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Objective Bayesian analysis for accelerated
degradation data using inverse Gaussian process
models∗

Lei He, Dongchu Sun, and Daojiang He
†

The inverse Gaussian (IG) process has become an impor-
tant family in degradation analysis. In this paper, we pro-
pose an objective Bayesian method to analyze the constant-
stress accelerated degradation test (CSADT) based on IG
process model. Several commonly used noninformative pri-
ors, including the Jeffreys prior, the reference prior and the
probability matching prior, are derived after reparameter-
ization. The propriety of the posteriors under those priors
is validated, among which two types of reference priors are
shown to yield improper posteriors while the others can lead
to proper posteriors. A simulation study is carried out to
compare the proposed Bayesian method with the maximum
likelihood one in terms of the mean squared errors and the
frequentist coverage probability. Finally, the approach is ap-
plied to a real data example and the mean-time-to-failure of
the product under the usage stress is estimated.

AMS 2000 subject classifications: Primary 62F15;
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Keywords and phrases: Accelerated degradation test,
Inverse Gaussian process, Mean-time-to-failure, Objective
Bayes.

1. INTRODUCTION

To address the fierce competition in markets and meet
the demands of customers, manufacturers are often required
to evaluate the reliability of their products rapidly and ef-
ficiently. For highly reliable products, however, it is quite
difficult to obtain sufficient time-to-failure data through tra-
ditional life tests during a short of time period. Moreover,
even applying accelerated life tests, which are designed to
test products at harsher conditions (such as higher tem-
perature or voltage), the performance of failure is still not
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good enough within a reasonable testing duration. In such
restraints, if there is a quality characteristic, whose degrada-
tion over time could reveal the failure behavior of a product,
then an alternative approach is to collect sufficient degrada-
tion data at higher levels of stress to predict the product’s
lifetime information under the usage stress. Such tests are
called accelerated degradation tests (ADTs), general refer-
ences are included in [15] and [16].

It is well known that ADTs are able to greatly save
time and expenses than traditional degradation tests, so
ADTs have attracted much attention in practice. For ac-
celerated degradation analysis, a crucial issue is how to es-
tablish an appropriate model to characterise the product’s
degradation path. The typical and popular model for ana-
lyzing ADTs is stochastic process model, which is to uti-
lize a time-dependent structure to describe the changes in
degradation over time. The Wiener process is a frequently
used stochastic process model in practical applications. For
instance, Whitmore [26] proposed a basic Wiener process
for degradation modeling of the declining gain of a transis-
tor, and subsequently, Whitmore and Schenkelberg [27] ap-
plied the same model to analyze the resistance increase in a
self-regulating heating cable. For some recent developments
on the Wiener degradation model, one can see [11], [24],
[31] and references therein. As Tsai, Tseng and Balakrish-
nan [20] pointed out, however, the Gamma process is more
suitable for describing the product’s degradation path com-
pared with the Wiener process when the degradation path
is a strictly increasing pattern. Bagdonavičius and Nikulin
[2] constructed a degradation model based on the Gamma
process with time-dependent explanatory variables to illus-
trate traumatic events. Lawless and Crowder [13] proposed
a tractable Gamma process with random effects to analyze
crack growth data. Extensional research on the Gamma pro-
cess can be found in [14], [18] and [21] among others.

Recently, Wang and Xu [23] found that the Weiner pro-
cess and the Gamma process cannot fit well the GaAs laser
degradation data in [15]. A more efficient method for degra-
dation modeling is to use the inverse Gaussian (IG) process
originally proposed by Wasan [25]. Ye and Chen [29] system-
atically investigated the IG process, and showed that the IG
process has many superb properties when dealing with ran-
dom effects and covariates. Some other ADT models based
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on the assumption of IG process have also been developed,
one may refer to [22] and [30].

Note that the approaches considered in the aforemen-
tioned references are mainly from frequentist points of view
or subjective Bayesian methods. However, the objective
Bayesian approach has also many advantages in the statis-
tical analysis. One of the most appealing feature is the use
of noninformative priors, which include the Jeffreys prior,
the reference priors and the probability matching priors, see
[3] for more details. Following this topic, Xu and Tang [28]
proposed an objective Bayesian analysis for a linear degra-
dation model. This approach is further adopted in [9] and
[10]. In this paper, we will present an objective Bayesian
method to analyze the constant-stress acceleration degrada-
tion test (CSADT) using an IG process model. Our aim is to
provide noninformative priors for the model that do result
in proper posteriors and that enable Bayesian inferences.

The remainder of this paper is organized as follows. In
Section 2, the IG process model is introduced and the
mean-time-to-failure (MTTF) of the product under various
stresses are given. In Section 3, several noninformative pri-
ors are derived after reparameterization. In Section 4, the
propriety of the posterior distributions under these priors
is validated, and a Monte Carlo procedure is proposed to
generate the samples from the proper posteriors. In Section
5, a simulation study is carried out to show the performance
of the derived priors. A real data set from [15] is analyzed
in Section 6 via the proposed method. Finally, some con-
cluding remarks are given in Section 7; proofs of the main
theorems are presented in Appendix A.

2. THE IG PROCESS MODEL

Consider the degradation characteristic Y (t) of a product
which is measurable at time t, and assume that Y (t) follows
an IG process with Y (0) = 0, i.e.,

(1) Y (t) ∼ IG(ηt, σt2),

where η and σ are two unknown parameters to be estimated,
and IG(a, b), a, b > 0, denotes the IG distribution with
probability density function (PDF)

fIG(y; a, b) =

√
b

2πy3
exp

{
−b(y − a)2

2a2y

}
.

Then, it is readily seen that Y (t) satisfies the following prop-
erties: (i) Y (t) has statistically independent increments, that
is, Y (t2)−Y (t1) and Y (t4)−Y (t3) are mutually independent
for ∀t4 > t3 ≥ t2 > t1 > 0. (ii) For ∀t > s, the increment
Y (t) − Y (s) follows an IG distribution IG(ηλ, σλ2), where
λ = t− s.

Assume that there are ni units available for the CSADT
that use the stress level Si, i = 1, 2, · · · , r. For fixed i, let
mij be the number of measurements for the jth unit at
the stress level Si, j = 1, 2, · · · , ni. Given i and j, denote

yijk by the degradation characteristic measured at time tijk
for k = 1, 2, · · · ,mij , where tij1 < tij2 < · · · < tijmij are
the ordered observation times. Then each degradation in-
crement Δyijk = yijk − yij,k−1 follows an IG distribution
IG(ηiλijk, σλ

2
ijk), where λijk = tijk − tij,k−1 and tij0 = 0.

Under the stress Si, the time-to-failure is defined as the
moment that the corresponding degradation process Yi(t)
first reaches a critical value ν > 0, say τi, then

τi = inf{t ≥ 0|Yi(t) ≥ ν}.

Following Peng [19], the MTTF under the stress Si, i = 0, 1,
· · · , r, can be represented as

MTTFi =

(
ν

ηi
+

ηi
σ

)
Φ

(√
σν

ηi

)
+

√
ν

σ
φ

(√
σν

ηi

)
− ηi

2σ
,

(2)

where S0 stands for the usage stress level, and Φ(x) and φ(x)
are the cumulative distribution function and the PDF of the
standard normal distribution, respectively. In this paper, we
assume that the accelerating function is log-linear, i.e.,

(3) log(ηi) = v0 + v1ϕ(Si), i = 0, 1, · · · , r,

where v0 and v1 > 0 are unknown parameters to be esti-
mated, and ϕ(Si) is a given function of stress level Si. In
particular, ϕ(x) = − log(x) for typical inverse power law re-
lation, ϕ(x) = 1/x for Arrhenius relation and ϕ(x) = x for
exponential relation, see [30]. Under this assumption, the
parameter σ does not depend on stress Si, but the degra-
dation speed and the degradation volatility increase with
the stress Si, since the mean and the variance of Δyijk are
ηiλijk and η3i λijk/σ, respectively.

In CSADTs, we are interested in the MTTF of the prod-
uct under the usage stress S0. In other words, the parame-
ters η0 and σ in (2) are of interest for statistical inferences.
Similar to [9], we consider the following reparameterization
scheme for the parameters ηi’s. Let

ηi = η0θ
hi , i = 1, · · · , r,(4)

where θ = exp{v1[ϕ(S1)− ϕ(S0)]} = η1

η0
> 1 is the accelera-

tion factor from stress S0 to S1, and

hi =
ϕ(Si)− ϕ(S0)

ϕ(S1)− ϕ(S0)
.

Obviously, we have hr > hr−1 > · · · > h1 = 1. Now, the new
parameters to be estimated are ϑ = (η0, θ, σ), and the likeli-
hood function of ϑ based on y = {Δyijk, i = 1, 2, · · · , r; j =
1, 2, · · · , ni; k = 1, 2, · · · ,mij} is given by

L(ϑ|y)(5)

=
r∏

i=1

ni∏
j=1

mij∏
k=1

√
σλ2

ijk

2πy3ijk
exp

{
−σ(yijk − η0θ

hiλijk)
2

2η20θ
2hiyijk

}
.
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3. NONINFORMATIVE PRIORS

In this section, we will derive several important noninfor-
mative priors for the parameters (η0, θ, σ) in the IG process
model, including the Jeffreys prior, the reference priors and
the probability matching priors.

3.1 The Jeffreys prior

The Jeffreys prior, as we know, is proportional to the
squared root of the determinant of the Fisher information
matrix (see [12]). So the primary work is to derive the Fisher
information matrix of the parameters.

Theorem 3.1. The Fisher information matrix of ϑ =
(η0, θ, σ) is of the following form:

H(ϑ) =

⎛
⎜⎜⎜⎝

r∑
i=1

σλi

η3
0θ

hi

r∑
i=1

σhiλi

η2
0θ

hi+1 0

r∑
i=1

σhiλi

η2
0θ

hi+1

r∑
i=1

σh2
iλi

η0θhi+2 0

0 0 N
2σ2

⎞
⎟⎟⎟⎠ ,

where N =
r∑

i=1

ni∑
j=1

mij and λi =
ni∑
j=1

mij∑
k=1

λijk.

According to Theorem 3.1, the Jeffreys prior for (η0, θ, σ)
is

πJ(η0, θ, σ) ∝ η−2
0

√
a(θ),(6)

where

a(θ) =
∑

1≤i<j≤r

λiλj(hi − hj)
2

θhi+hj+2
.(7)

3.2 The reference priors

The reference prior proposed by Bernardo [5] is an alter-
native method for deriving noninformative priors, the key
feature of which is to separate the parameters into several
different group ordering of interest. In fact, the group order-
ing of the parameters reflects the inferential importance of
parameters. For more details, see [4].

In our problem, η0 and σ are two parameters of interest.
Therefore, we first consider three possible group orderings
for the parameters (η0, θ, σ), namely {η0, σ, θ}, {σ, η0, θ} and
{(η0, σ), θ}. It turns out that two types of reference priors
can be yielded, which are summarized in the following the-
orem.

Theorem 3.2. Suppose that the sampling distribution is
given by (5), then the reference priors with the group order-
ings {η0, σ, θ} and {σ, η0, θ} are the same and given by

πR1(η0, θ, σ) ∝ η
− 3

2
0 σ−1

√
b(θ),

whereas the reference prior with the group ordering
{(η0, σ), θ} has the following form

πR2(η0, θ, σ) ∝ η
− 3

2
0 σ− 1

2

√
b(θ),

where

b(θ) =

r∑
i=1

h2
iλi

θhi+2
.(8)

Remark 1. The reference priors for the group orderings
{(η0, θ), σ} and {σ, (η0, θ)} are the same as the Jeffreys prior
πJ , since the Fisher information matrix of (η0, θ, σ) satisfies
the conditions of Theorem 1 in [6]. In addition, the reference
prior is πR1 when the group ordering is {η0, θ, σ}.

Remark 2. For comparison, another type of reference prior
will be considered here. For the group orderings {θ, η0, σ},
{θ, σ, η0} and {σ, θ, η0}, the reference priors are the same
and of the form

πR3(η0, θ, σ) ∝ η
− 3

2
0 σ−1

√
a(θ)

c(θ)
,

where a(θ) is defined in (7), and

c(θ) =

r∑
i=1

λi

θhi
.

3.3 The probability matching priors

In this subsection, we are mainly devoted to derive the
probability matching priors for multiple parametric func-
tions of interest. It is well known that the probability match-
ing priors are such that the joint posterior distribution func-
tion matches, up to O(n−1), with the corresponding frequen-
tist distribution function (see [7]). In our problem, both of
parametric functions φ1(ϑ) = η0 and φ2(ϑ) = σ are of in-
terest. Therefore, we can obtain a simultaneous marginal
probability matching prior πM (ϑ) for parametric functions
φ1(ϑ) and φ2(ϑ), which must satisfy the following partial
differential equations

3∑
κ=1

Dκ{εjκ(ϑ)πM (ϑ)} = 0, j = 1, 2,(9)

where Dκ = ∂/∂ϑκ with ϑ1 = η0, ϑ2 = σ and ϑ3 = θ, and

εj(ϑ) = (εj1(ϑ), εj2(ϑ), εj3(ϑ))
T =

H−1(ϑ)∇φj (ϑ)√
∇T

φj
(ϑ)H−1(ϑ)∇φj (ϑ)

,

here the symbol ∇φj (ϑ) represents the gradient vector of
φj(ϑ) with j = 1, 2, and the inverse of the Fisher information
matrix H−1(ϑ) is defined in (14).

For this we have the following theorem, the proof of which
can be established by solving the equations (9).
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Theorem 3.3. When η0 and σ are of interest and θ is a
nuisance parameter, the probability matching prior is

πM (ϑ) = σ−1g

(
η0 exp

{∫
b(θ)

d(θ)
dθ

})
·(10)

exp

{
3

2

∫
b(θ)

d(θ)
dθ

} √
a(θ)b(θ)

d(θ)
,

where g is a continuously differentiable function, a(θ) and
b(θ) are defined in (7) and (8), respectively, and

d(θ) =

r∑
i=1

hiλi

θhi+1
.

Remark 3. If we take g(x) = x− 3
2 , the priors πM (ϑ) is then

simplified to

πM (ϑ) = η
− 3

2
0 σ−1

√
a(θ)b(θ)

d(θ)
.(11)

Furthermore, the simultaneous marginal probability match-
ing prior πM (ϑ) is also the joint probability matching prior,
since the parametric functions φj(ϑ), j = 1, 2, satisfy the
conditions given in Theorem 1 of [7].

Remark 4. It can be verified that the Jeffreys prior (6) and
the reference priors (πR1 , πR2 and πR3) are not probability
matching priors.

4. POSTERIOR ANALYSIS

It is to be remarked that the noninformative priors ob-
tained in Section 3 are all improper and can be rewritten in
the following unified form

πU (η0, θ, σ) ∝
π(θ)

ηp0σ
q
,(12)

for certain constants p and q, where π(θ) is the marginal
prior for θ. In this section, we will investigate a significant
issue that whether these improper priors will result in proper
posterior distributions. The results are summarized in the
following three theorems.

Theorem 4.1. The posterior distribution of (η0, θ, σ) is
proper under the Jeffreys prior πJ in (6).

Theorem 4.2. The posterior distributions of (η0, θ, σ) are
improper based on the reference priors πR1 and πR2 .

Theorem 4.3. If N ≥ 2, then based on the priors πR3 and
πRM

, the posterior distributions of (η0, θ, σ) are proper.

In the following we consider a Monte Carlo procedure
to generate samples from the proper posterior distribution
with respect to the unified prior (12). Note that the marginal
density of η0 and θ cannot be written in a closed form, so we
use a Metropolis random walk algorithm to generate samples

from the joint marginal posterior distribution of η0 and θ.
The procedure is stated as follows:

Step 1: Under the prior πU (η0, θ, σ), the joint marginal
posterior distribution of η0 and θ is given by

πU (η0, θ|y) ∝
π(θ)

ηp0ψ
N
2 −q+1

.

Step 2: Given η0 and θ, the conditional posterior distri-
bution of σ, π(σ|η0, θ,y), follows a gamma distribution with
shape parameter (N2 − q + 1) and scale parameter ψ.

The Metropolis random walk algorithm in Step 1 can
be implemented by using the function rwmetrop in the
LearnBayes package of R software. Here we make a log-
arithm transformation for the parameters (η0, θ) since they
are positive with θ > 1. Besides, we use the function laplace
in the LearnBayes package to achieve some reasonable ini-
tial values, such as the posterior mode and the associated
variance-covariance matrix of the alternative posterior dis-
tribution. The R package, LearnBayes, is available on the
CRAN site, and detailed guidance on this package can be
found in the monograph by Albert [1]. A written R code is
also available from the corresponding author upon request.

5. SIMULATION STUDY

To assess the performance of the Bayesian estimators
based on the priors πJ , πR3 and πM , a small simulation
experiment is carried out to compare with maximum like-
lihood estimator (MLE) in terms of squared root of mean
squared error (SRMSE) and frequentist coverage probability
for different parameter values and sample sizes. In this ex-
periment, we assume that the degradation characteristic y(t)
(y(0) = 0) follows an IG process with temperature as the
stress variable, and the Arrhenius model is assumed between
the parameter η and the temperature. The degradation data
are collected under three temperature levels,

S1 = 83oC, S2 = 133oC, S3 = 173oC.

The maximum test duration allowed for each unit is 2000h
and the number of measurements is 4 (i.e., at 100h, 400h,
1000h and 2000h, respectively).

For simplicity we only consider two different cases for the
parameters (η0, θ, σ), which are

Case A : η0 = 1.93× 10−4, θ = 3.6765, σ = 7.29× 10−2,

Case B : η0 = 2.68× 10−2, θ = 1.1969, σ = 8.36× 10−3.

For Cases A and B, the product is assumed to fail when y(t)
exceeds 5 and 50 under the operating temperature 50oC,
that is, ν = 5 and 50. A direct calculation yields that the
true values of MTTF0 are around 25906.74h and 1867.275h,
respectively.

Under the setup above, we use the algorithm in Sec-
tion 4 to calculate the Bayesian estimators of the param-
eters for different sample sizes (n1, n2, n3), including the

298 L. He, D. Sun, and D. He



Table 1. SRMSEs of ̂MTTF0, Bayesian estimators and MLE of the parameters (η0, θ, σ) for Case A.

(n1, n2, n3) Parameters MLE Posterior Mean Posterior Median Posterior Mode
πJ πR3 πM πJ πR3 πM πJ πR3 πM

η0×10−7 8.8527 8.8554 8.8581 8.8503 8.8571 8.8562 8.8571 9.4366 9.5003 9.5133
θ×10−2 1.1599 1.1606 1.1608 1.1595 1.1607 1.1598 1.1604 1.2393 1.2381 1.2503

(1,1,1) σ×10−2 7.3194 7.3197 5.5956 5.5944 6.7266 5.0923 5.0925 8.9351 7.5499 7.3644
MTTF0×102 1.1885 1.1888 1.1891 1.1881 1.1891 1.1889 1.1891 1.2669 1.2750 1.2774

(0.948)† (0.948) (0.949) (0.948) (0.949) (0.948) (0.949) (1.007) (1.012) (1.017)

η0×107 5.1703 5.1707 5.1697 5.1741 5.1733 5.1731 5.1759 5.6724 5.6512 5.5778
θ×10−2 0.6753 0.6753 0.6752 0.6755 0.6754 0.6756 0.6757 0.7367 0.7403 0.7269

(3,3,3) σ×10−2 2.2678 2.2679 2.0220 2.0216 2.1778 1.9585 1.9575 3.0932 2.7031 2.8132
MTTF0×102 0.6939 0.6939 0.6937 0.6944 0.6943 0.6942 0.6946 0.7612 0.7584 0.7486

(0.555) (0.554) (0.554) (0.555) (0.555) (0.555) (0.555) (0.611) (0.608) (0.598)

η0×10−7 3.9466 3.9492 3.9451 3.9472 3.9513 3.9462 3.9475 4.2981 4.3311 4.2955
θ×10−2 0.5186 0.5191 0.5186 0.5188 0.5192 0.5187 0.5188 0.5681 0.5685 0.5643

(5,5,5) σ×10−2 1.5726 1.5729 1.4604 1.4603 1.5315 1.4320 1.4319 2.1280 2.0210 2.0593
MTTF0×102 0.5297 0.5301 0.5295 0.5298 0.5303 0.5296 0.5298 0.5768 0.5812 0.5766

(0.424) (0.425) (0.424) (0.424) (0.425) (0.424) (0.424) (0.461) (0.464) (0.461)

η0×10−7 2.8621 2.8638 2.8606 2.8617 2.8646 2.8607 2.8617 3.0964 3.1056 3.1272
θ×10−2 0.3786 0.3787 0.3786 0.3786 0.3.789 0.3785 0.3786 0.4087 0.4105 0.4120

(10,10,10) σ×10−2 1.0280 1.0279 0.9864 0.9866 1.0127 0.9760 0.9757 1.4201 1.4010 1.3856
MTTF0×102 0.3841 0.3843 0.3839 0.3841 0.3844 0.3839 0.3841 0.4156 0.4168 0.4197

(0.305) (0.305) (0.304) (0.305) (0.305) (0.304) (0.305) (0.332) (0.333) (0.336)

η0×10−7 2.0187 2.0194 2.0190 2.0207 2.0202 2.0196 2.0212 2.1988 2.2300 2.2507
θ×10−2 0.2653 0.2654 0.2653 0.2655 0.2656 0.2655 0.2655 0.2846 0.2936 0.2949

(20,20,20) σ×10−2 0.6902 0.6902 0.6755 0.6755 0.6847 0.6720 0.6719 0.9536 0.9538 0.9539
MTTF0×102 0.2710 0.2711 0.2710 0.2712 0.2712 0.2711 0.2713 0.2951 0.2993 0.3021

(0.216) (0.216) (0.216) (0.216) (0.216) (0.216) (0.217) (0.234) (0.238) (0.241)
† The absolute biases of ̂MTTF0

posterior mean, posterior median and posterior mode. The
MLE of (η0, θ, σ) are also computed, in which θ̂ML can
be obtained by maximizing the profile log-likelihood func-
tion L(θ|y) ∝ −(N/2) log{−β2

θ/(4αθ) + γ} through a one-
dimensional search, where αθ, βθ and γ are defined in
(16). Moreover, substitute θ̂ML into η̂0(θ) = 2αθ/βθ, and

(η̂0ML, θ̂ML) into σ̂(η0, θ) = N/(2(αθ/η
2
0 − βθ/η0 + γ)), we

obtain the MLE for η0 and σ, as η̂0ML = η̂0(θ̂ML) and

σ̂ML = σ̂(η̂0ML, θ̂ML), respectively. 5000 replications are
generated for each simulation and the SRMSEs are com-
puted for the parameters (η0, θ, σ) and MTTF0 under the
Cases A and B. The simulated results are listed in Tables 1
and 2, which also contain the absolute biases (ABs) of the
MLE and Bayesian estimators of the MTTF0.

It can be observed from Tables 1 and 2 that the RSMSEs
of all the parameter estimates become smaller and closer as
the sample size increases. Furthermore, the other points are
also clear from the numerical results:

• The posterior mean and posterior median perform in a
similar manner for both cases, which are consistently
superior to the posterior mode and so is MLE since
their RSMSEs are much smaller.

• Using the posterior mean and posterior median, for es-
timating η0 and θ the Bayesian estimators under the

three priors are almost the same in term of RSMSE,
but the priors πR3 and πM yield better estimate of σ.

• The Bayesian estimators of the MTTF0 under the prior
πR3 perform better than the MLE and the Bayesian
estimators under the priors πJ and πM in terms of AB
and RSMSE when the posterior median is employed.

On the other hand, we want to compare the frequentist
coverage probabilities for different Bayesian estimators un-
der the priors πJ , πR3 and πM . Let ηπJ

0 (α;y), θπJ (α;y) and
σπJ (α;y) be the posterior α-quantiles of η0, θ and σ based
on the Jeffreys prior πJ , respectively. Then the frequentist
coverage probability of ηπJ

0 (α;y) can be expressed as

QπJ (α, η0) = Pϑ(0 < η0 < ηπJ
0 (α;y)).

Similarly, the frequentist coverage probabilities of θπJ (α;y)
and σπJ (α;y) can also be defined, which are denoted by
QπJ (α, θ) and QπJ (α, σ), respectively. Replacing the super-
script πJ by πR3 and πM means that these quantities are
computed based on the reference prior πR3 and matching
prior πM , respectively. For Cases A and B, the numerical
values of the frequentist coverage probabilities of 95% cred-
ible intervals under the three priors are shown in Tables 3
and 4, respectively.
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Table 2. SRMSEs of ̂MTTF 0, Bayesian estimators and MLE of the parameters (η0, θ, σ) for Case B.

(n1, n2, n3) Parameters MLE Posterior Mean Posterior Median Posterior Mode

πJ πR3 πM πJ πR3 πM πJ πR3 πM

η0×10−3 3.0351 2.6718 2.6068 2.6085 2.7763 2.7273 2.7325 3.4098 3.4956 3.5188

θ×10−2 9.3321 8.7488 8.7045 8.7065 8.8249 8.7309 8.7437 10.709 11.076 11.061

(1,1,1) σ×10−3 8.2947 8.3378 6.3637 6.3646 7.6566 5.7797 5.7828 11.661 10.091 10.133

MTTF0×102 2.1651 1.9989 1.9611 1.9636 2.0603 2.0389 2.0422 2.4778 2.5648 2.5540

(1.712)† (1.566) (1.528) (1.532) (1.622) (1.598) (1.601) (1.947) (2.003) (2.007)

η0×10−3 1.7553 1.7426 1.7370 1.7403 1.7486 1.7427 1.7451 2.0399 2.0764 2.0886

θ×10−2 5.3195 5.2905 5.2748 5.2845 5.3103 5.2903 5.2978 6.2020 6.2700 6.2887

(3,3,3) σ×10−3 2.6538 2.6548 2.3562 2.3583 2.5466 2.2777 2.2793 3.7875 3.4562 3.5348

MTTF0×102 1.2292 1.2147 1.2111 1.2129 1.2260 1.2227 1.2243 1.4234 1.4407 1.4505

(0.978) (0.970) (0.967) (0.968) (0.977) (0.973) (0.975) (1.104) (1.114) (1.128)

η0×10−3 1.3680 1.3704 1.3701 1.3705 1.3684 1.3674 1.3677 1.5096 1.5187 1.5024

θ×10−2 4.1343 4.1346 4.1313 4.1346 4.1378 4.1301 4.1338 4.6181 4.6344 4.5962

(5,5,5) σ×10−3 1.8078 1.8080 1.6770 1.6755 1.7591 1.6431 1.6417 2.5495 2.4449 2.4918

MTTF0×102 0.9519 0.9492 0.9485 0.9489 0.9520 0.9511 0.9517 1.0635 1.0667 1.0577

(0.753) (0.752) (0.751) (0.752) (0.753) (0.752) (0.753) (0.841) (0.832) (0.826)

η0×10−3 0.9725 0.9746 0.9747 0.9764 0.9735 0.9717 0.9743 1.0541 1.0527 1.0513

θ×10−2 2.9798 2.9807 2.9802 2.9854 2.9802 2.9757 2.9844 3.2474 3.2586 3.2244

(10,10,10) σ×10−2 1.1279 1.1278 1.0849 1.0852 1.1118 1.0750 1.0754 1.6155 1.4871 1.5698

MTTF0×102 0.6745 0.6741 0.6740 0.6751 0.6748 0.6736 0.6754 0.7404 0.7410 0.7322

(0.535) (0.535) (0.534) (0.536) (0.535) (0.534) (0.536) (0.584) (0.586) (0.581)

η0×10−3 0.6992 0.6999 0.6990 0.7005 0.7001 0.6989 0.7004 0.7646 0.7604 0.7435

θ×10−2 2.1223 2.1247 2.1212 2.1259 2.1238 2.1201 2.1262 2.3389 2.3163 2.2805

(20,20,20) σ×10−3 0.8411 0.8407 0.8268 0.8266 0.8352 0.8232 0.8231 1.1321 1.1010 1.1435

MTTF0×102 0.4877 0.4876 0.4875 0.4879 0.4882 0.4874 0.4884 0.5379 0.5326 0.5227

(0.394) (0.393) (0.393) (0.394) (0.394) (0.394) (0.394) (0.426) (0.433) (0.422)

† The absolute biases of ̂MTTF0

Table 3. 95% coverage probabilities of Bayesian estimators for Case A

(n1, n2, n3) η0 θ σ

πJ πR3 πM πJ πR3 πM πJ πR3 πM

(1, 1, 1) 0.9318 0.9520 0.9524 0.9366 0.9534 0.9536 0.9772 0.9522 0.9522

(3, 3, 3) 0.9460 0.9506 0.9512 0.9420 0.9470 0.9468 0.9682 0.9482 0.9482

(5, 5, 5) 0.9482 0.9516 0.9522 0.9480 0.9514 0.9508 0.9650 0.9498 0.9498

(10, 10, 10) 0.9496 0.9508 0.9514 0.9474 0.9489 0.9486 0.9626 0.9492 0.9502

(20, 20, 20) 0.9492 0.9498 0.9496 0.9482 0.9496 0.9494 0.9588 0.9506 0.9502

Table 4. 95% coverage probabilities of Bayesian estimators for Case B

(n1, n2, n3) η0 θ σ

πJ πR3 πM πJ πR3 πM πJ πR3 πM

(1, 1, 1) 0.9242 0.9426 0.9424 0.9330 0.9606 0.9618 0.9817 0.9531 0.9532

(3, 3, 3) 0.9394 0.9478 0.9450 0.9366 0.9540 0.9524 0.9724 0.9498 0.9488

(5, 5, 5) 0.9446 0.9498 0.9486 0.9472 0.9516 0.9508 0.9690 0.9508 0.9512

(10, 10, 10) 0.9480 0.9504 0.9498 0.9546 0.9510 0.9504 0.9614 0.9510 0.9506

(20, 20, 20) 0.9488 0.9494 0.9496 0.9520 0.9510 0.9508 0.9602 0.9504 0.9504

300 L. He, D. Sun, and D. He



Figure 1. The coverage probabilities of (η0, σ, θ) under the priors πJ ( ), πR3 ( ) and πM ( ) for Case A.
The upper, middle and lower parts correspond to (n1, n2, n3) = (1, 1, 1), (10, 10, 10) and (20, 20, 20), respectively.

According to the results in Tables 3 and 4, we find that
the coverage probabilities are much close to 0.95 when the
sample size increases, and note that the Bayesian estimators
of (η0, θ, σ) under the priors πR3 and πM perform better
than the Jeffreys prior πJ , since most of its coverage prob-
abilities are much more close to 0.95 even for small sample
sizes.

Another way of making comparisons is to present the
coverage probabilities. Here we make graphs of the cover-
age probabilities for (η0, θ, σ) with respect to nominal con-
fidence levels based on the priors πJ , πR3 and πM . From
Figures 1 and 2, we can see that the performance of the
reference prior πR3 and that of the matching prior πM are
very similar. However, the Bayesian estimator of σ under
the Jeffreys prior πJ behave unsatisfactory in meeting the
target coverage probabilities.

6. REAL DATA ANALYSIS

In this section, we apply the objective Bayesian analysis
to the degradation data from the carbon-film-resistor prob-

lem reported in [15]. The data can be found in Table C.3
of [15]. Note that the resistance value of the carbon-film
resistors will increase over time, which means that the per-
formance of the product is on the decline. In this example,
the resistors were exposed to three different levels of tem-
perature (83oC, 133oC and 173oC) to accelerate the degra-
dation process. Also, the percent increase in resistance for
each unit was measured at t1 = 452, t2 = 1030, t3 = 4341
and t4 = 8084 (in hours). The use condition S0 is specified
as 50oC and the critical value is taken to be ν = 5.

We note that the degradation path of each unit has inde-
pendent positive increments, except for the unit number 27.
So we delete them and model the degradation behavior using
the IG process model (1) in this application. Similar to [21]
and [30], we adopt the Arrhenius model to characterize the
relationship between the parameter η and the temperature,
i.e., log(ηi) = v0 + v1/(273 + Si), i = 0, 1, 2, 3.

Here three objective priors πJ , πR3 and πM are used. Pos-
terior means of the parameters (η0, θ, σ) and their 95% cred-
ible intervals can be obtained directly using the algorithm
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Figure 2. The coverage probabilities of (η0, σ, θ) under the priors πJ ( ), πR3 ( ) and πM ( ) for Case B.
The upper, middle and lower parts correspond to (n1, n2, n3) = (1, 1, 1), (10, 10, 10) and (20, 20, 20), respectively.

Table 5. Posterior means and 95% credible intervals (within
parentheses) of parameters

Parameters πJ πR3 πM

η0×10−5 2.6563 2.6960 2.6841
(1.484,4.473) (1.482,4.559) (1.448,4.592)

θ 3.0503 3.0509 3.0661
(2.179,4.448) (2.162,4.480) (2.164,4.599)

σ×10−8 5.4893 5.3946 5.3927
(4.158,7.034) (4.064,6.911) (4.068,6.926)

MTTF0×105 1.8847 1.8571 1.8652
(1.121,3.337) (1.101,3.338) (1.092,3.454)

given in Section 4, in which the scale parameter involved in
Step 1 is specified as 2 and the acceptance rate is about 0.29.
The results are shown in Table 5 along with the estimates
for MTTF at S0. It can be observed from Table 5 that all
the Bayesian estimates are nearly the same.

To evaluate the effectiveness of the Metropolis random
walk algorithm, we show in Figure 3(a)-3(c) the associated
diagnostics, including the posterior density, the trace, the
running mean and the autocorrelation function (ACF) plot,
for drawing samples of the parameters (η0, θ, σ) under the
priors πJ , πR3 and πM , which indicate the convergence is
satisfied.

7. CONCLUDING REMARKS

In this paper, we propose an objective Bayesian analysis
method for CSADTs based on the IG process. The Jeffreys
prior, reference priors and probability matching priors are
developed for such model. The properties of these priors
and resulting posteriors are investigated. According to the
simulation study, the reference prior πR3 is recommended
as the default priors in practice since it can lead to more
better results for estimating MTTF0 in most cases. Finally,
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Figure 3. MCMC diagnostic plots: (a)-(c) for parameters
(η0, θ, σ) via the priors πJ ( ), πR3 ( ) and πM

( ).

we apply the method to a real data set, and obtain the

Bayesian estimates of the product’s MTTF0.

APPENDIX A. PROOFS

In this section we present detailed proofs of the theoreti-

cal results obtained in Sections 3 and 4.

A.1 Proof of Theorem 3.1

Proof. By (5), the log-likelihood function of ϑ, up to a con-

stant, is

L(ϑ|y) =
r∑

i=1

ni∑
j=1

mij∑
k=1

{
log σ

2
− σ(Δyijk − η0θ

hiλijk)
2

2η20θ
2hiΔyijk

}
.

(13)

Consequently, the second partial derivatives of the log-

likelihood function (13) with respect to the three parameters

are given, respectively, by

∂2L(ϑ|y)
∂η20

= −
r∑

i=1

ni∑
j=1

mij∑
k=1

σ(3Δyijk − 2η0θ
hiλijk)

η40θ
2hi

,

∂2L(ϑ|y)
∂η0∂θ

= −
r∑

i=1

ni∑
j=1

mij∑
k=1

σ(2Δyijkhi − η0hiθ
hiλijk)

η30θ
2hi+1

,

∂2L(ϑ|y)
∂η0∂σ

= −
r∑

i=1

ni∑
j=1

mij∑
k=1

η0θ
hiλijk −Δyijk

η30θ
2hi

,

∂2L(ϑ|y)
∂θ∂σ

= −
r∑

i=1

ni∑
j=1

mij∑
k=1

η0hiθ
hiλijk −Δyijkhi

η20θ
2hi+1

,

∂2L(ϑ|y)
∂θ2

= −
r∑

i=1

ni∑
j=1

mij∑
k=1

σ[Δyijkhi(2hi + 1)− η0h
2
i θ

hiλijk − η0hiθ
hiλijk]

η20θ
2hi+2

,

∂2L(ϑ|y)
∂σ2

= −
r∑

i=1

ni∑
j=1

mij∑
k=1

1

2σ2
.

Since each Δyijk ∼ IG(η0θhiλijk, σλ
2
ijk), we have E(Δyijk)

= η0θ
hiλijk. Then the result of Theorem 3.1 is clear.

A.2 Proof of Theorem 3.2

Proof. We only give the proof for the group ordering

{η0, σ, θ}, in that the other cases can be derived in a simi-

lar way. For the group ordering {η0, σ, θ}, the inverse of the
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Fisher information matrix is given by

S = H−1(ϑ)(14)

=

⎛
⎜⎜⎜⎜⎝

η3
0b(θ)
σa(θ) 0 − η2

0

σa(θ)

r∑
i=1

hiλi

θhi+1

0 2σ2

N 0

− η2
0

σa(θ)

r∑
i=1

hiλi

θhi+1 0 η0

σa(θ)

r∑
i=1

λi

θhi

⎞
⎟⎟⎟⎟⎠ ,

where a(θ) is defined in (7), and b(θ) =
r∑

i=1

h2
iλi

θhi+2 . Following

the notations of [5], it is readily to obtain from (14) that

h1 =
σa(θ)

η30b(θ)
, h2 =

N

2σ2
, h3 =

σb(θ)

η0
.

Moreover, we choose the following compact sets Ωl =
[c1l, d1l]×[c2l, d2l]×[c3l, d3l] for (η0, σ, θ), such that c1l, c2l →
0, c3l → 1 and d1l, d2l, d3l → +∞, as l → ∞. Then

πl
3(θ|η0, σ) =

|h3|1/21[c3l,d3l](θ)∫ d3l

c3l
|h3|1/2dθ

=

√
b(θ)

c1(l)
1[d3l,e3l](θ),

where c1(l) =
∫ d3l

c3l

√
b(θ)dθ is a constant, and 1A(·) denotes

the indicator function on the set A. Also we have

El
2[log(|h2|)|η0, σ] =

∫ d3l

c3l

log(|h2|)πl
3(θ|η0, σ)dθ

=

∫ d3l

c3l

log
( N

2σ2

)√b(θ)

c1(l)
dθ

= log
( N

2σ2

)
.

Therefore,

πl
2(σ, θ|η0)

=
πl
3(θ|η0, σ) exp{ 1

2E
l
2[log(|h2|)|η0, σ]}1[c2l,d2l](σ)∫ d2l

c2l
exp{ 1

2E
l
2[log(|h2|)|η0, σ]}dσ

= πl
3(θ|η0, σ)

1

σ log(d2l

c2l
)
1[c2l,d2l](σ).

Note that

El
1[log(|h1|)|η0] =

∫ d3l

c3l

∫ d2l

c2l

log(|h1|)πl
2(σ, θ|η0)dσdθ

[3pt] =
1

2
log(c2ld2l) + c2(l)− 3 log(η0),

where

c2(l) =
1

c1(l)

∫ d3l

c3l

√
b(θ) log

[a(θ)
b(θ)

]
dθ,

it follows that

πl
1(σ, η0, θ)

=
πl
2(σ, θ|η0) exp{El

1[log(|h1|)|η0]}1[c1l,d1l](η0)∫ d1l

c1l
exp{El

1[log(|h1|)|η0]}dη0

= η
− 3

2
0 σ−1

√
b(θ)

√
c1ld1l

2(
√
d1l −

√
c1l)c1(l) log(

d2l

c2l
)
1Ωl

(σ, η0, θ).

Therefore, the reference prior for the group {η0, σ, θ} is given
by

πR1(η0, σ, θ) = lim
l→∞

πl
1(η0, σ, θ)

πl
1(1, 1, 2)

∝ η
− 3

2
0 σ−1

√
b(θ).

A.3 Proof of Theorem 4.1

Proof. Let L(ϑ|y) denote the likelihood function of ϑ based
on y. Then the posterior πJ(η0, θ, σ|y) with respect to the
Jeffreys prior, up to a constant, can be written as

πJ(η0, θ, σ|y) ∝ L(ϑ|y)πJ (η0, θ, σ)

= η−2
0

√
a(θ)

r∏
i=1

ni∏
j=1

mij∏
k=1

√
σλ2

ijk

2πy3ijk
·

exp

{
−σ(yijk − η0θ

hiλijk)
2

2η20θ
2hiyijk

}

∝
√

a(θ)η−2
0 σ

N
2 exp(−σψ),

(15)

where

ψ =

r∑
i=1

ni∑
j=1

mij∑
k=1

(yijk − η0θ
hiλijk)

2

2η20θ
2hiyijk

:=
αθ

η20
− βθ

η0
+ γ,(16)

with

αθ =
r∑

i=1

ni∑
j=1

mij∑
k=1

yijk
2θ2hi

, βθ =
r∑

i=1

λi

θhi
, γ =

r∑
i=1

ni∑
j=1

mij∑
k=1

λ2
ijk

2yijk
.

It is easy to see that ψ, αθ, βθ, γ and 4αθγ − β2
θ are all

positive with probability 1. For the sake of simplicity we
will take α and β to replace αθ and βθ hereafter.

Taking the integration of πJ(η0, θ, σ|y) in (15) with re-
spect to σ, we have

πJ (η0, θ|y) ∝
√

a(θ)η−2
0

∫ +∞

0

σ
N
2 exp(−σψ)dσ

∝
√
a(θ)

η20ψ
N
2 +1

.

Note that, as θ → +∞,

α = O(θ−2h1), 4αγ − β2 = O(θ−2h1),(17)
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β
√
α = O(θ−2h1),(18) √
αβ

√
2
√
αγ − β = O(θ−

3
2h1)O(θ−

1
2h1) = O(θ−2h1)(19)

where f(x) = O(g(x)) means that lim
x→∞

f(x)
g(x) = c with c

being a constant. Moreover, we get

1

ψ
=

1
α
η2
0
− β

η0
+ γ

≤ 4α

4αγ − β2
= O(1),(20)

and

∫ +∞

0

1

η20ψ
dη0 =

∫ +∞

0

1

γη20 − βη0 + α
dη0

=
2√

4αγ − β2

(
π

2
+ arctan

β√
4αγ − β2

)

≤ 2π√
4αγ − β2

.

(21)

Therefore, integrating πJ (η0, θ|y) over η0 and θ, and using
(17), (20) and (21) we obtain that

∫ +∞

1

∫ +∞

0

πJ(η0, θ|y)dη0dθ

∝
∫ +∞

1

√
a(θ)

∫ +∞

0

1

η20ψ
N
2 +1

dη0dθ

≤
∫ +∞

1

√
a(θ)

(
4α

4αγ − β2

)N
2 2π√

4αγ − β2
dθ

<

∫ +∞

1

O(θ−
1
2 (h1+h2+2))O(θh1)dθ

=

∫ +∞

1

O(θ
1
2 (h1−h2)−1)dθ < ∞,

the last inequality holds since 1
2 (h1 − h2) − 1 < −1. Thus,

the proof of Theorem 4.1 is completed.

A.4 Proof of Theorem 4.2

Proof. Under the prior πR1 , the joint posterior distribution
πR1(η0, θ, σ|y) is proportional to

√
b(θ)η

− 3
2

0 σ
N
2 −1 exp(−σψ),

which follows that

πR1(η0, θ|y) ∝
√

b(θ)

η
3
2
0 ψ

N
2

.

Note that the function ψ = ψ(η0, θ) defined in (16), given
θ, has the maximum value γ on [αβ ,+∞). Moreover,

∫ +∞

0

1

η
3
2
0 ψ

N
2

dη0 =

∫ α/β

0

1

η
3
2
0 ψ

N
2

dη0 +

∫ +∞

α/β

1

η
3
2
0 ψ

N
2

dη0.

The integration above can be divided into the following two
cases:

(1) When N = 1, then the integration∫ α/β

0

1

η
3
2
0 ψ

N
2

dη0 =

∫ α/β

0

1√
η0(γη20 − βη0 + α)

dη0(22)

is divergent.

(2) When N ≥ 2, we have

∫ +∞

0

1

η
3
2
0 ψ

N
2

dη0 =

∫ +∞

0

η
1
2
0

ψ
N
2 −1(γη20 − βη0 + α)

dη0

≥
∫ +∞

α/β

η
1
2
0

ψ
N
2 −1(γη20 − βη0 + α)

dη0

≥
( 1

γ

)N
2 −1

∫ +∞

α/β

η
1
2
0

γη20 − βη0 + α
dη0

:=
( 1

γ

)N
2 −1

τ(θ).

It can be shown that

τ(θ)

=
1

√
γ
√
2
√
αγ − β

[
π

2
− arctan

(
α
√
γ − β

√
α

√
αβ

√
2
√
αγ − β

)]

+
1

√
γ
√

2
√
αγ + β

log

(
α
√
γ + β

√
α+

√
αβ

√
2
√
αγ − β

α
√
γ + β

√
α−

√
αβ

√
2
√
αγ − β

)

≥ 1
√
γ
√
2
√
αγ − β

[
π

2
− arctan

(
α
√
γ − β

√
α

√
αβ

√
2
√
αγ − β

)]
.

From (18) and (19), we have

arctan

(
α
√
γ − β

√
α

√
αβ

√
2
√
αγ − β

)
= O(1),

it follows that

τ(θ) = O(θ
1
2h1).

Then the integration of πR1(θ|y) with respect to θ on inter-
val [1,+∞) is not convergent, since√

b(θ)O(θ
1
2h1) = O(θ−1), (θ → +∞).

Therefore, the posterior distributions πR1(η0, θ, σ) under the
reference prior πR1 is improper. Similarly, we can obtain the
same result for πR2(η0, θ, σ).
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A.5 Proof of Theorem 4.3

Proof. It is readily shown that the marginal posterior dis-
tributions of the parameters (η0, θ), under priors πR3 and
πRM

, are given by

πR3(η0, θ|y) ∝ η
− 3

2
0 ψ−N

2

√
a(θ)

c(θ)
,

πM (η0, θ|y) ∝ η
− 3

2
0 ψ−N

2

√
a(θ)b(θ)

d(θ)
,

respectively. Following the case (1) in the proof of Theorem
4.2, we can obtain that the integration (22) diverges when
N = 1, which means that the posteriors πR3(η0, θ, σ|y) and
πM (η0, θ, σ|y) are both improper.

When N ≥ 2, however, we have

∫ +∞

0

η
1
2
0

ψ
N
2 −1(γη20 − βη0 + α)

dη0

≤
(

4α

4αγ − β2

)N
2 −1 ∫ +∞

0

η
1
2
0

γη20 − βη0 + α
dη0.

(23)

Using the formula 3.252.9 in [8], we obtain that

∫ +∞

0

η
1
2
0

γη20 − βη0 + α
dη0 =

π
√
γ
√
2
√
αγ − β

= O(θ
1
2h1).

(24)

Furthermore, it can be shown that√
a(θ)

c(θ)
= O(θ−

h2+2
2 ),

√
a(θ)b(θ)

d(θ)
= O(θ−

h2+2
2 ).(25)

From (23)–(25), we get∫ +∞

1

∫ +∞

0

πR3(η0, θ|y)dη0dθ

<

∫ +∞

1

O(θ−
h2+2

2 )O(θ
1
2h1)dθ

=

∫ +∞

1

O(θ
1
2 (h1−h2)−1)dθ < ∞,

and ∫ +∞

1

∫ +∞

0

πM (η0, θ|y)dη0dθ < ∞.

which yields the desired result.
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