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Analysis of panel data with misclassified
covariates
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∗
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Markov models are commonly used to describe the dis-
ease progression, and the likelihood method is usually used
to perform inference for such models. However, in the pres-
ence of measurement error in the variables, standard in-
ference procedures are no longer valid. In this article, we
analytically show that the model is not even identifiable
when binary covariates are subject to misclassification. To
overcome model nonidentifiability, we consider scenarios
where the misclassification probabilities are known, or the
main/validation study design is available, and consequently,
we propose estimation procedures for Markov models with
binary covariates subject to misclassification. Simulation
studies are conducted to evaluate the performance of the
proposed methods and the consequence of the naive analysis
which ignores the misclassification. Our proposed methods
are illustrated by the application to the data arising from a
psoriatic arthritic study.
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1. INTRODUCTION

Misclassification of the variable arises commonly from
many applications. In medical studies, for instance, diag-
nostic tests are the basic tools to measure the conditions for
patients. However, they inevitably involve diagnostic errors
and cannot perfectly reflect the accurate conditions of every
subject. Misclassification may come from reading error in-
duced from inaccurate machines or inexperience of readers.
Sometimes, the accurate measurement of a variable is too
costly or time-consuming to collect, and we have to take a
surrogate measurement which is quick and cheap to obtain
(e.g., Carroll, Gail and Lubin 1993).

Investigation of the impact of misclassification on analysis
dates back to Bross (1954). An overview of the development
was given by Kuha, Skinner and Palmgren (2005) who de-
scribed the effects of misclassification and summarized the
methods for adjusting misclassification effects. Given that
misclassification parameters are estimated from validation
studies or repeated measurements, consistent estimates of
the relative risk and related parameters can be obtained
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from the matrix method (e.g., Bross 1954; Marshall 1990;
Morrissey and Spiegelman 1999) or the maximum likeli-
hood method (e.g., Espeland and Hui 1987). Küchenhoff,
Mwalili and Lesaffre (2006) developed a simulation based
method for parameter estimation in the presence of mis-
classification in discrete covariates, and Küchenhoff, Led-
erer and Lesaffre (2007) derived the asymptotic variance
estimation for this approach. Yi et al. (2015) developed in-
ference methods to address misclassified discrete covariates
together with the presence of measurement error in continu-
ous covariates. Various methods of handling data with mis-
classification were documented in the monographs including
Gustafson (2004), Carroll et al. (2006), Buonaccorsi (2010),
and Yi (2017).

Although there has been research on dealing with mis-
classified covariates, little attention has been paid to the
covariate misclassification for the analysis of panel data un-
der multi-state models. Multi-state models are useful tools
for delineating the dynamic changes among different states
of the response variable. When subjects are assessed period-
ically over a time period, exact transition times among the
states are usually not observed, and only the state occupied
at each assessment, together with the measurements of risk
factors, is available. Such data are often called panel data
(e.g., Kalbfleisch and Lawless 1985; Cook, Kalbfleisch and
Yi 2002).

In analyzing panel data, Markov models are perhaps the
most frequently used multi-state models due to their sim-
plicity and interpretability. The Markov process is memo-
ryless in that only the currently occupied state is relevant
in specifying the transition intensities. Markov models have
been studied by many authors to handle panel data un-
der different settings. To name a few, see Kalbfleisch and
Lawless (1985), Lindsey and Ryan (1993), Gentleman et
al. (1994), Chen and Sen (1999), Hsieh, Chen and Chang
(2002), Saint-Pierre et al. (2003), Cook, Zeng and Lee
(2008), Hubbard, Inoue and Fann (2008), van den Hout and
Matthews (2009), Chen, Yi and Cook (2010), and Tom and
Farewell (2011), among many others.

In the presence of misclassified covariates, however, these
methods break down. It is unclear what the impact of mis-
classification is on usual inferential procedures for analysis
of panel data under Markov models. In this article, we inves-
tigate this important problem and consider Markov models
with misclassified covariates. We examine a fundamental is-
sue, model identifiability, which ubiquitously occurs in the
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presence of misclassified variables. To highlight the idea, the
discussion is directed to binary covariates. We analytically
show that misclassification in binary covariates breaks down
the model identifiability which is well established for Markov
models in the error-free context. To develop valid inference
methods to account for misclassification effects, we consider
three practical scenarios with: (1) known misclassification
probabilities, (2) the main study/ internal validation de-
sign, and (3) the main study/external validation design. In
the literature of measurement error models, having a valida-
tion subsample is a common requirement for characterizing
the measurement error process. Main study/validation de-
signs frequently appear in clinical trials and epidemiological
studies; discussion and examples may be found in, for exam-
ple, Greenland (1988), Willett (1998), Spiegelman, Rosner
and Logan (2000), Spiegelman, Carroll and Kipnis (2001),
Carroll et al. (2006), among many others.

This research is partially motivated by the data arising
from a psoriatic arthritic study (Jackson 2011). Psoriatic
arthritis (PsA) is a progressive disease for which the progres-
sion can be related to many factors. One interesting ques-
tion is to understand how a binary risk factor concerning
the information of effusions is associated with the disease
progression. To answer this question, it is convenient to em-
ploy a progressive multi-state model to describe the transi-
tion intensities from state to state. To account for possible
misclassification effects of the covariate, it is necessary to
develop a valid estimation procedure for data analysis.

Although this work is motivated by the PsA data, the
developed methods can be applied to general settings with
Markov models in the presence of a misclassified covariate.
This work complements the available research on Markov
models with misclassified states (e.g., Rosychuk and Thomp-
son 2003, 2004; Yi, He and He 2017).

The remainder is organized as follows. In Section 2,
Markov models are described for the error-free context, and
in Section 3, we show that the Markov models with mis-
classified binary covariates are not identifiable. The maxi-
mum likelihood estimation procedures are developed in Sec-
tion 4, where either known misclassification probabilities or
main study/validation study designs are considered. Simu-
lation studies are conducted in Section 5 to demonstrate the
performance of the proposed methods. Data arising from a
psoriatic arthritic (PsA) study are analyzed using the pro-
posed methods in Section 6. A general discussion is given
in Section 7, and technical notes are presented in the ap-
pendix.

2. MODEL FORMULATION

2.1 Time-homogeneous Markov models

Suppose an individual moves among K states which are
indexed by integers 1, . . . ,K. Let S (t) denote the state
that is occupied by an individual at time t. Assume that
{S (t) : t ≥ 0} follows a continuous-time Markov process.

Let P (s, s+ t) be the K ×K transition probability matrix
from time s to time s+ t with entry (j, k) given by

pjk (s, s+ t) = P {S (s+ t) = k | S (s) = j}

for s ≥ 0, t > 0 and j, k = 1, . . . ,K. The transition intensity
from state j to state k at time t is defined as

qjk (t) = lim
Δt↓0

pjk (t, t+Δt)

Δt
for j �= k,

and as a convention, qjj is defined as

qjj (t) = −
∑
k �=j

qjk(t).

Let Q (t) be the K × K transition intensity matrix with
entry (j, k) given by qjk (t), where j, k = 1, . . . ,K.

This article is primarily concerned with time-homo-
geneous Markov models which are often used to analyze
panel data due to their simplicity (e.g., Kalbfleisch and Law-
less 1985), where qjk(t) is assumed to be a constant for any
t. We therefore write qjk(t) = qjk for j, k = 1, . . . ,K and
Q(t) = Q, where qjk is a nonnegative constant and Q is a
K × K matrix with nonnegative elements. It follows that
P (s, s+ t) = P (0, t), which is then written as P (t) for ease
of exposition.

For the time-homogeneous Markov model, transition
probabilities are expressed in terms of transition intensities
(Cox and Miller 1965, Chapter 4),

(1) P (t) = exp (Qt) =
∞∑
l=0

Ql t
l

l!
,

where the matrix exponential is defined as the power series
of the matrix product; and Q0 = IK , a K × K identity
matrix.

To compute P (t) using (1), one may use the matrix de-
composition to work out a convenient algorithm. If Q has
distinct eigenvalues, say, d1, . . . , dK , then we write

Q = JDJ−1,

where D = diag (d1, . . . , dK), and J is the K × K ma-
trix whose jth column is the eigenvector associated with
dj . Then P (t) is calculated as (Kalbfleisch and Lawless
1985):

P (t) = Jdiag {exp(d1t), . . . , exp(dKt)} J−1.

If Q has repeated eigenvalues, Kalbfleisch and Lawless
(1985) suggested an analogous decomposition of Q to the
Jordan canonical form (Cox and Miller 1965, Chapter 3).
For practically useful models, see Chiang (1980) for detailed
expressions.
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2.2 Regression model with covariates
incorporated

2.2.1 Transition intensity model

Let X be a binary covariate subject to misclassification
and let x1 and x2 denote the two possible values that X
assumes. Let Z stand for the vector of perfectly measured
time-independent covariates. Given {X,Z}, {S(t) : t ≥ 0} is
assumed to follow a time-homogeneous Markov model with
the conditional transition intensity qjk(X,Z) for j �= k and
j, k = 1, . . . ,K.

To model the effects of covariates on transitions, we con-
sider the log-linear model for the intensity

(2) qjk(X,Z) = exp(βjk0 +Xβjkx + ZTβjkz)

for j �= k and j, k = 1, ...,K, where βjk0, βjkx, and βjkz are
the regression coefficients.

Let β = (βjk0, βjkx, β
T

jkz : j �= k; j, k = 1, . . . ,K)T,
which is of our primary interest to estimate. The model (2)
has been commonly used in applications; see, for example,
Kalbfleisch and Lawless (1985) and Cook, Kalbfleisch and
Yi (2002).

2.2.2 Misclassification model

Let X∗ be a surrogate measurement of X. Often the non-
differential misclassification mechanism is assumed with

P (S(t) = k|X∗, X, Z) = P (S(t) = k|X,Z)

for any t > 0 and k = 1, . . . ,K.

This assumption says that the observed measurement X∗

does not carry information about the outcome if the true co-
variates {X,Z} are controlled (Carroll et al. 2006; Yi 2017).

For l �= r and l, r = 1, 2, let

λlr(Z) = P (X = xr|X∗ = xl, Z)

be the misclassification probability of the true covariate X
given the observed surrogate measurement X∗ and prece-
sely measured covariates Z (Yi 2017, Chapter 6). The logis-
tic models are used to facilitate the effects of covariates on
misclassification probabilities,

log

{
λ12(Z)

1− λ12(Z)

}
= α10 + ZTα1z;(3)

log

{
λ21(Z)

1− λ21(Z)

}
= α20 + ZTα2z

where α10, α20, α1z and α2z are regression coefficients. Write
α = (αl0, α

T

lz : l = 1, 2)T.

3. MODEL IDENTIFIABILITY

In this section, we show that given the model setup in
Section 2.2, the joint model for the state process and the
misclassification process is not identifiable.

Theorem:
Suppose that conditional on {X,Z}, {S(t) : t ≥ 0} is a

Markov process which has the transition intensity matrix Q
modeled by (2). Let S = (S0, . . . , Sm)T denote the states of
the process {S(t) : t ≥ 0} observed at time points 0 = t0 <
t1 < . . . < tm where Sj = S(tj) for j = 0, . . . ,m. Assume
that the misclassification models are given by (3) and that
the distribution of the initial state Pr(S1|X,Z) is free of the
parameters of models (2) and (3).

For any given parameters α and β, we consider another
set of parameters α∗ and β∗, defined as

α∗ = −α and

β∗ = (β∗
jk0, β

∗
jkx, β

∗T

jkz : j �= k; j, k = 1, . . . ,K)T,

where β∗
jk0 = βjk0 + βjkx(x1 + x2), β

∗
jkx = −βjkx, and

β∗
jkz = βjkz. Then the conditional probability of S, given

the observed covariates {X∗, Z}, cannot be differentiated at
the two sets of parameter values {α, β} and {α∗, β∗}, i.e.,

P (S|X∗, Z;α∗, β∗) = P (S|X∗, Z;α, β).

The proof of the theorem is included in . This theorem
says that two distinct sets of parameters can lead to the
same probability mass function of S, thus, suggesting that
the model is non-identifiable in the presence of misclassi-
fied binary covariates. Consequently, in developing valid in-
ference methods to account for covariate misclassification
effects, one needs to carefully address the issue of non-
identifiability.

In the misclassification-free context, inference about the
parameter β can be based on model (2) by using the like-
lihood method, and in this instance non-identifiability is
not a concern. However, in the presence of variable mis-
classification, inferences often require additional modeling
for the misclassification process, besides routine modeling
the response process. This additional modeling of the nui-
sance process enlarges the initial parameter space, say Θβ ,
for the response model (2) to a new parameter space, say
Θ = Θβ ×Θα, where Θα represents the space of the param-
eters induced from the additional modeling of the misclassi-
fication process. The new parameter space Θ is larger than
the initial parameter space Θβ in that additional dimen-
sions dim(Θα) are resulted in, which creates possible model
non-identifiability.

To overcome non-identifiability issues, we often impose
certain constraints to the parameter space Θ to make it
smaller, or equivalently, to make some parameter values in-
admissible. A principle of imposing suitable constraints on
the parameter space Θ is to preserve the initial model struc-
tures for the response process with the parameter set Θβ

unchanged but place constraints on the nuisance parameter
set Θα.

A simple strategy is to assume that the values of the
nuisance parameters (i.e., α) are known, say α0, then the
parameter space Θ becomes Θβ ×{α0}, which is essentially
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equivalent to the initial parameter space Θβ for the response
model (2). Assuming the nuisance parameters α to be known
is a routine for conducting sensitivity analyses, where one
typically specifies nuisance parameters to be representative
values and then carries out inference about β to uncover
how sensitive the results are to different magnitudes of nui-
sance parameters. This strategy is usually employed when
the available data include only the surrogate measurements
of the covariates together with the response measurements
(e.g., Gustafson 2004; Carroll et al. 2006; Yi 2017).

In some applications, a validation subsample which con-
tains the measurements for both the true covariaes and their
surrogate measurements, together with the response mea-
surements, is available (e.g., Spiegelman, Rosner and Logan
2000; Yi et al. 2019). In this case, we are able to estimate
the nuisance parameter α using the validation data, and thus
the parameter space Θ becomes Θβ × {α̂}, where α̂ is the
estimate of the parameter α. This virtually reduces to the
preceding instance where model non-identifiability is not a
problem.

In the next section we explore procedures for the estima-
tion of the model parameter β for these scenarios.

4. MAXIMUM LIKELIHOOD METHODS

Suppose that there is a sample consisting of independent
measurements of n individuals. We add subscript i to the
symbols defined in the previous sections. For i = 1, . . . , n,
let Si(t) denote the state for individual i at time t ≥ 0.
Let Xi represent the true covariate, X∗

i denote the sur-
rogate measure of Xi, and Zi be the vector of precisely
measured time-independent covariates for individual i. We
assume that conditional on {Xi, Zi}, {Si(t) : t ≥ 0} fol-
lows a continuous time-homogeneous Markov process. Let
ti0 < ti1 < . . . < timi denote the (mi + 1) times at which
individual i is observed. For simplicity, let Sij denote Si(tj)
and Si = (Si0, . . . , Simi)

T.
Models described in the previous sections are employed to

feature the transition process as well as the misclassification
process. In order to estimate the parameters associated with
the transition intensity model (2), we propose the likelihood
inference methods for the situations discussed in Section 3:
one is that the parameters in misclassification probabilities
are known from empirical studies, and the other is that a
validation sample is available together with the main study
data.

4.1 Misclassification probabilities are known

First, we consider estimation procedures of β for the case
where the parameter α in the misclassification models (3) is
known as α0, say. The likelihood function contributed from
individual i is

Li(β) = P (Si|X∗
i , Zi;α0, β)(4)

∝ P (Xi = x1|X∗
i , Zi;α0)

·
mi∏
j=1

P (Sij |Si,j−1, Xi = x1, Zi;β)

+P (Xi = x2|X∗
i , Zi;α0)

·
mi∏
j=1

P (Sij |Si,j−1, Xi = x2, Zi;β),

where for r = 1, 2, P (Xi = xr|X∗
i , Zi;α0) is determined by

(3), P (Sij |Si,j−1, Xi = xr, Zi;β) is the transition probabil-
ity defined in Section 2.2.1, and P (Si0|Xi, Zi) is the initial
state occupation probability which is assumed to be free of
parameter β.

Thus, the likelihood function of β is

L(β) =

n∏
i=1

Li(β).

The maximum likelihood estimator of β, denoted by β̂,
can be obtained by maximizing the log-likelihood logL(β)
with respect to β. To implement this, one may employ
the Newton-Raphson algorithm described by Kosorok and
Chao (1996) or the quasi-Newton algorithm proposed by
Kalbfleisch and Lawless (1985).

From standard likelihood theory, under regularity con-
ditions (e.g., Andersen et al. 1993, Section 8.3; Lehmann

1999, Section 7.3), the maximum likelihood estimator β̂ is
a consistent estimator of β and has an asymptotic normal
distribution given by

√
n(β̂ − β)

d−→ N(0,Σ−1(β)) as n → ∞,

where Σ(β) = E
[
{∂ logLi(β)/∂β}

⊗
2
]
, and a

⊗
2 = aaT for

a column vector a.
When using this asymptotic distribution to conduct in-

ference about β, Σ(β) is replaced by its consistent estimate

Σ̂(β) = n−1
∑n

i=1 {∂ logLi(β)/∂β}
⊗

2 |β=β̂ , where

∂ logLi(β)

∂β
=

1

Li(β)

( ∑
r=1,2

[
P (Xi = xr|X∗

i , Zi;α0)

·
mi∑
j=1

{
∂P (Sij |Si,j−1, Xi = xr, Zi;β)

∂β

·
∏

1≤l �=j≤mi

P (Sil|Si,l−1, Xi = xr, Zi;β)

}])
.

4.2 Main study/validation study

In applications, parameter α in the misclassification
models may be unknown and must be estimated from
additional data sources. Here we describe an estimation
method when a validation sample is available in addition to
the main study data. Our development covers two types of
validation studies: internal or external, which are used in
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estimation of parameter θ = (βT, αT)T, together with the
main study.

Main Study/Internal Validation Design
In the main study/internal validation design, in addition

to the main study data {(X∗
i , Zi, Si) : i ∈ M}, an inter-

nal validation study with data {(Xi, X
∗
i , Zi, Si) : i ∈ V} is

available, where M and V are the index sets for the main
study and validation study, respectively, and V is a subset
of M. We assume that the validation sample V is a random
subsample of the main study sample. Let δi denote the selec-
tion indicator for individual i, where δi = 1 if individual i is
selected to be included in the validation sample and δi = 0
otherwise. We let nV represent the size of V in contrast to
the size n of M. In circumstances where measuring the true
value of Xi is expensive or time-consuming, nV is typically
much smaller than n.

For i ∈ V , the likelihood contributed from individual i is
given by

LVi = P (δi = 1, Xi, Si|X∗
i , Zi;α, β)

∝ P (Si|Xi, Zi;β)P (Xi|X∗
i , Zi;α),

and for i ∈ M\V , the likelihood contributed from individual
i is given by

LMi = P (δi = 0, Si|X∗
i , Zi; α, β)

∝ P (Si|Xi = x1, Zi;β)P (Xi = x1|X∗
i , Zi;α)

+P (Si|Xi = x2, Zi;β)P (Xi = x2|X∗
i , Zi;α),(5)

where P (δi = r|Xi, X
∗
i , Zi) is the probability for including

or not including subject i in the validation study which is
assumed to satisfy

P (δi = r|Xi, X
∗
i , Zi) = P (δi = r|Zi)

for r = 0, 1, i.e., the selection of individual i into the valida-
tion study does not depend on either the trueXi or observed
X∗

i , given perfectly measured covariates Zi.
Consequently, the likelihood for a main study/internal

validation study design is

Lint(α, β) =
∏
i∈V

LVi ·
∏

i∈M\V
LMi.

Therefore, the log-likelihood for the main study/internal val-
idation study design takes the form

logLint(α, β) =
∑

i∈M\V
log {P (Si|X∗

i , Zi;α, β)}

+
∑
i∈V

log {P (Xi|X∗
i , Zi;α)}

+
∑
i∈V

mi∑
j=1

log {P (Sij |Si,j−1, Xi, Zi;β)} ,

where P (Si|X∗
i , Zi;α, β) is given by (5) with α0 replaced by

α, P (Xi|X∗
i , Zi;α) is the misclassification probability deter-

mined by (3), and P (Sij |Si,j−1, Xi, Zi;β) is the transition
probability defined in Section 2.2.1. The maximum likeli-
hood estimates of α and β can be obtained by maximizing
the log-likelihood logLint(α, β) with respect to α and β. Let

θ̂int denote the resultant estimator of θ.
Let SViα = ∂ logLVi/∂α, SViβ = ∂ logLVi/∂β,

SMiα = ∂ logLMi/∂α, SMiα = ∂ logLMi/∂β, and SMiθ =
(ST

Miβ , S
T
Miα)

T. Under regularity conditions and when the
ratio nV/n approaches a positive constant ρ as n → ∞,√
n(θ̂int − θ) has an asymptotic normal distribution with

mean zero and covariance matrix A−1
int, where

Aint = −(1− ρ)E

(
∂SMiθ

∂θT

)

−ρdiag

{
E

(
∂SViβ

∂βT

)
, E

(
∂SViα

∂αT

)}
.

This result can be proved by modifying standard likelihood
theory; a sketch is given in Appendix B.

Main Study/External Validation Design
In the main study/external validation design, the avail-

able data are {(X∗
i , Zi, Si) : i ∈ M} and {(X∗

i , Xi, Zi) : i ∈
V}, respectively, where V and M do not overlap, and there
are no response measurements for subjects in V . We still use
n and nV to denote the size of M and V , respectively.

With the main study/external validation design, we as-
sume that given Zi, the conditional distribution of (Xi, X

∗
i )

for i ∈ V is the same as that of (Xi, X
∗
i ) for i ∈ M so that

the information carried by the study V can be transported
to the main study M when carrying out inferences. The
feasibility of this assumption is justified by subject matter
considerations. This assumption is typically reasonable for
scenarios where both main and external validation studies
are carried out to the same population using the same data
collection procedures (e.g., Yi et al. 2015).

For i ∈ V , the likelihood contributed from individual i is
given by P (δi = 1, Xi, |X∗

i , Zi;α), and for i ∈ M, the likeli-
hood contributed from individual i is given by (5). Then the
log-likelihood for the main study/external validation study
design is given by

logLext(α, β) =
∑
i∈M

log [P (Si|X∗
i , Zi;α, β)]

+
∑
i∈V

log [P (Xi|X∗
i , Zi;α)] .

Maximizing logLext(α, β) with respect to α and β yields

estimator of α and β. Let θ̂ext be the resulting estimator
of θ. Under regularity conditions and when the ratio nV/n
approaches a positive constant ρ as n → ∞,

√
n(θ̂ext − θ)

d−→ N

(
0,

1

1 + ρ
A−1

ext

)
as n → ∞,
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Table 1. Simulation results for three-state progressive models with a misclassified binary covariate: misclassification
probabilities are given

TRUE NAIVE
Bias ASE ESE CR% Bias ASE ESE CR%

β10 .005 .047 .047 94.6 -.045 .050 .050 85.4
β1x -.001 .047 .045 95.4 .085 .050 .051 59.7
β1z .004 .049 .048 95.3 .000 .050 .051 94.5
β20 .003 .051 .053 93.2 -.071 .054 .055 73.6
β2x -.002 .051 .050 95.2 .130 .054 .054 33.6
β2z .003 .054 .057 93.6 -.014 .056 .056 93.8

Case 1: (α1, α2) = (0.3, 0.1) Case 2: (α1, α2) = (0.2, 0.05) Case 3: (α1, α2) = (0.4, 0.15)
Bias ASE ESE CR% Bias ASE ESE CR% Bias ASE ESE CR%

β10 .006 .049 .050 93.7 -.015 .048 .048 92.7 .032 .052 .054 90.5
β1x .004 .079 .080 92.9 .038 .069 .070 90.0 -.027 .089 .089 91.7
β1z .004 .050 .051 94.8 .002 .050 .050 95.0 .004 .051 .051 94.9
β20 .005 .054 .053 94.9 -.027 .052 .052 91.5 .046 .058 .058 89.7
β2x .003 .084 .082 95.0 .052 .077 .073 89.7 -.037 .089 .087 92.7
β2z .002 .057 .059 93.5 -.005 .057 .059 93.0 .006 .058 .060 93.7

“Bias” represents the difference between the parameter value and its estimate, “ASE” refers to the model-based asymptotic
standard error, “ESE” stands for the empirical standard deviation, and “CR%” displays the coverage rate (in percentage) for 95%

confidence intervals.

where

Aext = − 1

(1 + ρ)
E

(
∂SMiθ

∂θT

)
− ρ

1 + ρ
diag

{
0, E

(
∂S∗

Viα

∂αT

)}

with S∗
Viα = ∂ logP (δi = 1, Xi|X∗

i , Zi;α)/∂α. Here and else-
where, the symbol 0 may represent the number zero as well
as a zero vector or a zero matrix whose dimension is clear
from the context. A derivation of this result is outlined in
Appendix C.

5. SIMULATION STUDIES

In this section we carry out simulation studies to evaluate
the performance of the proposed methods and demonstrate
the consequence of the naive method which ignores the co-
variate misclassification. The sample size is n = 500 and
1,000 simulations are run for each parameter configuration.

We consider a three-state progressive time-homogenous
Markov model where the transition intensity is given by

(6) qj,j+1 = exp(βj0 +Xβjx + Zβjz)

for j = 1, 2, where we set β10 = −1.0, β1x = −0.2, β1z =
0.6, β20 = −0.7, β2x = −0.3, and β2z = 0.5.

Each individual is assumed to start from state 1 at the
initial time t0 = 0 and is observed at the examination times,
t1 < . . . < tm, where m is taken as 11. The gap between
two adjacent examination times, tj+1 − tj , is uniformly dis-
tributed on the interval [0.5; 1.0], where j = 0, . . . ,m − 1.
A continuous covariate Z is generated from the standard
normal distribution. The observed binary covariate X∗ in-
dependently takes values −1 and 1 with the respective prob-
abilities 2/3 and 1/3. Conditional on X∗, the true binary

covariate X is independent of Z and is generated based on
the misclassification probabilities

α1 = P (X = 1|X∗ = −1) = 0.3,

α2 = P (X = −1|X∗ = 1) = 0.1.

We analyze the simulated data using the methods devel-
oped in Section 4. First, we assume that the misclassification
probabilities are known and we particularly consider the fol-
lowing three scenarios:
Case 1: The misclassification probabilities are specified as
the values used for data generation, i.e., (α1, α2) = (0.3, 0.1);
Case 2: The misclassification probabilities are specified to
be smaller than the true values and we take (α1, α2) =
(0.2, 0.05);
Case 3: The misclassification probabilities are specified
to be larger than the true values and we take (α1, α2) =
(0.4, 0.15).

Case 1 is a reflection of the true scenario of the mis-
classification process, and Cases 2 and 3 facilitate circum-
stances where the misclassification probabilities are misspec-
ified. For comparison purposes, we also run two analyses. In
the first analysis (called “TRUE”), we pretend the true co-
variate measurements Xi are available and use them to fit
the model (6); and in the second analysis (called “NAIVE”),
we perform the naive analysis by fitting model (6) with Xi

directly replaced by the observed measurements X∗
i .

The analysis results are reported in Table 1 where “Bias”
represents the difference between the parameter value and
its estimate, “ASE” refers to the model-based asymptotic
standard error, “ESE” stands for the empirical standard
deviation, and “CR%” displays the coverage rate (in per-
centage) for 95% confidence intervals.
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Table 2. Simulation results for three-state progressive models with a misclassified binary covariate: the main/validation study
is considered

Internal validation study
n2 = 50 n2 = 100

Bias ASE ESE CR% Bias ASE ESE CR%

β10 .006 .057 .052 96.5 .006 .049 .049 95.4
β1x .003 .076 .073 94.3 -.000 .067 .066 95.1
β1z .003 .048 .050 94.8 .001 .046 .046 94.2
β20 .007 .071 .062 97.2 .004 .058 .052 96.2
β2x -.003 .083 .079 94.9 -.001 .071 .068 95.3
β2z .000 .055 .055 94.9 .002 .052 .052 94.9

α10 -.034 .539 .407 98.7 -.016 .395 .276 99.2
α20 -.098 1.018 .574 100.0 -.062 .617 .439 100.0

External validation study
n2 = 50 n2 = 100

Bias ASE ESE CR% Bias ASE ESE CR%

β10 .004 .064 .057 95.8 .009 .055 .053 95.8
β1x .003 .088 .083 93.8 .002 .082 .084 93.3
β1z .004 .051 .051 94.8 .004 .050 .051 94.1
β20 .004 .080 .065 97.4 .006 .065 .064 95.4
β2x .000 .096 .087 94.2 .003 .089 .086 94.9
β2z .000 .058 .060 93.3 .001 .058 .061 94.0

α10 -.086 .502 .425 98.0 -.010 .330 .295 97.4
α20 -.091 1.174 .604 100.0 -.109 .633 .457 99.8

“Bias” represents the difference between the parameter value and its estimate, “ASE” refers to the model-based asymptotic
standard error, “ESE” stands for the empirical standard deviation, and “CR%” displays the coverage rate (in percentage) for 95%

confidence intervals.

As expected, the analysis with the true measurements
of Xi used gives the best estimation results among all the
analysis methods. Using these results as a reference point,
we now examine the results obtained from other methods.
The NAIVE method which disregards the feature of mis-
classification produces noticeably biased results; the finite
sample biases are large and the coverage rates of 95% confi-
dence intervals deviate from the nominal level for the inter-
cepts and the Xi covariate effects. On the other hand, the
proposed method under Case 1 significantly outperforms the
NAIVE method. It yields results that are quite close to those
produced by the TRUE method. Finite sample biases are
reasonably small, the model-based variance estimates agree
well with the empirical variances, and the coverage rates
for 95% confidence intervals are close to the nominal level.
Unsurprisingly, when misclassification probabilities are mis-
specified, the performance of the proposed method (i.e., un-
der Cases 2 and 3) would deteriorate and biased results may
incur. Interestingly, in the cases we consider here, the pro-
posed method still outperforms the NAIVE method even
when misspecification of the misclassification probabilities
is involved.

Next, we assess the performance of the proposed method
when misclassification probabilities must be estimated from
a validation sample. To form a validation sample, we ran-
domly include nV individuals such that half of them have
Xi = −1 and half of them have Xi = 1, where nV is 50

or 100. We consider the two cases where either an inter-
nal or an external validation sample is available in addition
to the main study data, and apply the estimation methods
described in Section 4.2 to estimate the parameter β.

The analysis results are recorded in Table 2 where the
entries have the same meaning as for Table 1. Regarding es-
timation of the parameter β, the proposed method performs
well for both circumstances with either an internal or an
external sample. Finite sample biases are negligible, model-
based asymptotic standard errors fairly agree with the em-
pirical standard deviations, and the coverage rates for 95%
confidence intervals are comparable to the nominal level. As
expected, when the size in the validation sample increases,
ASE and ESE of the estimators tend to decrease. Regard-
ing estimation of the nuisance parameters α10 and α20, we
observe noticeable finite sample biases and the departure of
the the coverage rates of the 95% confidence intervals from
the nominal level. This is mainly owing to the small sizes
of the validation samples. However, such unideal results do
not seem to drastically affect consistent estimation of the
parameter β which is of principal interest.

In summary, the simulation study demonstrates that the
naive analysis with misclassification ignored yields biased
estimation results. It is useful to adjust for misclassification
effects in inferential procedures. The finite sample perfor-
mance of the proposed methods is fairly satisfactory, which
is indicated by the results we obtain here.
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Figure 1. Three-state progressive model for the PsA study.

6. APPLICATION TO THE PSA DATA

To illustrate the proposed methods, we analyze the data
arising from a psoriatic arthritic study (Jackson 2011). Pso-
riatic arthritis (PsA) is a progressive disease for which the
progression is usually reflected in the accumulation and
severity of damaged joints. Here we consider a three state
progressive model, shown in Figure 1, to facilitate the pro-
gression of PsA: State 1 represents that a subject has no
damaged joints, State 2 indicates a mild damage condition
for which an individual has 1 to 4 damaged joints, and State
3 features a moderate or severe damage status of a subject
who has 5 or more damaged joints. The data set, denoted by
{(Xi, Si) : i = 1, . . . , n}, contains n = 305 subjects with 806
observations which are obtained from the visits to a psoriatic
arthritis clinic. The risk factor Xi is taken as the presence or
absence of five or more effusions (coded as ‘hieff’: -1 for “no
presence” and +1 for “presence”). This covariate is time-
independent with 48 positive values and 257 negative values
among all the subjects.

In the three-state progressive model, transition intensities
qj,j+1 are modeled by the log-linear model

(7) log qj,j+1 = βj0 +Xjβjx

for j = 1, 2, where βj0 and βjx are the regression coefficients
to be estimated for j = 1, 2.

To see how misclassification may impact the analysis, we
consider a scenario where the surrogate measurement, de-
noted by X∗

i , is available but Xi is not observed, and the
surrogate measurement is related to the true covariate Xi in
such a way that only one type of misclassification is present,
i.e., P (Xi = +1|X∗

i = −1) = 0 and P (Xi = −1|X∗
i =

+1) > 0. In particular, the surrogate measurement X∗
i is

generated from the conditional probability mass function
P (X∗

i = +1|Xi = +1) = P (X∗
i = −1|Xi = −1) = 0.8. If

the generated value of X∗
i is -1, then we replace it with the

value of Xi, i.e., set X
∗
i = Xi.

To analyze the PsA data from different perspectives, we
conduct the following four analyses.
Analysis 1:

The three-state progressive Markov model (7) is fitted to
the PsA data {(Xi, Si) : i = 1, . . . , n}.
Analysis 2:

We fit the three-state progressive Markov model (7) to
the data {(X∗

i , Si) : i = 1, . . . , n}, with Xi replaced by X∗
i .

This is a naive method which ignores the misclassification.

Analysis 3:
We fit the three-state progressive Markov model (7) to the

data {(X∗
i , Si) : i = 1, . . . , n} using the method described in

Section 4.1, where the misclassification probability is repa-
rameterized as

P (Xi = −1|X∗
i = +1) =

exp(α)

1 + exp(α)

with the parameter α taken as 0.5.
Analysis 4:

We fit the three-state progressive Markov model (7) to
the data {(X∗

i , Si) : i = 1, . . . , n} using the method de-
scribed in Section 4.2 for the main/internal validation data,
where the main study contains the measurements {(X∗

i , Si) :
i = 1, . . . , n} and the internal validation sample includes the
measurements {(Xi, X

∗
i , Si) : i = 1, . . . , 30} of 30 randomly

selected subjects with a positive surrogate measurementX∗
i .

The analysis results are summarized in Table 3 where
“EST” stands for the point estimate of a parameter, “ASE”
refers to the model-based standard error of the associated
estimator, and “p-value” records the p-value for the corre-
sponding null hypothesis of no effect. Comparing the results
obtained from the different analyses, we have the following
findings.
Analysis 1 vs Analysis 2:

The point estimates and standard errors obtained from
Analyses 1 and 2 are close for estimation of β10, β20 and β2x.
The estimate of β1x obtained from Analysis 2 is attenuated
relative to that obtained from Analysis 1. The significant ef-
fect of the covariate Xi on the onset of PsA (States 1 → 2)
is detected in Analysis 1 but not in Analysis 2, which reveals
the consequence of ignoring the misclassification in Analy-
sis 2.
Analysis 3 vs Analysis 4:

The point estimates in Analyses 3 and 4 agree well, and
standard errors for the estimators of the parameters related
to the disease progression (States 2 → 3) in both analyses

are close. However, standard errors of β̂10 and β̂1x in Anal-
ysis 3 are much larger than those obtained from Analysis 4
where β̂10 and β̂1x represent the estimator of β10 and β1x,
respectively. The inflated standard error for β̂1x may result
in the failure of detecting the significant effect of the covari-
ate hieff on the onset of PsA (States 1 → 2) in Analysis 3.
Analysis 4 vs Analysis 1:

The results obtained from the main study/internal vali-
dation study design (Analysis 4) agree fairly well with the
results obtained using the true covariate (Analysis 1). Both
methods successfully capture the significant effect of hieff on
the onset of PsA (States 1 → 2) and give comparable esti-
mates and p-values for all the parameters. Positive estimates
of the covariate effect for hieff from the two analyses show
that hieff has a positive effect on transition from one state
to another; the presence of five or more effusions is likely
to increase the transition rate. In addition, comparing the
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Table 3. Analyses of PsA data under the three-state progressive model

Analysis 1 Analysis 2
Covariate EST ASE p-value EST ASE p-value

Transition
State 1 → 2 Intercept β10 -2.05 0.20 < .001 -2.14 0.21 < .001

hieff β1x 0.42 0.20 .036 0.29 0.22 .169
State 2 → 3 Intercept β20 -1.71 0.16 < .001 -1.70 0.17 < .001

hieff β2x 0.23 0.16 .135 0.25 0.17 .148

Analysis 3 Analysis 4
Covariate EST ASE p-value EST ASE p-value

Transition
State 1 → 2 Intercept β10 -1.87 0.72 0.010 1.93 0.27 < .001

hieff β1x 0.68 0.84 .418 0.58 0.29 .045
State 2 → 3 Intercept β20 -1.62 0.23 < .001 -1.62 0.21 < .001

hieff β2x 0.38 0.28 .177 0.37 0.23 .113
“EST” stands for the point estimate of a parameter, “ASE” refers to the model-based standard error of the associated estimator,

and “p-value” records the p-value for the corresponding null hypothesis of no effect.

estimates of the covariate effect hieff for different transition
intensities, we see that the presence of five or more effusions
has a larger effect on increasing transition from states 1 to
2 than that from states 2 to 3.

In summary, taking the results of Analysis 1 as reference
values, we see that Analysis 2 reveals the attenuated effects
of the naive analysis which ignores the misclassification fea-
ture in the analysis. This also demonstrates the necessity
of accounting for misclassification effects in the analysis of
misclassification-prone data. Both Analysis 3 and Analysis
4 are developed to incorporate misclassification effects but
they are applicable to different circumstances. In our cur-
rent setting of surrogate data generation, it is expected that
Analysis 4 produces the closest results to those of Analysis 1.

Finally, as noted by the Associate Editor, the data anal-
ysis we consider here solely serves for illustrative purposes.
Because the initial dataset does not contain misclassification
nor a validation sample, we artificially generate a subset of
surrogate measurements X∗ for X and then compare the
performance of different analysis methods. Such studies sim-
ply demonstrate that ignoring or incorporating the feature
of misclassification can yield different results, and when mis-
classification is involved, it is generally necessary to account
for its effects on data analysis. Other than being illustrative,
the analysis results here should not be over-interpreted for
extracting new knowledge.

7. DISCUSSION

In this article, we investigate the problem of panel
data with misclassified covariates. We study the impact of
misclassification of a binary covariate on the model struc-
ture and analytically show the model non-identifiability.
This result complements the discussion by Rosychuk and
Thompson (2004) who explored the case with a binary
outcome subject to misclassification. Our development in
Section 3 capitalizes on the unique feature of the logistic

regression for the binary variable, as shown by (9) in the
appendix. The non-identifiability established in the theorem
reflects the “symmetry” of the logistic model for a binary
variable in the sense that the values of the variable are in-
terchangeable if the model parameter takes values negative
to each other. If the misclassification probabilities are not
modeled by logistic regression models but are characterized
by other regression forms, or if the misclassification-prone
covariate X assumes more than two values, it is not obvious
to prove or disprove non-identifiability in such settings. This
is an interesting problem that warrants further explorations.

To address misclassification effects, in this paper we de-
velop valid estimation procedures to analyze panel data
with misclassified binary covariates. To overcome the non-
identifiability problem, we propose the likelihood methods
to make statistical inference and ensure the model identi-
fiability in practical situations: one is based on the known
misclassification probabilities, which is useful for conduct-
ing sensitivity analysis; the other one is developed based on
the main study/validation study design. Simulation stud-
ies demonstrate satisfactory performance of our proposed
methods.

Our methods are flexible for handling problems
with unequally spaced assessment times, and moreover,
the exact transition times are interval censored under
the panel/intermittent observation scheme. We utilize
continuous-time Markov models for analysis of panel data,
and we are interested in understanding the influence of co-
variates on transitions among the states. Our methods ex-
tend the scope of existing approaches of dealing with panel
data to accommodating a practical feature that covariates
are mismeasured.

APPENDIX A: PROOF OF THE THEOREM

To show how different parameter values may affect mod-
eling of the transition intensities qjk(X,Z) and the misclas-
sification probabilities λlr(Z), respectively, through model
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(2) and model (3), rather than writing the right-hand-side
of (2) and (3), we let qjk(X,Z;β) and λlr(Z;α) denote the
the right-hand-side of (2) and (3), respectively, in the fol-
lowing derivations for ease of exposition.

First, we examine the misclassification model (3) under
different parameter values α and α∗. Noting that α∗ = −α
yields

(8)
exp(αl0 + ZTαlz)

1 + exp(αl0 + ZTαlz)
=

1

1 + exp(α∗
l0 + ZTα∗

lz)

for any value of Z and l = 1, 2, we obtain that for l, r = 1, 2
with l �= r, by (3) and (8),

λlr(Z;α) = 1− λlr(Z;α∗)

= λrr(Z;α∗).(9)

Thus we have

P (X = x1|X∗ = x2, Z;α) = P (X = x2|X∗ = x2, Z;α∗),

or more generally,

(10) P (X = x1|X∗, Z;α) = P (X = x2|X∗, Z;α∗).

Next, we examine the response model (2) under different
parameter values β and β∗. By the definition of β∗

ij0, β
∗
ijx

and β∗
ijz, we obtain that

β∗
jk0 + β∗

jkxx2 + ZTβ∗
jkz = βjk0 + βjkxx1 + ZTβjkz;

β∗
jk0 + β∗

jkxx1 + ZTβ∗
jkz = βjk0 + βjkxx2 + ZTβjkz;

and hence, by (2),

qjk(x1, Z;β) = qjk(x2, Z;β∗) and(11)

qjk(x2, Z;β) = qjk(x1, Z;β∗).

By (1), transition probabilities for the time-homogeneous
Markov model are determined by transition intensi-
ties. Therefore, applying (11) and the assumption that
P (S1|X∗, Z) does not contain α or β, we obtain that

P (S|X = x1, Z;β) = P (S|X = x2, Z;β∗);(12)

P (S|X = x2, Z;β) = P (S|X = x1, Z;β∗).

As a result, we obtain

P (S|X∗, Z;α, β)

= P (S, X = x1|X∗, Z;α, β)

+P (S, X = x2|X∗, Z;α, β)

= P (S|X = x1, Z;β)P (X = x1|X∗, Z;α)

+P (S|X = x2, Z;β)P (X = x2|X∗, Z;α)

= P (S|X = x2, Z;β∗)P (X = x2|X∗, Z;α∗)

+P (S|X = x1, Z;β∗)P (X = x1|X∗, Z;α∗)

= P (S, X = x2|X∗, Z;α∗, β∗)

+P (S, X = x1|X∗, Z;α∗, β∗)

= P (S|X∗, Z;α∗, β∗),

where the nondifferential misclassification mechanism is
used in the second and fourth steps, and the third step is
due to (10) and (12).

APPENDIX B

Under regularity conditions, maximizing logLint(α, β) is
equivalent to solving

∑
i∈M

(
(1− δi)SMiβ + δiSViβ

(1− δi)SMiα + δiSViα

)
= 0.

Let Hiβ = (1 − δi)SMiβ + δiSViβ , Hiα = (1 − δi)SMiα +
δiSViα and Hiθ = (HT

iβ , H
T
iα)

T. Then solving
∑

i∈M Hiθ = 0

yields the estimator θ̂int. Applying the Taylor series expan-
sion to

∑
i∈M Hiθ(θ̂int) = 0 gives

∑
i∈M

Hiθ +
∑
i∈M

∂Hiθ

∂θT
(θ̂int − θ) +Op(1) = 0,

leading to
(13)

√
n(θ̂int − θ) =

(
− 1

n

∑
i∈M

∂Hiθ

∂θT

)−1
1√
n

∑
i∈M

Hiθ + op(1).

Let

Aint = lim
n→∞

E

(
− 1

n

∑
i∈M

∂Hiθ

∂θT

)
,

Bint = lim
n→∞

var

(
1√
n

∑
i∈M

Hiθ

)
.

Noting that ∂SViβ/∂α
T = 0 and ∂SViα/∂β

T = 0, we obtain
Aint in (14):

Aint = lim
n→∞

E

{
− 1

n

( ∑
i∈M\V

∂SMiβ

∂βT +
∑

i∈V
∂SViβ

∂βT

∑
i∈M\V

∂SMiβ

∂αT∑
i∈M\V

∂SMiα

∂βT

∑
i∈M\V

∂SMiα

∂αT +
∑

i∈V
∂SViα

∂αT

)}
(14)

= −(1− ρ)E

(
∂SMiθ

∂θT

)
− ρ

(
E

(
∂SViβ

∂βT

)
0

0 E
(
∂SViα

∂αT

)
)
,
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and

Bint = lim
n→∞

1

n

∑
i∈M

E

(
HiβH

T

iβ HiβH
T
iα

HiαH
T

iβ HiαH
T
iα

)

= lim
n→∞

n− nV

n

1

n− nV

∑
i∈M\V

E

(
SMiβS

T

Miβ SMiβS
T
Miα

SMiβS
T

Miβ SMiαS
T
Miα

)

+ lim
n→∞

nV

n
· 1

nV

∑
i∈V

E

(
SViβS

T

Viβ 0

0 SViαS
T
Viα

)

= (1− ρ)E(SMiθS
T

Miθ)

+ρ

(
E(SViβS

T

Viβ) 0

0 E(SViαS
T
Viα)

)

Since Aint = Bint, then applying the Central Limit The-
orem to (13) gives that

√
n(θ̂int − θ)

d−→ N(0, A−1
int) as n → ∞.

APPENDIX C

Under regularity conditions, maximizing the likelihood
with respect to the parameters is equivalent to solving the
equation

∑
i∈M∪V

(
(1− δi)SMiβ

(1− δi)SMiα + δiS
∗
Viα

)
= 0.

Let Hiβ = (1 − δi)SMiβ , Hiα = (1 − δi)SMiα + δiS
∗
Viα and

Hiθ = (HT

iβ , H
∗T
iα )T. Equation (13) now becomes

√
n+ nV(θ̂ext − θ) =(
− 1

n+ nV

∑
i∈M∪V

∂Hiθ

∂θT

)−1
1√

n+ nV

∑
i∈M∪V

Hiθ + op(1).

Rewrite this as

√
nV

n
+ 1

√
n(θ̂ext − θ) =

(15)

(
− 1

n+ nV

∑
i∈M∪V

∂Hiθ

∂θT

)−1
1√

n+ nV

∑
i∈M∪V

Hiθ + op(1),

and let

Aext = lim
n→∞

E

(
− 1

n+ nV

∑
i∈M∪V

∂Hiθ

∂θT

)
,

and

Bext = lim
n→∞

var

(
1√

n+ nV

∑
i∈M∪V

Hiθ

)
.

Then similar calculations to Aint and Bint give

Aext = − 1

(1 + ρ)
E

(
∂SMiθ

∂θT

)
− ρ

1 + ρ

(
0 0

0 E
(

∂S∗
Viα

∂αT

) )
,

and

Bext =
1

(1 + ρ)
E(SMiθS

T

Miθ) +
ρ

1 + ρ

(
0 0
0 E(S∗

ViαS
∗T
Viα)

)
.

Since Aext = Bext, then applying the Central Limit Theo-
rem to (15) gives that

√
n(θ̂ext − θ)

d−→ N

(
0,

1

1 + ρ
A−1

ext

)
as n → ∞.
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