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Variable selection for correlated bivariate mixed
outcomes using penalized generalized estimating

equations
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We propose a penalized generalized estimating equations
framework to jointly model correlated bivariate binary and
continuous outcomes involving multiple predictor variables.
We use sparsity-inducing penalty functions to simultane-
ously estimate the regression coefficients and perform vari-
able selection on the predictors, and use cross-validation to
select the tuning parameters. We further propose a method
for tuning parameter selection that can control a desired
false discovery rate. Using simulation studies, we demon-
strate that the proposed joint modeling approach performs
better in terms of accuracy and variable selection than sepa-
rate penalized regressions on the binary and the continuous
outcomes. We demonstrate the application of the method
on a medical expenditure data set.
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1. INTRODUCTION

The task of modeling multivariate outcomes on sets of
covariates is becoming increasingly common across research
disciplines. Often, these outcomes are mon-commensurate,
i.e., they are on different scales of measurement. Such mul-
tivariate outcomes are likely to be correlated; for example,
they may be measured from the same individual. A com-
mon subcase of multivariate outcomes is when exactly two
outcomes per individual are measured, with one outcome
measured on a continuous scale and the other outcome mea-
sured on a binary scale. This subcase, which we refer to as
bivariate mized outcomes, is the focus of our attention in
this paper.

Joint modeling of such correlated bivariate mixed out-
comes is preferable over separate modeling as we may be
able to obtain more efficient parameter estimates [10]. How-
ever, specifying a joint model for bivariate mixed outcomes
is challenging due to the lack of appropriate multivariate dis-
tributions for mixed outcomes. Likelihood-based approaches
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that aim to circumvent this problem include the factoriza-
tion approach, in which the joint distribution of the out-
comes is factorized into the marginal distribution of one out-
come and the conditional distribution of the other outcome
given the first outcome, and the latent variable approach,
in which unobserved shared latent variables account for the
correlation between the outcomes. See Teixeira Pinto and
Normand [10] for a survey of these methods. A drawback
of the factorization approach is the arbitrary choice of the
conditioning outcome. Disadvantages of the latent variable
approach include sensitivity to misspecification of the co-
variance structure, and arbitrary and untestable distribu-
tional assumptions on the latent variables [8].

On the other hand, generalized estimating equations
(GEEs) provide an indirect approach to modeling bivari-
ate mixed outcomes [8, 9, 7]. GEEs provide a convenient
way to obtain consistent estimates of the marginal parame-
ters even if the correlation structure between the outcomes
is misspecified. This approach is primarily used when the
correlation between the outcomes is a nuisance parameter
and the marginal parameters are of primary interest in es-
timation.

If the number of covariates is large, regularization of the
regression coefficients and variable selection may be impor-
tant tasks to perform. These can often be achieved simulta-
neously through penalization, using penalties such as the
least absolute shrinkage and selection operator (LASSO)
[11], the elastic net (EN) [17], the smoothly clipped ab-
solute deviation (SCAD) penalty [3], the minimax con-
cave penalty (MCP) [15], and others. To apply penaliza-
tion techniques to GEEs, Fu [4] and Johnson, Lin and
Zeng [6] laid the framework for penalized generalized esti-
mating equations (PGEEs), while Wang, Zhou and Qu [12]
gave the form of PGEEs for commensurate longitudinal out-
comes. Analogous to penalized regression, PGEEs perform
simultaneous parameter estimation and variable selection
through the incorporation of a sparsity-inducing penalty
term in GEEs.

In this paper, we provide the framework to apply PGEEs
in the (non-longitudinal) bivariate mixed outcome case. Our
method differs from the method of Wang, Zhou and Qu [12]
in two important ways. First, their method uses one tuning
parameter for all outcomes. Because continuous and binary
outcomes are on fundamentally different scales, two tuning
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parameters are necessary for correct estimation, and we al-
low for this in our proposed method. Second, their method
assumes that a single set of regression coefficients can be
used across all outcomes. This assumption is reasonable for
their case, as they are concerned with modeling longitudinal
outcomes, where there is really only one outcome, measured
at different time points. However, when there are true mul-
tiple outcomes (even non-mixed), a different set of regres-
sion coefficients needs to be estimated for each outcome,
because it is not reasonable to assume that a covariate has
the same effect on all of the outcomes. Our algorithm is
general enough to estimate two different sets of regression
coefficients.

Through simulation studies, we show that gains can be
made in both estimation and variable selection by using joint
analysis rather than by separate marginal analyses of the
outcomes. In the context of variable selection, controlling
the false discovery rate (FDR) [1] is often of importance as
well. Breheny [2] and Yi et al. [14] showed how to estimate
and control the FDR for penalized regression. We generalize
this method to the PGEE framework, and through simula-
tions, demonstrate that our method is able to control the
FDR at a desired level. An R package, pgee .mixed, is avail-
able at https://cran.r-project.org/ for implementation.

We illustrate the application of our PGEE framework and
FDR control methodology to data from the Medical Expen-
diture Panel Survey (MEPS). MEPS provides a nationally
representative sample of health care data at the individ-
ual level, and contains information on medical spending,
health status, demographics, health conditions, access to
care, health insurance coverage, income, and employment.
Our analysis is inspired by the work done in Zimmerman
[16], who sought to jointly model annual drug spending
(modeled as a continuous variable) and health status (mod-
eled as a binary variable) for Medicare enrollees in 2004
and 2005, the two years before Medicare Part D became
active. While the primary goal of that analysis was to in-
vestigate the strength of association between these two out-
comes, our goal is to identify important covariates that af-
fect drug spending and health status. With our penalized
GEE framework, we are able to consider a larger set of co-
variates than Zimmerman [16]. Then, by borrowing infor-
mation from total drug spending, we are able to identify
important covariates for health status that may not be de-
tectable from a marginal analysis on the latter outcome.
We also estimate the false discovery rate to reassure our-
selves that we are detecting additional signal, rather than
noise.

The rest of the paper is organized as follows. In Section 2,
we provide the framework for applying PGEEs to bivariate
mixed outcomes. We also provide an iterative algorithm to
solve the PGEEs and a method to control the FDR. Section
3 contains results from simulation experiments. In Section 4,
we apply the PGEE framework to the MEPS data and dis-
cuss our findings. Section 5 concludes the paper with some
discussions.
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2. PENALIZED GENERALIZED
ESTIMATING EQUATIONS FOR
BIVARIATE MIXED OUTCOMES

2.1 Notation

From the ith individual, we observe a continuous out-
come Y., a binary outcome y;,, a p-dimensional covariate
vector x; corresponding to the continuous outcome y;., and
a g-dimensional covariate vector z; corresponding to the
binary outcome y;;, ¢ = 1...n. It is common to assume
x; = z; (i.e., use the same set of covariates to model both
outcomes), but this need not be so. Let y; = (Yic, yin)”
denote the bivariate vector of outcomes from the ith indi-
vidual. We assume that outcomes from the same individual
are correlated, but outcomes from different individuals are
independent.

We specify the link functions g.(pi) = m{ﬁc and
gv(ip) = z;fpﬁb, where p;e = E(yic) and pi, = E(yip). De-
note pt; = (fic, pip)” and B = (8L, BL)T. The variances of
the outcomes can be specified as ve(yic) = Yehe(ptic), and
Up(Yin) = Yphe(wip), where 1. and 1), are dispersion param-
eters, and h.(-) and hy(-) are the usual variance functions
from generalized linear models. For illustration, we take g.(-)
to be the identity link and g,(-) to be the logit link. For sim-
plicity, we further assume that ¥, = ¢, = 1.

2.2 Generalized estimating equations for
bivariate mixed outcomes

Rochon [9] gave the setup for generalized estimating
equations for bivariate mixed outcomes:

(1) S(B)=n"" ZDiTVi_l(yi — pi) =0,

v Opi(B)  (Opic/OBE 0 >
(2) D; = = ( 0 D) OBT )

0BT
and V; is the variance-covariance matrix of y;, given by
V; = (AT)'/2RA}* = A)?RA}?, where

As = (hc((/)‘ic) hb(?%b))  B= C’ T) '

Here R is a working correlation matriz and p measures the
strength of association between the continuous and binary
outcomes. Note that p, which we refer to as the association
parameter, is assumed to be fixed across i. Without loss of
generality, we also assume that p is non-negative, because if
the outcomes are negatively correlated, we can simply flip
the sign of the continuous variable.

Wang, Zhou and Qu [12] showed that if the marginal
density of each outcome can be assumed to come from a
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canonical exponential family, then S(8) in (1) can be sim-
plified to

3) S =n"1Y XTA2(BRA;?(B)e(),

i=1

where €(3) = y; — pi(08) and X is the covariate matrix for
the 7th individual. In the bivariate mixed outcome case, Xj;
reduces to the block-diagonal structure

(4)

R is the estimated working correlation matrix, in which
the association parameter p is replaced by an estimate p.
We compute p using the biserial correlation between the
binary outcomes and the residuals of the continuous out-
comes.

2.3 Penalized generalized estimating
equations for bivariate mixed outcomes
A sparsity-inducing penalty term can be incorporated
into (3) if we wish to perform simultaneous estimation and

variable selection with the GEEs. The PGEEs for bivariate
mixed outcomes are given as

() U(B) = S(B) — ax(I8])sign(B),
where S(3) is defined in (3),

ax(181) = lar.(Be1)s ax. (Be2)s - - - ax. (Bep),
O (Bo1)s @, (Bb2)s - -+ @x, (Bog)] "

is a (p + ¢)-dimensional vector of the first derivatives of
penalty functions, where A\, and )\, are the tuning param-
eters for the penalty functions associated with continuous
regression coefficients and binary regression coefficients, re-
spectively, and

(6)

57’9”(5) = [Sign(ﬂcl)v cees Sign(ﬂcp)v
sign(Bp1), - - -, sign(Bpq) N

(7)

where sign(t) = I(t > 0)—I(t < 0). Note that the product of
gx(+) and sign(-) in (5) is component-wise. Unlike previous
frameworks for the PGEEs such as in Johnson, Lin and Zeng
[6] and Wang, Zhou and Qu [12], we require two tuning
parameters A. and J\p, because the continuous and binary
outcomes are on fundamentally different scales. Restricting
the model to a single tuning parameter would necessarily
lead to over-penalization or under-penalization in at least
one component of (B¢, Bp).

Although a variety of sparsity-inducing penalties can be
chosen in (5), we restrict our attention to the SCAD penalty
o (0) = MI(0 <)+ (a—1)"2]A"aX —0)1(0 > \)}, for
6 > 0 and for fixed @ > 2, where (t); = max(¢,0). We fix
a = 3.7 as recommended in Fan and Li [3].

2.4 Algorithm to solve PGEEs

Wang, Zhou and Qu [12] provided a Newton-Raphson
type iterative scheme to solve PGEEs. Their algorithm as-
sumes a single set of regression coefficients for all outcomes,
and a single tuning parameter. We generalize their algo-
rithm to estimate two sets of regression coefficients with
two tuning parameters, to solve PGEEs for bivariate mixed
outcomes:

(8) B! =" +[H(B") + E(B")]'[S(8") - E(B")B"],

where

9  H@BY=n"> XTAP(BHRT A (BN X,

1=1
E'(,ék):dlag q>\c(/3§1|+) ch(|B§p|+)
(10 Sl e
w81 a8l }
e+1BR T e+ 18Rl )

where € is a small fixed positive number, which we set
to 1075, This algorithm has close connections to the local
quadratic approximation algorithm of Fan and Li [3] and
the minorization-maximization (MM) algorithm of Hunter
and Li [5] for solving penalized regression problems.

The two tuning parameters A, and )\, are chosen using
four-fold cross-validation over a two-dimensional grid. The
loss function used for the cross-validation is the sum of a
squared error loss for the estimated continuous regression

coefficient vector Be:

n

Lc(ycva) = Z(ylc - 772'\6)23
i=1

(11)

where 7;; = 7 3., and a deviance loss for the estimated
binary regression coefficient vector Bp:

n

(12) Ly(w ) = o D losl1 +exp{ 217 2o~ D},

where 7;, = ziT,B\b. Note that y;; € {0,1}. Convergence
of the algorithm is declared if either of two conditions are
satisfied: ||BFt1 — 3|1 < 1, or |U(B* )|y < ea, where
6]l1 = >_7_, |6:] is the Ly-norm of an n-dimensional vector
0, and U () are the penalized estimating functions from (5).

From the Newton-Raphson scheme, analogous to Wang,
Zhou and Qu [12], we can obtain the asymptotic covariance
matrix of E, given by

(13) Cov(B) ~ [H(B)+ E(B)] ' M(B)H(B) + EB) ",
where H and E are defined in (9) and (10), and
(14) M(B) = Si(8)S{ (8),
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where S;(8) = ' XJ A (B)R1 A (B)y: — ma(B)).
Note that we do not use (13) to conduct post-selection in-
ference. We only use it for comparing the efficiencies of the
methods we consider in our simulation experiments (Sec-
tion 3).

2.5 Controlling the false discovery rate

In this section, we propose a method to estimate and thus
control the false discovery rate (FDR) in the PGEE setting
by selecting appropriate values for the penalty parameters
A and Ap. Breheny [2] and Yi et al. [14] proposed such a
method to control the FDR for penalized linear regression
and penalized logistic regression. We generalize this method
to PGEEs for mixed outcomes.

The FDR can be expressed as
E(F)

FDR = — 2,

(15) -

where S is the total number of covariates selected by the
variable selection procedure and F is the number of false
discoveries. Under sparsity-inducing penalty functions like
SCAD, the jth covariate is selected if its regression coeffi-
cient B; is estimated as non-zero, i.e., 3; # 0. We say that
the jth covariate is null if §; = 0. Thus, a false discovery
is a null covariate that is selected by the variable selection
procedure. Note that since F is unknown in practice, it is
replaced with its expectation in (15).

Next, letting o; = P(Bj # 0|8; = 0) be the probability of
making a false discovery on the jth covariate, the numerator
of (15) can be estimated by

J
(16) E(F) = _ay,

where J is the number of covariates being considered in the
variable selection procedure. This approach to estimating
the FDR is conservative (overestimates the FDR), since the
sum in (16) is over all covariates and not just the null co-
variates. However, we do not know which covariates are null
in practice.

We rewrite the estimating functions of the unpenalized
GEEs from (1) as

S(B)=n"">_ DIV; (yi — i)
1=1

n
=n! E wWlr;
i=1

=n Wy,
where Wr,:T = D?‘Q_lv r; = (y’L - H"L)a WT =
Wi ... Wr r = [rT,--- rT]. Note that each r; =

[Fic;mip)T is a 2-dimensional vector; hence r is a 2n-
dimensional vector. Denoting w@) as the jth column vector
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of W, j=1,---  (p+gq), we can express the jth component
of S(B) as S;(B) = n~tw@Tr.

Wolfson [13] mentions that although estimating equa-
tions may not correspond to the gradient of some (un-
known) loss function, they can be obtained as the mod-
ification of such a gradient, and can be expected to
have similar behavior as the gradient. Hence, at the
solution, the Karush-Kuhn-Tucker optimality conditions
should hold, which give the following conditions for
PGEEs:

(17a)
(17b)

n"lwWTy = )\jsign(ﬁj)

n_1|w(j)Tr| < \j

ij 7é 05
VB; =0,

where A; is A, or Ay, depending on whether /; corresponds
to the continuous outcome or to the binary outcome, respec-
tively. Note that the conditions in (17) are derived assuming
the LASSO penalty, but as mentioned in Breheny [2], the
same conditions can be applied to the SCAD penalty, which
we use.

We show in Section 1 of the Supplementary Ma-
terials http://intlpress.com/site/pub/files/_supp/sii/2019/
0012/0002/ST1-2019-0012-0002-s002.pdf that the conditions
in (17) further imply the conditions

n"Hw@OTrpED| > )\

n @R < ),

VB; #0,

VB =0,

where the —j superscript indicates quantities calculated
without using the jth covariate. Hence, we have

(19) aj = P(6; #0|8; = 0)
= P(n~ @ TrED| > \j18; = 0).

In general, the distribution of the #(=7)’s is complex, hence
obtaining an analytical expression for (19) is difficult. How-
ever, analogous to Breheny [2], we can make an approxima-
tion:

(20) r(=9) PR Ny, (0, V),

where V = diag(V,..., V), and

2
V= o PO
= 2
PO oj, ’

where the variance parameters o2 and o can be estimated

from the data as 02 = n~ ' ||re]2, 02 = n=1||rp|2, with

Te = [Fety s Ten|T and 7 = [1p1,...,7pn]T. The associa-
tion parameter p is already estimated from the algorithm
that solves the PGEEs. Note that the block-diagonal struc-
ture of the variance-covariance matrix of (=) from (20)
reflects the assumption that the bivariate outcomes from a
single individual are correlated, but outcomes between indi-
viduals are independent.
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Using (20), we can approximate (19) as:
77’L)\j

=20 —— |,
! <\/w(j)Tf/w(J’)>

To estimate the total FDR across both continuous and
binary outcomes, we can use (15), (16), and (21), with
J = p+ q. Alternatively, we can estimate the FDR sepa-
rately for the continuous and the binary outcomes using;:

(21)

. ETF\ - P .
FDR, = (SC), E(F.) =) _aj,
c =1
- E/F\ . p+q .
FDR, = ( b), E(F,) = Y a
S Jj=p+1

where S, is the total number of continuous outcome covari-
ates selected and S, is the total number of binary outcome
covariates selected.

Note that in general, there will be multiple pairs of tuning
parameters (A., Ap) that can control the FDR at a desired
level. Hence, in practice, we choose A. and Ay as the pair
with the lowest cross-validated error amongst all pairs that
control the FDR at the desired level.

3. SIMULATION EXPERIMENTS

We conducted simulation experiments to compare our
method of modeling the bivariate outcomes jointly ver-
sus modeling each outcome separately using two unrelated
PGEEs. We also conducted a simulation experiment to in-
vestigate the effectiveness of our FDR control method.

3.1 Data generation

3.1.1 Comparing the joint PGEEs method versus the sepa-
rate PGEEs method

We generated 1000 data sets, each consisting of n = 500
pairs of correlated bivariate mixed outcomes, with p = ¢ =
50 covariates per outcome. Marginally, the continuous out-
comes follow normal distributions with the identity link to
covariates and the binary outcomes follow Bernoulli distri-
butions with the logit link to covariates. Denote the co-
variate matrices as X = [ 2@ .  x®] and Z =
[z, 23 2(D] for the continuous and the bivariate re-
sponses, respectively, where () is the jth column of X, and
similarly for Z. We assumed intercepts for both outcomes,
so 2 = z(1) = 1, whose coefficients are not penalized.
Covariates were generated from a multivariate normal dis-
tribution with a zero-mean vector, unit marginal variances,
and an AR(1) correlation structure with a correlation of
0.25. Three situations for these covariate matrices were con-
sidered: (i) All covariates are shared (between the bivariate
outcomes), i.e., X = Z, (ii) Some but not all covariates are
shared, in which case we set z(9) = () for j = 2,3, and

(iii) No covariates are shared, in which case we generated X
and Z independently.

Next, the true regression coefficient vectors are cho-
sen as Bo. = (0.2,2.0,0,...,0,3.0,—-1.5,2.0)7 and Bop =
(1.2,0.8,0.6, —0.4,0,...,0)T. This setup lets us consider the
case that when the two covariate matrices are identical, ex-
actly one of the covariates (i.e. j = 2) is associated with
both of the outcomes, while all other covariates are asso-
ciated with at most one of the outcomes. The correlated
bivariate mixed responses are then generated as follows. For
i=1,...,n

(ug,vi) ~ C(-,-16),
Yic ~ @7 ui|p = @] Boe, 0 = 1),
w; ~ F~ Y v;|p = 2] Bow, s = 1),
yip = I(w; > 0),

where C(-,-0) is a two-dimensional Gaussian copula with
correlation parameter 6, ®~!(-|u,0) is the inverse cumu-
lative distribution function of a normal distribution with
mean u and standard deviation o, and F~1(:|u,s) is the
inverse cumulative distribution function of the logistic dis-
tribution with location g and scale s. Thus 6, the param-
eter of the copula, is the correlation between the contin-
uous outcome and the latent variable that generates the
binary outcome. We feel that specifying a correlation be-
tween the continuous outcome y;. and the latent logistic
variable w; is more natural than specifying a direct cor-
relation between the continuous outcome ;. and the bi-
nary outcome y;,. Note that the copula parameter, 6, and
the association parameter in the PGEEs, p, are different
quantities. Finally, note that to generate the binary re-
sponse with a logistic link, we used the fact that generating
y ~ Bernoulli(p = e? /(1 + e?)) is equivalent to generating
w ~ Logistic(p = ¢,s = 1), y = I(w > 0). We considered
scenarios with § = 0.2, § = 0.4, # = 0.6, and 6 = 0.8, cor-
responding to varying strengths of association between the
continuous and binary outcomes.

3.1.2 FDR control

We generated 1000 data sets of correlated bivariate
mixed outcomes. For brevity, we only considered the case
when all covariates are shared between the bivariate out-
comes. The design of the simulation is largely the same as
the one described above, with the exception that we set
both the continuous and binary regression coefficients to
(1,-1,1,-1,1,-1,0,...,0)7, as in Breheny [2].

3.2 Simulation results

3.2.1 Comparing the joint PGEEs method versus the sepa-
rate PGEEs method

Here, we compare the joint and the separate PGEEs
methods in terms of accuracy and variable selection met-
rics. For each of the 1000 data sets generated under each
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Table 1. Accuracy and variable selection metrics comparing

the joint and the separate PGEEs methods, for 6 = 0.2,0.6,

with all covariates shared between the continuous and binary
outcomes. Maximum TP is 9 and maximum FP is 91.

(a) 8=0.2
Method  MSE U (0] E TP FP
Joint 0.2473 0.55 0.22 0.23 821 1.72
Separate 0.2514 0.56 0.20 0.24 820 1.63
(b) 6 =0.6
Method  MSE U O E TP FP
Joint 0.1996 0.40 0.28 0.32 848 1.86
Separate 0.2584 0.56 0.17 0.27 8.18 1.68

scenario, we applied our iterative algorithm to solve the
PGEEs and obtained estimates of the regression coefficients
B = (BL,BL)T. As described in Section 2.4, the tuning
parameters A\, and A, were selected using four-fold cross-
validation over a two-dimensional grid, equally spaced on
the log scale. We also applied separate PGEEs to the contin-
uous and the binary outcomes and estimated the regression
coefficients. For each of the separate estimations, the tuning
parameter was selected using four-fold cross-validation over
a one-dimensional grid, equally spaced on the log scale. To
evaluate the accuracy of these estimates, we computed the
mean squared error (MSE) as (1000)~* 32129 |30 — B3,
where B(i) is the estimate for the true regression coefficient
vector (B¢ from the ith data set. We also computed the abso-
lute bias and the sandwich-formula based standard error for
each true non-zero regression coefficient. To compare per-
formance in variable selection, we computed the proportion
of data sets in which the methods under-selected (U), over-
selected (O) and exactly selected (E) the covariates with
true non-zero regression coefficients. (A good variable selec-
tion method should have small U and O metrics, and a large
E metric). Finally, we calculated the average number of true
positives per data set (TP) and the average number of false
positives per data set (FP) for both the methods.

Table 1 shows the MSE and variable selection metrics
for the joint and the separate methods for & = 0.2 and
0 = 0.6, with all covariates shared between the bivariate
outcomes. We observe that the joint method has smaller
MSE than the separate method, with a more noticeable dif-
ference for & = 0.6. Under-selection is usually considered
worse than over-selection in variable selection, and we ob-
serve that the joint method has smaller U metrics than the
separate method. The joint method also has a larger E met-
ric than the separate method for 8 = 0.6, and its E metric
is smaller than that the separate method by only 0.01 for
# = 0.2. The joint method has larger TP and than the sep-
arate method for both 8 = 0.2 and 6 = 0.6, which it trades
off with its larger FP metric. Note, however, that although
the joint method shows larger FP, because it has smaller
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MSE, the magnitudes of the estimates of the false positive
must be small. Similar behavior in terms of these metrics is
observed across the other scenarios considered (see Tables
S1, S2 and S3 in the Supplementary Materials). Also, Ta-
ble S7 in the Supplementary Materials shows these metrics
split by outcome type, for the case where no covariates are
shared between the bivariate outcome. From that table, we
can see that the MSE is smaller for the joint method for both
outcomes, and that the joint method’s larger TP is driven
by the binary outcomes. Corresponding tables for the other
covariate cases are not provided, but the trends are similar.

Table 2 shows the absolute bias and the standard er-
rors for the true non-zero coefficients for the scenarios cor-
responding to Table 1. We observe that the absolute bias
and the standard errors under both methods are similar for
the continuous outcome coefficients, but are almost always
smaller for the joint method for the binary outcome coef-
ficients. The other scenarios considered (see Tables S4, S5
and S6 in the Supplementary Materials) show similar trends,
with the effects usually magnified for larger values of p.

Overall, we see that the joint method makes gains over
the separate method in estimation and variable selection
metrics for the binary outcome coefficients, especially for
larger values of 6. Intuitively, this makes sense, as the binary
outcome coefficients—which are harder to estimate due to
the smaller information content of binary outcomes—benefit
from borrowing information from the continuous outcomes
via the correlation between the outcomes. The benefit in-
creases as the strength of the correlation increases.

3.2.2 FDR control

As mentioned previously, there will be multiple pairs
of tuning parameters that can control the FDR at a de-
sired level, so we choose A. and )\, as the pair with the
lowest cross-validated error amongst all pairs that control
the FDR at the desired level. To assess this method’s per-
formance, first we computed the estimated FDR for each
pair in the two-dimensional grid using the entire data set.
Then, we specified an FDR threshold and performed four-
fold cross-validation, restricting the grid to pairs that have
estimated FDR less than the FDR threshold. We refer to the
resulting estimated coeflicients as “restricted” coefficients.
We computed restricted coefficients for FDR thresholds in
{0.01,0.05,0.1}. Similar to the previous section, for compar-
ison, we also estimated the regression coefficients using four-
fold cross validation over the entire two-dimensional grid of
tuning parameter values, without restricting the FDR at
any level. We refer to these estimated coefficients as “unre-
stricted” coefficients. Using the unrestricted and restricted
coeflicients of the 1000 generated data sets, we computed the
MSE and variable selection metrics as in Table 1. In addi-
tion, we computed the average true FDR over the data sets.

Table 3 reports these metrics for 6 = 0.2 and 6 = 0.6. The
FDR is controlled at each threshold. As we would expect,
O increases and E decreases as FDR increases. Applying



Table 2. Absolute bias (AB) and sandwich-formula based standard errors (SE) of estimates of true non-zero regression
coefficients (excluding intercept) for the joint and the separate PGEEs methods, for § = 0.2,0.6, with all covariates shared
between the continuous and binary outcomes.

(a) 0 =0.2
Continuous Outcome Binary Outcome
Method B2 Bas Bao Bso Bs2 Bs3 Bs4
AB Joint 0.002 0.001 0.001 0.000 0.017 0.138 0.179
AB Separate 0.002 0.001 0.001 0.000 0.018 0.142 0.180
SE Joint 0.045 0.046 0.045 0.046 0.144 0.275 0.251
SE Separate 0.044 0.046 0.045 0.047 0.144 0.281 0.252
(b) 6 =0.6
Continuous Outcome Binary Outcome
Method B2 Bas Bao Bso Bs2 Bs3 Bsa
AB Joint 0.001 0.000 0.001 0.001 0.010 0.099 0.138
AB Separate 0.001 0.000 0.000 0.000 0.013 0.145 0.181
SE Joint 0.045 0.042 0.045 0.044 0.130 0.243 0.243
SE Separate 0.044 0.045 0.049 0.048 0.144 0.288 0.255

Table 3. Accuracy and variable selection metrics comparing
various levels of FDR restriction, for § = 0.2,0.6. Maximum
TP is 12 and maximum FP is 88. A value of “None” for Max.
FDR means that no FDR restriction was applied.

(a) 6 =0.2
Max.
FDR MSE U (0] E TP FP FDR
0.01 0.1449 0.00 0.06 0.94 12.00 0.07 0.005
0.05 0.1452 0.00 0.18 0.82 12.00 0.23 0.017
0.10 0.1453 0.00 0.25 0.75 12.00 0.37 0.027
None 0.1463 0.00 0.32 0.68 12.00 1.15 0.066
(b) 6 =0.6
Max.
FDR MSE U (0] E TP FP FDR
0.01 0.1441 0.00 0.06 0.94 12.00 0.08 0.006
0.05 0.1443 0.00 0.16 0.84 12.00 0.20 0.015
0.10 0.1441 0.00 0.24 0.76 12.00 0.34 0.025
None 0.1450 0.00 0.32 0.68 12.00 1.27 0.071

stricter FDR controls also seems to benefit estimation ac-
curacy and other variable selection metrics, as evidenced by
the smaller MSE, larger E, and smaller FP, for smaller lev-
els of the threshold. This suggests that the cross-validation
procedure may be overfitting, and specifying an FDR re-
striction has a regularizing effect on the model. Finally, we
note that because we are reporting the results for the best
(A, Ap) pair for the given FDR level, it is not surprising that
the U values are all 0. Table S8 in the Supplementary Ma-
terials show the results for 6 = 0.4 and # = 0.8. The same
trends are observed there as well.

For each of the 1000 data sets generated, we also noted
the estimated FDR and the true FDR over the two-
dimensional grid. The smoothed average of these FDRs are
plotted in the contour plots in Figure S1 in the Supple-
mentary Materials. Each level of the contour plots shows
the various (A¢, A\p) combinations which result in the same
FDR. These plots indicate that our method is able to control
the FDR at the desired level. We also note that the FDR
estimates are more conservative, i.e. they overestimate the
true FDR, at higher levels of association between the mixed
outcomes.

4. MEPS DATA ANALYSIS

In this section, we demonstrate the application of
our PGEE framework and FDR control methodology to
data from the Medical Expenditure Panel Survey (MEPS)
(https://meps.ahrq.gov/). Our goal is to identify covariates
on demographics, medical conditions, income, employment,
health insurance coverage, and access to care that are asso-
ciated with total annual drug spending and health status.
We used the 2005 data and restricted attention to Medicare
enrollees, 65 years of age and older, with an annual drug
spending of $100 or more. We used the natural logarithm of
total drug spending as our continuous outcome. As done in
Zimmerman [16], we dichotomized health status into fair or
poor (1) and better than fair (0), which formed our binary
outcome. We considered a total of 40 covariates, and we used
the same set of covariates to model both total drug spend-
ing and health status. The complete list of covariates with
descriptions can be found in Table S7 in the Supplemen-
tary Materials. The data set also provides sampling weights
for each observation, which we incorporated into the esti-
mation methods. The final data set contains data for 2,953
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Table 4. Estimated regression coefficients for log(drug spending) and health status outcomes under the joint and the separate
PGEEs methods. A dot indicates that the covariate was not selected by that method, for that outcome.

log(drug spending)

health status: fair or poor

Covariate Joint method  Separate method Joint method Separate method
Intercept 6.330 6.274 5.346 0.053
AGEX . . .

SEX -0.057 -0.065 0.259

RACE_WHITE . 0.007 -0.387

MARRIED -0.017 -0.021 . .
LN_INCOME -0.489 -0.004
LOW_INC_FAM .

LANG_ENG . -1.017
TMTK_MORE_ONEHR -0.004 .
DIFF_USC_TRAVEL 0.541
DIFF_USC_PHONE . .

MDUNAB -0.127 -0.159 .

DNUNAB 0.891

PMUNAB .

MDDLAY -0.002

DNDLAY

PMDLAY . .

MCDEV 0.028 0.049 .

PRVEV -0.273

TRIEV .
DENTCK_LESS_ONEYR 0.556
CHOLCK_MORE_5YR . .

CHECK_MORE_1YR -0.105 -0.132

FLUSHT_MORE_1YR -0.111 -0.125

NOTEETH 0.006 0.009

STOOL . .

BOWEL 0.044 0.051 . .
PHYACT -0.060 -0.066 -0.893 -1.156
BMI 0.007 0.009 .

SEATBELT _NOT_ALWAYS . . 0.573

CANCER -0.001 -0.009 .

DIABETES 0.412 0.407 0.624

COPD 0.060 0.087 0.034
CARDIOVASCULAR 0.418 0.425

ARTHRITIS . .

ASTHMA 0.155 0.201

STOMACH_ULCERS . . .

MENTAL 0.368 0.365 0.383

KIDNEY 0.090 0.124 0.020 .
PRIO 0.090 0.087 0.176 0.019
EMPLOYED -0.033 -0.038 -0.646

individuals, who represent 30,146,029 individuals of the U.S.
population.

We applied both our joint PGEEs method as well as sep-
arate PGEEs to the responses. Similar to the simulations,
four-fold cross-validation was used to select the optimal tun-
ing parameters. Table 4 shows the estimated regression co-
efficients under the joint method and under the separate
method. Sandwich-formula based standard errors for the re-
gression coefficients from the joint model can be found in
Table S8 in the Supplementary Materials.

For the continuous outcome-the logarithm of total drug
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spending-we observe that the joint and separate methods
perform similarly in terms of both variable selection and
estimation. For the joint model, the covariates with the
largest coefficients are CARDIOVASCULAR, DIABETES,
and MENTAL, which are binary indicators for the presence
of a cardiovascular disease, some form of diabetes, and a
mental disease, respectively. Intuitively this makes sense, as
pre-existing medical conditions should have strong associa-
tions with drug spending.

For the binary outcome-the indicator of fair or poor
health status-the joint model is able to detect signal from



more covariates than the separate model. This is consistent
with the results from our simulation studies, in which the
gains in variable selection metrics through joint modeling
are primarily made for the binary outcome coefficients. Of
course, false discoveries could be a concern here. Hence, we
estimated the FDR using the method described in Section
2.5 and found it to be 0.07. Because this level of FDR was
acceptable to us, we decided to not perform cross-validation
with explicit FDR control. However, we do acknowledge that
given the benefits of FDR-controlled cross-validation that
we noted in Section 2.5, our estimates might improve if we
performed it. Interestingly, among all covariates selected by
the joint method for the binary outcome, LANG_ENG has
the largest coefficient in absolute value. The negative coeffi-
cient indicates that individuals whose language of comfort is
English report better health status than other individuals.
The moderate positive coefficient of DIFF_USC_TRAVEL
indicates that individuals who find it difficult to travel to
their Usual Source of Care (USC) provider report worse
health statuses. Both the joint model and the separate
model emphasize the importance of regular physical activity
to good health, as seen in the large negative coefficient of
PHYACT. In the joint model, the effect of dental health on
health status can be seen via the coefficients of DNUNAB
(individual was unable to receive dental treatment when it
was required) and DENTCK_LESS_ONEYR (frequency of
dental checkups are less than once a year). Next, income and
employment are positively associated with good health as
seen through the negative coefficients of LN_INCOME and
EMPLOYED. Interestingly, other than DIABETES, most
of the variables related to prior medical conditions have rel-
atively small coefficients. SEATBELT _NOT_ALWAYS has a
moderate positive coefficient, indicating that some individu-
als may have experienced poor health status due to a motor
vehicle accident.

Finally, our joint method estimated the association pa-
rameter, p, to be 0.13. Our simulations indicate that the dif-
ference between the copula parameter, 6, and p, is roughly
0.10, so # may be roughly regarded as 0.23.

5. DISCUSSION

We have provided a framework to perform simultaneous
estimation and variable selection with correlated bivariate
mixed outcomes using PGEEs. The simulation experiments
and the MEPS data analysis indicate that the major gains
in estimation and variable selection when outcomes are an-
alyzed jointly occur in the binary outcome coefficients. Bi-
nary outcome regression coefficients are generally harder to
estimate due to the smaller information content in binary
data. Thus, by borrowing strength from the continuous out-
comes through the correlation, joint estimation is able to
outperform separate estimation for the binary outcome re-
gression coefficients, while providing equivalent or better
performance for the continuous outcome coefficients.

An obvious extension of our method is to allow for mul-
tivariate (more than two) mixed outcomes. Another useful
extension would be to allow for longitudinal data for both
outcomes. The challenge in each of these extensions lies in
the estimation of the correlation structure. A challenge to
estimating the FDR with general multivariate outcomes is
that the proof of the KKT conditions in (18) does not hold
for more than two outcomes. In the case of longitudinal out-
comes, the iterative algorithm to solve the PGEEs would
have to be modified as well. These are areas of research that
we are currently investigating.
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