below. In the
following, it will be assumed that given the b;’s, the T;’s and
the C}’s are independent.

For any study giving current status data, in addition to
C;, there may exist another observation or censoring time
Cf¢ that is independent of T; such as the sacrifice time in a
tumorigenicity experiment. In this case, of course, one only
observes the smaller of the two time points C; and C. Define
Cr = min(C’z,C’ ), A; = I(C* = Cl-) and 5 = I(T; < Cy).
Let A1 fO Al dS AQ fO )\2 Bz(t) = bit,
and Z7 (¢ ) Zit. Also deﬁne S( ) = exp{ Al(t) —B,(t) —
B2 (t)}, 59(t) = exp{—Aa(t)exp{y'Zi + b;)}}, and f°(t) =
Se(t)A2(t)exp{~'Z; + b;}. Then the observed data consist of

Ni(t|Ziybiys < t) = M\ (t) + b + 5'Z;

)\g(ﬂZi,bi, s < t) = )\g(t)exp{W’Zi + bl},
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function has the form

n } and the resulting likelihood

L(B,v,m, A1, A2)
“T1/ ti=s@preersen sy

X{[(l—S(Cf))SC(Cf)] S (e)S ()] oA
(bi;n)dbi(s)
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||
\
88

/m e[S ()5 54(cr)

x[A2(c)exp{y' Zi( e
where f(b;;n) denotes the density function of the b;’s as-
sumed to be known up to n. In the next section, we will
discuss the maximization of the likelihood function above.

c;) + bi( i f(bssm)db;

3. SIEVE MAXIMUM LIKELIHOOD
ESTIMATION

Now we discuss estimation of the regression parameters
B and ~v as well as others by employing the maximum like-
lihood estimation approach. For this, we will develop an
EM algorithm for the maximization and then establish the
asymptotic properties of the resulting estimators. For the
simplicity of the presentation of the EM algorithm, we will
first consider the situation where C{ = oo for all ¢ or there
is no censoring on the Cj’s.

3.1 Estimation without censoring times

In this subsection, we will assume that the observed data
have the form {(Cy,d; = I(T; < C;),Z;);4 = 1,...,n}.
Then the likelihood function given in (3) reduces to

(ﬂ 77777>\17)\2)
_ HP

_H/ (1= S (e [S(e)]' =" fe(ei) f (bis m)dbi -

= Ci,éi = 1|ZZ)51P(CZ = Ci,éi = 0|ZZ')1_6

It is apparent that in addition to the integration, another
factor that makes the maximization of L(5,~,n, A1, A2) dif-
ficult is the involvement of two unknown function A4 (¢) and
As(t). As seen below, the function Ay(t) can be estimated
relatively easily but not the function Aj(¢). To address this,
by following Ma et al. (2015), Zhao et al. (2015) and others,
we propose to employ the sieve approach to approximate



A4 (t) by monotone splines (Ramsay, 1988) as

s+kn

Z (07 Il(t) .

=1

A (t) =

In the above, {I;(t),l = 1,...,s + k,} are some integrated
spline basis functions with the order s and k,, and the «;’s
are nonnegative coefficients that ensure the monotonicity
of A1, (t). In the numerical studies below, we used I-spline
functions.

To develop the EM algorithm, let § = (8',7',n, A1, Aa),
representing all unknown parameters. First note that the
likelihood function above can be rewritten as

L0 = [ [ LBt L b

where o = (a1, ..., 511,

n

o) = 10— exp{-Ai(e) = Bile) = #Z; (@)))*
exp{—(1 - 6,)(A(es) + Biler) + B2 ()}
Lo(B2) =TI S*(ehale)exp(y'Zi+ b}
and
La(n) = H F(bism)
with 6, = (B,a) and 6y Zzzl (7, Ao). Define L.(0) =

L1(01) Ly(62) Ls(n) and let (™) denote the estimator of 0
obtained in the mth iteration. To obtain (™) note that
we have that

By, [logLe (8,7, M, A2, n|0™)] = By, [logLy (8, a]0™))]
+Ey, [logLa (7, A2|0™)] + Ey, [logLs (n]0™)]
= By, [logLy (61]60™)] + Ey, [logLa(62]4™)]
+Ey, [logLs(63)0™)]
where 03 = n. Furthermore, it can be shown that

Ey, [logLy (64100™)]

= Z{éiEbi [log(1 — exp(—As (c;) — By(ci) — B'Z; (c))|0™)]
i=1

— (1= 6;) By, [A1(ci) + Bi(ei) + B Zf (ci)|0™]}

m+1)’ I =

It follows that one can calculate S(™+1 and {dl(
1,...,8+ ks } by solving the following score equations

.
Ss(01) = 22 UogLalﬁff)lle )

@) = Zi(e)x
i=1

0

E, — 1[0
bl[l —exp(—Ai(c;) — Bi(es) — B'ZF (i) | ]
=0
and
OF,, [logLy (61|60
Say(61) = “[‘)ga;(l S
=1
B, d 1]

1 —exp(—Ai(c;) — Bile) — B'ZF (i)
=0.

To obtain the updated estimation of v, by treating Ao as
a piecewise constant function at the times C;’s, 4(™*+1) can
be obtained by solving the following score equation

OBy, [logLa(62]00™)]
- 5

>/ 47— 2 yani) =0,

Sy

(6)

where N;(t) = I{C; < t},Y; = I{C; > t}, and

Z(ty) =1 =
6(m)

3 Yi(t) Ziexp(Z{y) By, ("0

1

n

> Yi(t)exp(Z]y) Ev, (e
=1

Given v(m*+1)  the updated estimator Agmﬂ) of Ay can be
obtained by the Breslow-type estimator

(7)

Aém—‘rl)(t) — zn:/t dN;(p)
i=170 3" Yi(uexp(Zjy(m+D) By, (ebi[00m)
=1

Furthermore, one can obtain an estimator of n by maximiz-

ing Ey, (logLs(n)|6™).
3.2 Estimation with censoring times

Now suppose that both C; and C{ can exist or one can
observe either C; or Cy. In this case, the likelihood function
is given in (3) and for estimation of the parameters § and
a, one can easily obtain the estimating equations similar to
(4) and (5). For estimation of v, one can also derive a score
equation similar to (6) as

®  5-% [ (a- 2zt -o.
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where N (t) = I{C <t,A; =1}, Y* = I{C} >t} and

Y (t) Ziexp(Ziv) Ep, (e"0(™)

Yy (t)exp(Z}) By, (b [§(m)

=1

Given v(™*1 | the updated estimator /A\gmﬂ) of A5 can again

be obtained by the following Breslow-type estimator
9)

Agm+l)(t) — En:/t sz* (M)
=170 S Y (p)exp(Ziy (D) By, (ebi]60m))
i=1

Let J be an integer. Then all EM steps discussed above
can be summarized as follows.

Step 1. Choose an initial estimate 6(©).

Step 2. At the (m -+ 1)th iteration, first generate the random
variables {b;5; j =1,---,J,i=1,--- ,n} from the density
function f(b;;n), and then compute the conditional expecta-
tions described above under 6(™) by using the Monte Carlo
method. More specifically, for any arbitrary function h(b;),
we approximate E{ h(b;)|0(™ } by

h(bij )i (b 00

M«

j=1

E{h(b:)|0™} ~ 7

(10) S
;i (bij; 00m))
=1

J

where ;(b;;; Oy = [1 — S(e;)]%[S(e:)] % f(¢;) for
the case with no censoring and ;(b;;; omy = [1 —
S(EN S (N =[S ()] e [f4(c})]? otherwise.

Step 3. Obtain S(™*1) from equation (4) by using the
B(rz})fden—Fletcher—Goldfarb—Shanno algorithm with a; =
a7

S‘éep 4. Compute &™*Y from equation (5) by applying the
quasi-Newton method given B(m“).

Step 5. Update 4™ *1 by solving the equation (8) by using
the Newton-Raphson algorithm.

Step 6. Obtain Aémﬂ) from (9) by replacing v with 4("+1),
Step 7. Determine 7™+ = argmaxEy, (logL3(n)|6(™).
Step 8. Repeat Steps 2—7 until the convergence.

Let 6, = (B’, 48, A, Ag) denote the estimator of 6 de-
fined above. In the Appendix, we will show that they are
consistent and also B and 4 are asymptotically normally
distributed and semi-parametrically efficient. It is apparent
that to implement the sieve maximum likelihood estimation
procedure described above, one needs to choose s and k,.
The degree s should be usually decided by the smoothness
of the true baseline cumulative hazard function and many
authors have investigated it and suggested that 1, 2 or 3 is
often good enough. A general criterion for k,, the number
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of knots, is to set it to be around n'/? and in practice, a
simple way for their selections is to try different values and
compare the obtained estimators. As an alternative, one can
also perform a grid search and employ the AIC criterion by
choosing the values of s and k,, that give the smallest AIC.

For the estimation of the covariance matrix of B and %,
a common approach is to use the Louis’s Formula but it
would be computationally intensive for the situation con-
sidered here. Corresponding to this and by following Wen
and Chen (2011) and others, we propose to employ the pro-
file likelihood approach. Suppose that we want to estimate
the covariance matrix of 3. First define the profile likelihood
function PL, (/) as the maximum of the likelihood function
L(B3,7,n, A1, A2) over all other parameters with fixed 5. Let
p denote the dimension of 8 and e; be a p-dimensional vector
with 1 in the ¢th position and zero elsewhere. Then one can
estimate the (4, j) element of the efficient Fisher information
matrix corresponding to 5 by

_ IOg PLn(B + Pn€i + pnej) - lOg PLn(B + pnei)
n P2
_ log PLn (B + pne;) + log PLn ()
n P2

(fn)ij =

)

)

where p, = O,(n~'/?) is a constant. It follows that the co-
variance matrix of 3 can be estimated by ((I,,)i; ). Sim-
ilarly one can estimate the covariance matrix of 4 and the
numerical studies below suggest that this method seems to

work well.

—1/2

4. A SIMULATION STUDY

In this section, we report some results obtained from
a simulation study conducted to assess the finite sam-
ple performance of the sieve maximum likelihood estima-
tion procedure proposed in the previous sections. In the
study, we assume that there exists one covariate Z; fol-
lowing the Bernoulli distribution with the success proba-
bility of 0.5. To generate the observed data, we first gen-
erated the latent variables b;’s from the truncated normal
distribution with mean 0 and variance n = 0.1 or the uni-
form distribution over (—0.5,05). Note that the truncated
normal distribution was used to make sure that S(t) =
exp{—A1(t)"™ — B;(t) — ™ Z#(t)} lies between [0, 1] and
Bi(t) = [ bids > —A(t)™ — B0 Z2(1). Given the co-
variates and latent variables, the failure times 7;’s and the
observation times C;’s were then generated under models
(1) and (2) with A1 (¢) = A2(¢) = 1. The independent obser-
vation or censoring times C{’s were set to be the constant T,
which was chosen to give the desired censoring percentage.
For the results given below, we took s = 3, k, = 5 and
J = 100 and chose the interior knots to be equally spaced
time points between the minimum and maximum real ob-
servation times. Also the results given below are based on
the sample size n = 200 or 400 with 1000 replications.



Table 1 presents the results on estimation of 8 and
with the true value of (3,) being (0,0), (0,0.2), (0.2,0.2)
or (0.5,0.5), n = 200, the b;’s generated from the truncated
normal distribution and the censoring percentage on the C;’s
being 20%. The results include the average of the estimates
(Mean), the sample standard error (SSE) of the estimates,
the average of the estimated standard errors (SEE), and the
95% empirical coverage probabilities (CP). For comparison,
we also obtained the results given by the estimating equa-
tion approach proposed by Zhang et al. (2005). One can
see that the proposed estimator seems to be unbiased and
the proposed standard error estimation appears to be close
to the sample standard deviations and works well. Also the
empirical coverage probabilities are very close to the nomi-
nal level and indicate that the normal approximation to the
distribution of the proposed estimator is reasonable. In ad-
dition, the proposed estimator is clearly more efficient than
that given in Zhang et al. (2005).

The results given in Table 2 were obtained under the
same set-up as with Table 1 but with the censoring per-
centage on the C;’s being 60%, while Table 3 presents the
results also obtained under the same set-up as with Table 1
but with the b;’s generated from the uniform distribution.
Note that in Table 2, we also obtained and include the re-
sults with n = 400. It is apparent that the results in both
tables gave similar conclusions as with Table 1 and again
indicate that the proposed method seems to work well. In
addition, as expected, the results became better when the
sample size increased, and the proposed estimation proce-
dure seems to work well with respect or robust to different
frailty distributions. To further investigate the normal dis-
tribution approximation, we obtained the quantile plots of
the standardized § and 4 against the standard normal dis-
tribution. Figure 1 displays the plots corresponding to the
situation with (8,v) = (0,0), (0.2,0.2) or (0.5,0.5) in Ta~
ble 1 and again suggests that the normal approximation
seems to be appropriate.

5. AN APPLICATION

Now we apply the methodology proposed in the previ-
ous sections to a tumorigenicity experiment discussed by
Zhang et al. (2005) among others with the data given in
Tables 1 and 2 of Lindsey and Ryan (1994). The experi-
ment, conducted at the National Center for Toxicological
Research, randomly assigned female mice to either a control
group or one of seven dose groups of the known carcinogen
2-acetylaminofluorene. Also it was designed to have eight in-
terim sacrifice times and a terminal sacrifice at 33 months.
By following Lindsey and Ryan (1994) and Zhang et al.
(2005), in the analysis below, we will consider a subset of
data from one room, consisting of 671 animals in the con-
trol group (387) and high-dose group (284), with the focus
on both lung and bladder tumors for each animal. On the
lung tumor onset time, 121 mice gave left-censored observa-
tions, 69 from the control group and 52 from the high-dose

group. In contrasts, on the bladder tumor onset time, 124
left-censored observations were obtained with only 13 from
the control group and 111 from the high-dose group. As men-
tioned above, in the analysis below, we will treat the natural
death time as C; and the terminal sacrifice time as CY.

For the analysis, define Z; = 0 for the mice in the con-
trol group and Z; = 1 otherwise. Table 4 presents the esti-
mated dose effects given by the application of the proposed
estimation procedure to both lung and bladder tumors, re-
spectively, along with the estimated standard errors and the
p-values for testing no group or dose effect. Note that here
we chose s = 3 and set k, being from 3 to 10 to allow for
both the sufficient model flexibility and less computational
burden. Also the AIC values were calculated for comparing
different models and given in the table, and the smallest AIC
value was given by k,, = 3 for both lung tumor and bladder
tumor. On the other hand, all AIC values are quite close
to each other and the estimation results are also consistent
with respect to k,,.

One can see from Table 4 that with respect to the
dose effect on the death rate, the proposed method yielded
4 = 0.482 and 0.471 with k,, = 3 for the lung and bladder
tumors with the estimated standard errors being 0.187 and
0.189, respectively. These correspond to the p-values of 0.01
and 0.013 for testing v = 0 and indicate that the animals
in the high-dose group had significantly higher death rates
than those in the control group. With respect to the dose
effect on the tumor growth rate and k,, = 3, the proposed
method gave 3 =0.014 and 0.292 for the lung and bladder
tumors with the estimated standard errors being 0.019 and
0.031, respectively. They suggest that there existed signifi-
cant dose effect on the bladder tumor growth rate, but the
lung tumor risks between the two dose groups did not seem
to be significantly different. In the analysis here, we also
tried different values for s and obtained similar results, and
the conclusions here are similar to those given by Lindsay
and Ryan (1994) and Zhang et al. (2005).

6. DISCUSSION AND CONCLUDING
REMARKS

This paper discussed regression analysis of current sta-
tus data arising from the additive hazards frailty model in
the presence of informative observation or censoring time
and for the problem. A sieve maximum likelihood estimation
procedure was proposed with the use of I-spline functions.
Also for the implementation of the method, an EM algo-
rithm was developed and the resulting estimators of regres-
sion parameters were shown to be consistent and asymptot-
ically normal. In addition, the simulation study performed
indicates that it works well for practical situations and as
expected, the proposed approach is more efficient than that
given in Zhang et al. (2005).

As mentioned above, the focus here has been on the ad-
ditive hazards model or the current status data arising from
the additive hazards model, and it is clear that sometimes
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Table 1. Simulation results on estimation of regression parameters, including the averages of the estimates (Mean), the
sample standard error (SSE), the average of the estimated standard errors (SEE) and the 95% empirical coverage probabilities
(CP) with 20% censoring and n = 200

Method B8 ¥
153 ¥ Mean  SSE SEE CP Mean  SSE SEE CP
0 0 Proposed  -0.004 0.245 0.233 0.948 0.002 0.167 0.159 0.943
Zhang et.al  0.027 0.610 0.589 0.962 -0.002 0.287 0.286 0.958
0 0.2 Proposed -0.005 0.241 0.232 0.947 0.197 0.144 0.135 0.945
Zhang et.al  0.026  0.598 0.571 0.958 0.177  0.287 0.273 0.953
0.2 0.2 Proposed 0.220 0.242 0.240 0.944 0.204 0.169 0.159 0.942
Zhang et.al  0.227  0.690 0.660 0.953 0.175 0.291 0.286 0.952
0.5 0.5  Proposed 0.530 0.276 0.272 0.942 0.501 0.168 0.160 0.943
Zhang et.al  0.532  0.826 0.777 0.950 0.439 0.296 0.287 0.943

Table 2. Simulation results on estimation of regression parameters, including the averages of the estimates (Mean), the
sample standard error (SSE), the average of the estimated standard errors (SEE) and the 95% empirical coverage probabilities
(CP) with 60% censoring and n. = 200 or 400

B gl

B8 vy n Mean SSE  SEE CP Mean SSE  SEE CP
0 0 200 Proposed -0.002 0.268 0.253 0.926 -0.002 0.232 0.225 0.947
Zhang et.al -0.037 2.747 2.674 0.952 -0.013 0.449 0435 0.944
400 Proposed 0.001  0.215 0.192 0.942 0.001 0.187 0.181 0.942

Zhang et.al  0.033  1.929 1.867 0.948 0.005 0.306 0.303 0.95
0.2 0.2 200 Proposed 0.210 0.295 0.279 0.938 0.207 0.233 0.226 0.938
Zhang et.al  0.218  3.07 2963 0.946 0.176  0.449 0.435 0.948
400 Proposed 0.206  0.242 0.220 0.943 0.203 0.188 0.183 0.941

Zhang et.al  0.354  2.123 2.063 0.959 0.195 0.306 0.303 0.95
0.5 0.5 200  Proposed 0.516  0.347 0.357 0.948 0.516 0.237 023 0.954
Zhang et.al  0.797  3.718 3.486 0.942 0.469 0.461 0.44 0.948
400  Proposed 0.508 0.293 0.285 0.945 0.508 0.191 0.187 0.951
Zhang et.al  0.847 2.468 2422 0.952 0.478 0.304 0.306 0.953

Table 3. Simulation results on estimation of regression parameters, including the averages of the estimates (Mean), the
sample standard error (SSE), the average of the estimated standard errors (SEE) and the 95% empirical coverage probabilities
(CP) with the uniform frailty distribution, 20% censoring and n = 200

Method 154 ¥
8 ~ Mean SSE  SEE CP Mean SSE  SEE CP
0 0 Proposed 0.006 0.135 0.132 0.948 0.003 0.145 0.136 0.944
Zhang et.al  0.029 0.598 0.573 0.957 -0.002 0.273 0.271 0.956
0.2 0.2 Proposed 0.179 0.147 0.143 0.946 0.201  0.145 0.137 0.943
Zhang et.al  0.168 0.675 0.654 0.954 0.179  0.286 0.281 0.951
05 0.5 Proposed 0.468 0.163 0.159 0.945 0.499 0.147 0.139 0.945
Zhang et.al  0.467 0.813 0.762 0.952 0.446 0.292 0.284 0.948
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Figure 1. The quantile plots of the standardized B and 7 against the standard normal.

one may prefer a different model or a different model may
fit the data better. In particular, Chen et al. (2012) dis-
cussed the same problem when the data arise from the lin-
ear transformation model, which is different from the addi-
tive hazards model or describes a different type of relation-
ships between the failure time of interest and covariates. Of
course, there exist many other possible models that have
been discussed or investigated for failure time data but not
for the types of data discussed here (Kalbfleisch and Pren-
tice, 2002).

It is worth noting that in the estimation procedure pro-
posed in the previous sections, several assumptions have
been made. One is that the relationship between the fail-

ure time of interest and the informative observation or cen-
soring time can be described through the latent variable b;,
which may not be true in some situations. As pointed out
above, an alternative to this is to employ the copula model-
based method as in Ma et al. (2015) and Zhao et al. (2015).
However, their methods apply only to the situation where
the underlying copula model and the association parameter
are known. Another assumption used above is model (2) on
the informative observation time C;. However, it is easy to
see that it is straightforward to develop a similar estimation
procedure if a different model on the C;’s is used. For this,
note that for the situation discussed here, one has complete
or right-censored data on the C;’s and therefore the infer-
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Table 4. Analysis results on both lung and bladder tumors

Type of tumor kn
3 4 6 7 8 9 10

lung B8 0.014 0.011 0.009 0.007 0.003 0.010 0.006 0.014
(n =617) Stdg 0.019 0.019 0.019 0.020 0.020 0.019 0.020 0.019
p-valueg 0.459 0.512 0.655 0.689 0.711 0.579 0.752 0.470

¥ 0.482 0.480 0.479 0.479 0.479 0.48 0.479 0.485

Stdy 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.188

p-valuey 0.010 0.011 0.010 0.011 0.010 0.011 0.011 0.010

AIC 490.67  491.53  491.85  492.67 493.46 492.34 494.13 493.94

bladder B 0.292 0.278 0.282 0.283 0.270 0.285 0.291 0.287
(n=617) Stdg 0.031 0.029 0.030 0.031 0.029 0.032 0.031 0.030
p-valueg  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

¥ 0.471 0.470 0.468 0.468 0.470 0.470 0.469 0.471

Std, 0.189 0.188 0.189 0.190 0.189 0.188 0.189 0.188

p-value, 0.013 0.013 0.0132 0.013 0.013 0.013 0.013 0.013

AIC 471.69 47243  474.81 47536  474.25  476.19  478.93  477.58

ence on model (2) or any model used for the C;’s is relatively
easy.

APPENDIX A. PROOFS OF THE
ASYMPTOTIC PROPERTlES
OF Ox
In this Appendix, we will sketch the proof of the asymp-
totic properties of 0,,. For this, we will first describe some

more notation and the needed regularity conditions. Define
the sieve space

@" = {on = (ﬂ/?7/5n7A1naA2)} - B ®Mn1 ® M27

where B is a compact set in R?P*!

s+kn s+kn
Mnl = {Aln(t) = Z O‘lll(t)’ Z |0q| <K, te [077—0]}a
=1 =1

and
M? = {As(t) 1 1/K2 < Ao(t) < Ko, t€[0,7]}

with K7 and K5 being some positive constants, where 7. is

the upper bound of the observation times C}’s. Let || . ||2

denote the L? norm and 6y = (84,74, M0, A10, A2o) the true

value of 6. Also define d(0,600) = (|| A1 — Ay ||2 + || As —

Ao |3+ 18=Bo s + 11 v="0 Ufg + =m0 [13)"2

Pf= [ f(z)dP(z), and P,,f =n~' " f(X;) for a function
i=1

f and a probability function P.

To prove the asymptotic properties, we need the following
regularity conditions.
(A1l.) The covariates Z;’s have a bounded support.
(A2.) The m-th derivative of Ag(.), denoted by A,(fm)(.), is
Holder continuous such that |AU™ (t) — AU™ (£,)] < M|t; —
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to|“ for some w € (0,1] and all t1,t2 € (I,u),
where 0 < | < u < oo and M are some constants.
(A3.) Let 1(6,0) denote the log likelihood function based
on the observed data O = (C*, A, 4, Z), and for any positive
number ¢, we have that infyg,9,)<PI1(6, O) > Pl(0o, O).
(A4) The matrix X is finite and positive definite, where
is the semi-parametric efficiency bound defined below.

Suppose that the regularity conditions above hold. First
we will show that as n — oo, B and 4 are strongly consistent
and we have

(11)

| A — Ao [y = 0, || Az — Agg ||, — 0, almost surely

k=12,

and

(12)
| A —Aro |ls + || A2 — Ago || = O, (n~1=v)/2 =),

For this, we will verify the conditions given in the Theorem
5.7 of van Der Vaart (1998).
First we will verify the condition

Ji =:lim,supy co, [Pnl(0,0) — Pl(0,0)] = 0,(1).

Note that
J1 < limgsupy, cq, [Prl(0,0) — Pl(0,,O)|
—|—limnsup9ne@n |Pl(9n, O) — Pl(H, O)| =:J11 + Ji2

Therefore, it is sufficient to prove that Jix = o,(1),k =
1,2. To prove that Ji1 = o0,(1), we just need verify that
e = {l(0,,0),0, € 6,} is Euclidean class for its enve-
lope function maxg, co, {(0n,0). According to (Al), (A2)
and Lemma 2.14 in Pakes and Pollard (1989), it is easy
to see that class € is a Euclidean class. Hence, we have



Ji1 = op(1). For Jiz, by Lemman Al of Lu et al. (2007)
and contiguous property of log-likelihood function, we have
Ji2 = 0p(1). Thus, we could obtain that condition J; =:
lim,supy, o, [Prnl(6,0) —PI(0,0)| = 0,(1) holds.

To derive the convergence rate, for any w > 0, define the
class Fyy = {l(010,0) —1(0,0) : 0 € O,,d(0,0,0) < w}
with 0,0 = (Bo, Y0, M0, A1no, Aso). Following the calculation
of Shen and Wong (1994, P.597), we can establish that
logNy (e, Fou, || - [l2) < CNlog(w/e) with N = 2(s + k),
where Ny (e, Fu, d) denotes the bracketing number (see the
Definition 2.1.6 in Van Der Vaart and Wellner, 1996) with
respect to the metric or semi-metric d of a function class F.
Moreover, some algebraic calculations lead to || [(6,0,0) —
1(0,0) ||3< Cw? for any [(0,0,0) —1(6,0) € F,. Therefore,
by Lemma 3.4.2 of Van Der Vaart and Wellner (1996), we
obtain

Ep || n'*(Py = P) |,
Juo (€ Fuos || - [I2)

< Cule, | - )1+ 22252

1 ()
where J,, (e, Fu, || - [|2) = fow{l + logNp (e, Fu, || - ||2)}1/2d6
< CN'Y2w. The right-hand side of (S) yield ¢,(w) =
C(NY?w + N/n'/?). Tt is easy to see that ¢, (w)/w de-
creases in w, and 72 ¢, (1/r,) = ro, NY2 412 N/n1/? < 2n1/2
where r, = N*1f2nl/2 = n=/2 with 0 < v < 0.5.
Hence, n*=/2d(0 — 6,0) = O,(1) by Theorem 3.2.5 of
Van Der Vaart and Wellner (1996). This, together with
d(0,0,600) = Op(n~"") (Lemma Al in Lu et al. (2007)),
yields that d(6,6) = O,(n~(1=")/2 4 =) The choice of
v = 1/(1+42r) yields that rate of convergence of d(6,,,0) =
Op(n_#)-

Now we will show that
(13) Vb ((B—Bo), (¥ —)") = N(0,%)
and B and 4 are semi-parametric efficient, where b is
any 2p-dimensional vector. Denote V as the linear span
of ©g — 0y, where ©y denotes the true parameter space.
Let 1(0,0) be the log-likelihood for a sample of size one
and 0, = (n~(=/2 1 =™, For any 0 € {§ € Qg :
d(0,60) = O,(5,,)}, define the first order directional deriva-
tive of [(6,O) at the direction v € V' as

i0)]] = di(e —;ttv,O)

According to the proof of Theorem 1 of Shen (1997) that

lt=0-

V(3 — Bo)s (5 — ) + / " g)d(Ra(t) — Am(t))

1~
== (60, 0)[v"] + 0p(n~"7?),
i=1

where b is any (2p + 1)-dimensional vector with ||b||g < 1,
g is a function with bounded variation on [0, 7], v* can be

given by using Riesz representation theorem as done by Shen
(1997). It then follows from the central limits theorem that

we have V(6 = o)’ (4 —70)) + Jg~ 9(t)d(Az(t) — Aso(t)) =
: ;i(@o,Oi)[v*] + 0,(n~1/2) converges to N(0,%) in dis-

tribution. The semi-parametric efficiency can be established
by using the result of Bickel and Kwon (2001) or Theorem
4 in Shen (1997).
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