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In this paper, we try to analyze whether the intestinal
microbiota structures between gout patients and healthy
individuals are different. The intestinal microbiota struc-
tures are usually measured by so-called compositional data,
composed of multiple components whose value are typically
non-negative and sum up to a constant. They are frequently
collected and studied in many areas such as petrology, bi-
ology, and medicine nowadays. The difficulties to do sta-
tistical inference with compositional data arise from not
only the constant restriction on the component sum, but
also high dimensionality of the components with possible
many zero measurements, which are frequently appeared in
the 16S rRNA gene sequences. To overcome these difficul-
ties, we first define the Bhattacharyya distance between two
compositions such that the set of compositions is isomet-
rically embedded in some spherical surfaces. And then we
propose a two-sample test statistic for compositional data
by Ball Divergence, a novel but powerful measure for the dis-
crepancy between two probability measures in separable Ba-
nach spaces. Our test procedure demonstrates its excellent
performance in Monte Carlo simulation studies even when
the simulated data consist of thousand components with a
high proportion of zero measurements. We also find that
our method can distinguish two intestinal microbiota struc-
tures between gout patients and healthy individuals while
the existing method does not.

AMS 2000 subject classifications: Primary 62P10; sec-
ondary 62G10.
Keywords and phrases: Ball divergence, Two-sample
test, Compositional data.

1. INTRODUCTION

Gout is a common inflammatory disease directly caused
by persistently elevating level of uric acid in the blood.
The sudden attack of gout makes the patients suffer from
swelling, extreme tenderness of the joint as well as alter-
nating chills and fever. Gout is originally considered as a
disease of older men, however, due to the increasing aver-
age age and intake of high protein food, women may also
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suffer from gout. Consequently, a lot of gout research which
focuses on the female is conducted to obtain the insight-
ful viewpoints [1, 8, 19]. Recently, Guo et al. proposed a
novel and sensitive model to evaluate the risk of gout rely-
ing on the relative abundance of several bacterial markers
among the intestinal microbiota [23]. Their proposed ap-
proach is superior to the traditional uric acid level based
diagnostic method. Furthermore, their innovative work in-
spires scientists to explore more about gout via the intesti-
nal microbiota. For example, one of the important questions
is whether the intestinal microbiota structure of the health
and gout are different.

To answer the mentioned question, in other words, to de-
tect the distinction between two intestinal microbiota struc-
tures is a fundamental problem in statistics, which can be
formalized as follows:

H0 : μ = ν,

where μ, ν are two probability measures. Many classical
methods have been developed to address this issue, includ-
ing two-sample t-test, Wilcoxon test, Kolmogorov-Smirnov
test for univariate random variables, and also Hotelling-T 2,
multivariate version of the Kolmogorov-Smirnov test [4] and
Generalized Cramér-von Mises [15] for multivariate random
variables. However, it is worth noting that the intestinal mi-
crobiota data have two characteristics. First, the size of op-
erational taxonomic units (OTUs) for each subject D is gen-
erally much larger than the sample size, such that the reg-
ularity conditions are generally not met [20]. Second, each
subject with D OTUs satisfied that

xd ≥ 0, d = 1, . . . , D and
D∑

d=1

xd = c,

where xd is the count of the d-th OTUs after 16S rDNA py-
rosequencing and c is the total number of OTUs which may
vary for different subjects [23]. Since the component propor-
tions are our primary concern, we should treat (x1, . . . , xD)
as compositions in the context of compositional data anal-
ysis [13]. If we make a transformation for each subject so
that

D∑
d=1

yd = 1, yd = xd/c,
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then (y1, . . . , yD) is the common D-part composition de-
fined by Aitchison [7]. Nevertheless, due to the principle of
subcompositional coherence [7], traditional multivariate test
statistics can not be directly applied to this data because
none of them obey the subcompositional coherence [13].

To tackle two-sample test problem for compositional
data, Aitchison and Krzanowski [7, 16] first developed a clas-
sical parametric approach based on the likelihood ratio test
theory, which assumes the compositions of data transformed
by the log ratio function to be accord with multivariate
Gaussian distribution. Henceforth, we denote this classical
method as LR. Due to the difficulty of covariance estimation
for high dimensional compositional data [21], the classical
parametric approach is restricted. Later, Energy Distance
(ED) [5], an influential evolution which was originally de-
voted to multivariate two-sample test problem, boosts the
progress of distribution-free two-sample test method for high
dimensional compositional data [13]. By calculating the Eu-
clidean distance of isometric log-ratio transformed sample,
ED is capable of separating two distinct compositional data
with high dimensionality and is shown to be zero if and only
if two distributions are identical [5]. Unfortunately, since nu-
merous OTUs counts are zero, the log ratio transformation
cannot be defined [18], and thus, ED based approach may
not be applicable to the intestinal microbiota data directly.
Alternatively, the Bhattacharyya distance, one of the com-
monest metrics for the compositional data [10, 11, 12], is
still well-defined in the case of the large percentage of zero
measurements. Specifically, the Bhattacharyya distance is
equivalent to measuring the great circle distance between
two sqrt-transformed samples whose component proportions
sum up to one. However, the great circle distance defined in
the unit sphere space is not of strong negative type, for
which ED may not perform well or even totally lose its ca-
pacity [14].

A novel concept, Ball Divergence (BD), is recently devel-
oped to measure the difference between two probability mea-
sures in separable Banach spaces [17]. Taking non-negative
value, BD possesses the property that it is equal to zero if
and only if two probability measures are identical like ED.
But BD is not restricted by the strong negative type, and
thus, the Bhattacharyya distance or other distance (such as
Angular distance or Aitchison distance [11]) for composi-
tional data are all suitable for BD. With BD, a permutation
based metric rank test is supplied to check the equality of
distribution measures assumption. It is proven to possess ro-
bustness, consistency and well coping with imbalanced data
[17]. The motivation of BD relies on the fact that two iden-
tical probability measures agree on all the balls in separa-
ble Banach spaces [2]. To construct an empirical BD statis-
tic given two independent samples, any two points of each
sample are utilized to draw a ball, and the differences of the
proportions of two samples located in the ball are summed.

The remaining sections are organized in the following
way. We will first revise BD and introduce the BD based

two-sample test procedure for compositional data in Sec-
tion 2. In Section 3, we carry out the Monte Carlo simu-
lation studies to analyze the performances of LR, ED, and
BD in the context of low-dimensional, high-dimensional, and
high-proportional zero measurements scenarios. In Section
4, we employ BD test procedure on the intestinal micro-
biota data to analyze whether there exists a difference be-
tween the intestinal microbiota structures of the health and
gout. Finally, Section 5 will give an overall summary of BD
test procedure and provide some directions about future im-
provement.

2. METHODS

In this section, we will recap the definition of Ball Di-
vergence in subsection 2.1, and propose a two-sample test
procedure for compositional data with BD in subsection 2.2.

2.1 Ball divergence

Suppose (V, ‖ · ‖) be a finite dimensional Banach space,
where the norm ‖ · ‖ induces a metric ρ(x, y) = ‖x− y‖ for
two points x, y ∈ V . Let B be the Borel σ-algebra in V . μ,
ν are two Borel probability measures defined on B. Let Bu

r

be a closed ball with the center u and the radius r. The Ball
Divergence is defined as:

BD(μ, ν) =

∫∫
V×V

[μ− ν]2(Bx
ρ(x,y))

× (μ(dx)μ(dy) + ν(dx)ν(dy)).

The crucial property of BD(μ, ν), the homogeneity-zero
property, is that BD(μ, ν) = 0 if and only if μ = ν.

Next, we introduce the sample version of BD which
serves as the test statistic in the two-sample problem. For
convenience, we define several notations. Let δ(x, y, z) =
I(z ∈ Bx

ρ(x,y)), where I is an indicator function, and hence,

δ(x, y, z) takes value 1 if z is located in the closed ball
Bx

ρ(x,y), and 0 otherwise. Given two independent random

samples X(n) = {X1, . . . , Xn} associated with probability
measures μ and Y(m) = {Y1, . . . , Ym} associated with ν, we
define

Pμμ
ij =

1

n

n∑
u=1

δ(Xi, Xj , Xu), P
μν
ij =

1

m

m∑
v=1

δ(Xi, Xj , Yv),

P νμ
kl =

1

n

n∑
u=1

δ(Yk, Yl, Xu), P
νν
kl =

1

m

m∑
v=1

δ(Yk, Yl, Yv).

From the definition, Pμμ
ij represents the proportion of sample

X(n) located in the closed ball BXi

ρ(Xi,Xj)
and Pμν

ij calculates

that of Y(m). P
νμ
kl and P νν

kl have similar meaning with Pμμ
ij

and Pμν
ij except the closed ball is changed to BYk

ρ(Yk,Yl)
. The

sample version of BD, BDn,m, is a positive value defined by

BDn,m =
1

n2

n∑
i,j=1

(Pμμ
ij − Pμν

ij )2 +
1

m2

m∑
k,l=1

(P νμ
kl − P νν

kl )
2.
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According to the definition of BDn,m, the critical step of
empirical BD computation is calculating the distance matrix
DXX ∈ Rn×n, DY Y ∈ Rm×m as well as DXY ∈ Rn×m,
whereDXX

ij measures the distance betweenXi andXj ,D
Y Y
kl

measures Yk and Yl, and DXY
ik measures Xi and Yk.

The sample version of BD possesses many desirable prop-
erties. For instance, it converges to BD(μ, ν) and is consis-
tent against any general alternative under mild assumptions
[17].

2.2 Ball divergence based two-sample
compositional data test

Suppose we collect two compositional data X(n) =
{X1, . . . , Xn},Y(m) = {Y1, . . . , Ym} and combine them to
Z(n+m) = X(n)

⋃
Y(m), for each subject Zt ∈ Z(n+m), Zt

consists of D component proportions zj (j = 1, . . . , D), and

satisfies that zj ≥ 0 (j = 1, . . . , D) and
∑D

j=1 zj = 1. As
we mentioned in subsection 2.1, the computation of BDn,m

involves pairwise distance matrix, and hence, selecting a rea-
sonable metric for compositional data is quite important.

Several metrics work for the compositional data, includ-
ing the Aitchison distance, Mahalanobis distance, Bhat-
tacharyya distance, etc. [11]. In terms of the gut microbiota
data, the Bhattacharyya distance seems to be a more reason-
able choice because the existence of zero counts makes the
log-ratio transformation based distances such as Aitchison
distance and Mahalanobis distance unavailable. To be spe-
cific, the Bhattacharyya distance between two compositions
Z1 and Z2 of D components is defined as follows:

Bhattacharyya(Z1, Z2) = f

⎛
⎝ D∑

j=1

√
z1j

√
z2j

⎞
⎠ ,

where zij , i = 1, 2, j = 1, . . . , D are the component pro-
portions of Z1, Z2, and f is the arc-cosine or negative log-
arithm function. In most cases, the arc-cosine function is
a preferable choice because it is not only immune to the
problem caused by zero proportion but also deserving of ge-
ometric interpretability. The Bhattacharyya distance with
the arc-cosine function can be interpreted as the great-
circle/geodesic distance between two points

√
Z1,

√
Z2 on

the surface of a sphere.
In order to obtain the statistical inference result of BD

based two-sample test, we use the non-parametric permu-
tation technique to estimate the empirical null distribution
and further derive the p-value.

3. SIMULATIONS

In this section, we conduct the Monte Carlo simulation
studies for the Ball Divergence based two-sample test pro-
cedure for compositional data. We are interested in investi-
gating the performance of BD test procedure when sample
size n is larger or smaller than component number D. For

comparison, the classical likelihood ratio (LR) test statis-
tic based test procedure, as well as Energy distance (ED)
based test procedure with the Bhattacharyya distance are
also taken into consideration. The p-value of LR and ED
based tests are derived by the permutation technique.

To create the D-part composition, we first generate a
D−1 dimensional random value (z1, . . . , zD−1) coming from
commonly used distributions in Euclidean spaces. Next, fol-
lowing [6] and [3], we apply the additive logistic transform
[13] to (z1, . . . , zD−1) to obtain the compositional data. The
additive logistic transform is defined as:

φ : (z1, . . . , zD−1) → (1, ez1 , . . . , ezD−1) /S,

where

S = 1 +

D−1∑
d=1

ezd .

For simplicity, we let z1, . . . , zD−1 be i.i.d univariate ran-
dom variables. As a consequence, we can only describe the
simulation settings of the common univariate distribution
in Euclidean spaces, including normal, t, uniform, Cauchy
as well as beta distributions. Because the location differ-
ence between two groups is almost canceled out especially
when D is large, we mainly focus on the scale difference of
distribution.

To describe these models, we give some notations first.
We denote μ1, μ2 and σ1, σ2 as the location and scale pa-
rameters of normal distribution, df1, df2 as the degree of free-
doms of t distribution, a1, a2 and b1, b2 as the minimum and
maximum value of uniform distribution, α1, α2 and β1, β2 as
two shape parameters of beta distribution, μ1, μ2 and γ1, γ2
as the location and scale parameters of Cauchy distribution.
With respect to the sample size, setting two group with the
same sample size, we let the sample size of each group n in-
crease as 15, 50, 75, 150. Fixing the significance level at 0.05,
we replicate each model 1000 times to estimate the Type-I
error and power.

We first pay attention to the case when n > D and D =
10. To evaluate Type-I error, we consider the four models
below.

• Model 1: The normal distribution. The location pa-
rameters are μ1 = μ2 = 0 and the scale parameters are
σ1 = σ2 = 1.

• Model 2: The t distribution. The degree of freedoms
are df1 = df2 = 3

• Model 3: The uniform distribution. The minimum
value parameters are a1 = a2 = 0 and the maximum
value parameters are b1 = b2 = 1.

• Model 4: The beta distribution. The shape parameters
are α1 = α2 = β1 = β2 = 2.

For the power evaluation, we consider the following four
models.
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Table 1. Type-I Error rates of the tests based on LR, ED and
BD for Model 1 to 4.

Model 1 Model 2

size 15 50 75 150 15 50 75 150

LR 0.046 0.050 0.056 0.045 0.040 0.048 0.035 0.041
ED 0.041 0.046 0.036 0.052 0.051 0.049 0.034 0.041
BD 0.043 0.032 0.035 0.053 0.051 0.044 0.041 0.041

Model 3 Model 4

size 15 50 75 150 15 50 75 150

LR 0.055 0.040 0.043 0.047 0.053 0.041 0.042 0.047
ED 0.043 0.046 0.043 0.057 0.054 0.052 0.047 0.041
BD 0.041 0.045 0.035 0.054 0.048 0.048 0.038 0.052

Table 2. Empirical powers of the tests based on LR, ED and
BD for Model 5 to 8.

Model 5 Model 6

size 15 50 75 150 15 50 75 150

LR 0.044 0.086 0.138 0.363 0.065 0.223 0.415 0.842
ED 0.047 0.063 0.071 0.157 0.077 0.133 0.177 0.463
BD 0.113 0.371 0.551 0.858 0.139 0.401 0.533 0.857

Model 7 Model 8

size 15 50 75 150 15 50 75 150

LR 0.057 0.085 0.129 0.364 0.069 0.692 0.955 1.000
ED 0.050 0.069 0.076 0.144 0.115 0.547 0.826 1.000
BD 0.138 0.623 0.832 0.995 0.722 0.998 1.000 1.000

• Model 5: The normal distribution. The location pa-
rameters are μ1 = μ2 = 0 and the scale parameters are
σ1 = 0.8, σ2 = 1.

• Model 6: The truncated t distribution. The degree of
freedoms are df1 = 2, df2 = 3, truncating at -10 and 10.

• Model 7: The uniform distribution. The minimum
value parameters are a1 = 0, a2 = 0.05 and the maxi-
mum value parameters are b1 = 1, b2 = 0.95.

• Model 8: The beta distribution. The shape parameters
are α1 = 1, α2 = 2, β1 = 3, β2 = 6.

The Type-I error rates of Model 1 to 4 and empirical
powers of Model 5 to 8 are demonstrated in Table 1 and 2
respectively. Results of Table 1 show that LR, BD, and ED
can control the Type-I errors well around the significance
level. The Type-I error of LR is foreseeably reasonable since
we utilize permutation technique to derive the null distri-
bution. As regard to the empirical powers under different
model settings, BD based two-sample compositional data
test achieves satisfactory performance and is superior to test
based on LR and ED while LR outperforms ED. It is also
worth noting that BD retains the power in detecting the
scale difference of the underlying distribution [17] though
we have used the additive logistic transformation to obtain
the simulated compositional data.

We shift our attention to another scenario that n < D
and D = 3000. Aside from increasing the component num-
ber, we truncate the tiny component proportions to zero

when it is smaller than a threshold ε to imitate the gut mi-
crobiota data which contains multiple zero count OTUs. In
the following models, we fix ε = 10−5. Since the estimation
of the covariance matrix is infeasible in this situation, LR
test procedure is not considered.

To evaluate Type-I error, we consider the four models
below.

• Model 9: The normal distribution. The location pa-
rameters are μ1 = μ2 = 0 and the scale parameters are
σ1 = σ2 = 1.

• Model 10: The t distribution. The degree of freedoms
are df1 = df2 = 10.

• Model 11: The uniform distribution. The minimum
value parameters are a1 = a2 = 0 and the maximum
value parameters are b1 = b2 = 1.

• Model 12: The beta distribution. The shape parame-
ters are α1 = α2 = 8, β1 = β2 = 1.

For the power evaluation, we consider the following four
models. Among the 3000 components, we pick out 300 com-
ponents randomly and let their distribution be distinct to
another sample owing to the biological common sense that
only a small part of OTUs exists significant difference.

• Model 13: The normal distribution. The 300 compo-
nents of one sample have location parameter μ2 = 0
and scale parameter σ2 = 0.8. The other components
of two sample have location parameter μ1 = 0 and the
scale parameter σ1 = 1.

• Model 14: The truncated t distribution. The 300 com-
ponents of one sample have degree of freedom df2 = 2
while the other components of two sample have degree
of freedom df1 = 3. Each component is truncated at -10
and 10.

• Model 15: The uniform distribution. The 300 compo-
nents of one sample have minimum value a2 = 0.05 and
maximum value b2 = 0.95. The other components of
two sample have minimum value a1 = 0 and maximum
value b1 = 1.

• Model 16: The beta distribution. The 300 components
of one sample have shape parameters α2 = 1, β2 = 3.
The other components of two sample have shape pa-
rameters α1 = 2, β1 = 6.

We demonstrate the Type-I error rates and empirical
powers of simulation studies of BD and ED test in Table
3 and 4, respectively. As we can see in Table 3, two meth-
ods can control the Type-I errors well around the signifi-
cance level. With respect to the empirical powers, BD based
two-sample test for compositional data shows satisfying per-
formance and outperforms ED based test. Notice that the
performance of ED based test in Model 15 is dissatisfactory.
Compared with the other Models, in Model 15, the composi-
tion proportions are more averaged due to the random value
before the additive logistic transformation uniformly ranges
from 0 to 1, leading to the tiny difference composition pro-
portions between two groups. In this case, BD is still able to
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Table 3. Type-I Error rates of test procedures based on ED
and BD for Model 9 to 12.

Model 9 Model 10

size 15 50 75 150 15 50 75 150

ED 0.057 0.047 0.046 0.042 0.056 0.050 0.041 0.056
BD 0.040 0.046 0.056 0.046 0.051 0.056 0.052 0.048

Model 11 Model 12

size 15 50 75 150 15 50 75 150

ED 0.051 0.041 0.047 0.045 0.048 0.047 0.038 0.052
BD 0.047 0.056 0.051 0.064 0.043 0.062 0.048 0.054

Table 4. Empirical powers of two test procedures based on
ED and BD for Model 13 to 16.

Model 13 Model 14

size 15 50 75 150 15 50 75 150

ED 0.069 0.155 0.260 0.678 0.154 0.643 0.893 1.000
BD 0.628 0.993 0.999 1.000 0.308 0.779 0.936 0.998

Model 15 Model 16

size 15 50 75 150 15 50 75 150

ED 0.051 0.037 0.052 0.058 0.075 0.190 0.364 0.815
BD 0.631 0.999 1.000 1.000 1.000 1.000 1.000 1.000

discover the subtle distinction. Furthermore, compared with
Model 5 to 8, the empirical powers of BD in Model 13 to 16
do not drop but improve. The reason for this improvement
is that BD not only overcomes the barriers arisen from high
dimensionality and zero measurements but also detects the
more significant distribution distinctions resulted from the
more distinct components.

To further evaluate the performance of the proposed test
in the context of the zero measurements, we carried out sim-
ulations studies to examine the affection of the proportion of
zero measurements. To control the percentage of zero mea-
surements, for each observation, we randomly pick out a part
of components then make their proportions become zero and
conduct normalization procedure such that the proportions
of all component sum up to 1. In this way, we can control
the percentage of zero measurements varying from 30% to
90%.

In the following eight models, the sample sizes of two
group is fixed at 15 and the number of compositions are
fixed at 3000. For Type-I error evaluation, we consider the
four models as follow.

• Model 17: The normal distribution. The location pa-
rameters are μ1 = μ2 = 0 and the scale parameters are
σ1 = σ2 = 1.

• Model 18: The t distribution. The degree of freedoms
are df1 = df2 = 2.

• Model 19: The uniform distribution. The minimum
value parameters are a1 = a2 = 0 and the maximum
value parameters are b1 = b2 = 1.

• Model 20: The Cauchy distribution. The location pa-
rameters are μ1 = μ2 = 0 and the scale parameters are

Table 5. Type-I Error rates of two test procedures based on
ED and BD for Model 17 to 20.

Model 17 Model 18
percentage (%) 30 50 70 90 30 50 70 90

ED 0.054 0.054 0.049 0.050 0.054 0.055 0.045 0.044
BD 0.038 0.051 0.051 0.048 0.052 0.041 0.045 0.058

Model 19 Model 20
percentage (%) 30 50 70 90 30 50 70 90

ED 0.064 0.052 0.056 0.052 0.055 0.039 0.045 0.049
BD 0.048 0.053 0.039 0.037 0.039 0.039 0.038 0.046

Table 6. Empirical powers of two test procedures based on
ED and BD for Model 21 to 24.

Model 21 Model 22
percentage (%) 30 50 70 90 30 50 70 90

ED 1.000 1.000 0.883 0.172 1.000 1.000 0.989 0.277
BD 1.000 1.000 1.000 0.905 1.000 1.000 1.000 0.770

Model 23 Model 24
percentage (%) 30 50 70 90 30 50 70 90

ED 1.000 1.000 0.999 0.371 1.000 0.999 0.910 0.531
BD 1.000 1.000 0.999 0.508 1.000 1.000 0.962 0.680

γ1 = γ2 = 0.1.

For the power evaluation, we consider the four models in
the following. Like Model 13 to 16, we let only 300 compo-
nents be distinct to other components.

• Model 21: The normal distribution. The 300 compo-
nents of one sample have location parameter μ2 = 0
and scale parameter σ2 =

√
5. The other components

of two sample have location parameter μ1 = 0 and the
scale parameter σ1 = 1.

• Model 22: The truncated t distribution. The 300 com-
ponents of one sample have the degree of freedom
df2 = 2. The other components of two sample have
the degree of freedom df2 = 10. Each component is
truncated at -10 and 10.

• Model 23: The uniform distribution. The 300 com-
ponents of one sample have minimum value a2 = 0
and maximum value b2 = 4. The other components of
two sample have minimum value a1 = 0 and maximum
value b1 = 6.

• Model 24: The truncated Cauchy distribution. The
300 components of one sample have location parameter
μ2 = 0 and scale parameter γ2 = 2. The other com-
ponents of two sample have location parameter μ1 = 0
and the scale parameter γ1 = 0.1. Each component is
truncated at -10 and 10.

The Type-I error rates and empirical powers of Model
17 to 24 are displayed in Table 5 and 6. As we can see
in Table 5, both ED and BD can well control Type-I er-
ror rates around 0.05 regardless of highly proportional zero
measurements. From Table 6, the increasing percentage of
zero measurements have a negative impact on the empirical
powers of two methods. However, if two distributions are
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conspicuously different such as Model 21 and 22, Ball Di-
vergence can temporarily maintain its performance and be
very likely to reveal the heterogeneity of two datasets even
though the percentage of zero measurements go up to 90%
while ED may not.

4. REAL DATA ANALYSIS

In this section, we employ ED and BD based two sample
test procedure for compositional data on the gut microbiota
data to figure out whether the intestinal microbiota struc-
ture is different between health and gouty women. To solve
the problem, we re-analyze a public dataset provided by Guo
et al. [23] which is available on the Nature website (https://
www.nature.com/articles/srep20602). The dataset consists
of forty-nine males (24 gouty, 25 healthy) and thirty-four
females (17 gouty, 17 healthy). For each subject, twenty-
two body index, including age, BMI (body mass index), uric
acid, total protein and so on, and the high-quality 16S rRNA
gene sequence is collected. Bioinformatics pre-process pro-
cedure is applied to 16S rRNA gene sequences, leaving 3684
Operational Taxonomic Units (OTUs) for further analysis.
We pick out the OTUs data of healthy and gouty female in-
dividuals and discard redundant 1299 OTUs whose value are
zeros for all subjects to analyze their intestinal microbiota
structure.

Denote the gut microbiota dataset of females as
{(xi1, . . . , xi2385), i = 1, . . . , 34} where xid is the count of
d-th OTU for the i-th subject. To apply our method, we
first transform the data into a typical expression form of
compositional data:

yid = xid/
2385∑
d=1

xid, d = 1, . . . , 2385, i = 1, . . . , 34

such that

yid ∈ [0, 1], d = 1, . . . , 2385, i = 1, . . . , 34

and

2385∑
d=1

yid = 1.

Given the component proportions {(yi1, . . . , yi2385), i =
1, . . . , 34}, we perform the two-sample test procedure for
compositional data based on ED and BD. The classical LR
method is not considered because of the dimensional lim-
itation. The p-value of two methods are presented in Ta-
ble 7. Noticed that ED fails to detect the difference between
healthy people and gouty patients, whereas BD is able to
reveal significant distinctions between two groups. The rea-
sonability of the result is supported by the result of Guo et
al. [23].

Table 7. The p-value of two test procedures for the gut
microbiota data

Method ED BD

p-value 0.120 0.020

To further confirm the result, we pick out 17 OTUs which
show a significant difference between the dataset of gout pa-
tients and healthy individuals (p-value < 0.005, Wilcoxon-
test), and later, visualize the centered and scaled compo-
nent proportions of influential OTUs for each individual in
Figure 1 on page 281. From Figure 1, compared with gout
patients, the 17 influential OTUs tend to have larger pro-
portion among healthy female. Therefore, the visualization
result also supports our finding.

5. CONCLUSION AND DISCUSSIONS

The advanced modern techniques help scientists collect
16S rRNA gene sequences which can be utilized to study
bacterial phylogeny, taxonomy [9], and further the organis-
mal and functional structures of the intestinal microbiota.
We are interested in investigating the organismal structural
difference between gout and health female, a typical high
dimensional two-sample compositional data problem. How-
ever, the high dimensionality, numerous zero counts, and
compositions nature of 16S rRNA data makes the statisti-
cal inference be a tough issue. On the basis of Ball Diver-
gence which is capable of distinguishing two probability dis-
tributions in the separable Banach spaces, we propose a Ball
Divergence based two sample compositional data test proce-
dure to resolve this problem. Thanks to the non-parametric
metric rank statistic essence of Ball Divergence, we avoid
estimating the covariance matrix in the context of high di-
mensionality. Moreover, by choosing a sensible distance, the
Bhattacharyya distance, to measure the dissimilarities be-
tween two compositions, we successfully remove the obstacle
resulted from hundreds of zero count OTUs. The simulation
studies show that our proposed test procedure is superior to
both ED and LR in the low-dimensional case and overcomes
ED in the high-dimensional and many zero counts situation
in which LR method is unavailable. Finally, our proposed
test procedure discovers the significant difference of the gut
microbiota between gouty and healthy women, and we can
conclude the organismal structural difference really exists.

The BD based test procedure has supplied a solution
for our question, and further, we can improve the perfor-
mance of BD in the following aspects. First, since the per-
fect dissimilarity between two compositions is usually un-
known in practice, the other metrics such as the Aitchison
distance can substitute the Bhattacharyya distance in the
BD based testing framework if the compositional data do
not contain the zero value and the substitution might bring
better performance. Second, from the definition of BD, BD
treats the squared proportion difference of each closed ball
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Figure 1. A heat map displays the centered and scaled component proportions of 17 influential OTUs for each individual. The
left panel is the heat map for the healthy persons and the right for the gouty patients. For the heat map, each row

corresponds to an OTU and each column corresponds to an individual, and more warm-toned grid means the corresponding
OTU with a larger percentage in the individual. The different color distributions of two heat map indicate the intestinal

microbiota structure of health and gout are distinct.

equivalently. Borrowing ideas of AdaBoost [22], it may be
worthwhile to extend BD to a weighted version such that
BD could pay adequate attention to those more meaning-
ful closed balls. Third, since the high percentage of zero
counts does harm to BD and ED test procedure, a poten-
tial approach may replace the zero measurements with a
reasonably estimated value so as to relieve the setback.
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[5] Székely, G. J. and Rizzo, M. L. (2004). Testing for equal distri-
butions in high dimension. InterStat 5.

[6] Fang, H., Huang, C., Zhao, H. and Deng, M. (2015). CCLasso:
correlation inference for compositional data through Lasso. Bioin-
formatics 31 3172–3180.

[7] Aitchison, J. (1986). The statistical analysis of compositional
data. MR0865647

[8] Puig, J. G., Michán, A. D., Jiménez, M. L., de Ayala, C. P.,
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