
Statistics and Its Interface Volume 12 (2019) 253–264

Bayesian high-dimensional regression for change
point analysis∗
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In many econometrics applications, the dataset under in-
vestigation spans heterogeneous regimes that are more ap-
propriately modeled using piece-wise components for each
of the data segments separated by change-points. We con-
sider using Bayesian high-dimensional shrinkage priors in
a change point setting to understand segment-specific rela-
tionship between the response and the covariates. Covariate
selection before and after each change point can identify
possibly different sets of relevant covariates, while the fully
Bayesian approach ensures posterior inference for the change
points is also available. We demonstrate the flexibility of
the approach for imposing different variable selection con-
straints like grouping or partial selection and discuss strate-
gies to detect an unknown number of change points. Simu-
lation experiments reveal that this simple approach delivers
accurate variable selection, and inference on location of the
change points, and substantially outperforms a frequentist
lasso-based approach, uniformly across a wide range of sce-
narios. Application of our model to Minnesota house price
dataset reveals change in the relationship between house and
stock prices around the sub-prime mortgage crisis.
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Point Detection, High-dimensional Regression, Markov
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1. INTRODUCTION

Modern statistical modeling and inference continue to
evolve and be molded by the emergence of complex datasets,
where the dimension of each observation in a dataset sub-
stantially exceeds the size of the dataset. Largely due to re-
cent advances in technology, such high-dimensional datasets
are now ubiquitous in fields as diverse as genetics, eco-
nomics, neuroscience, public health, imaging, and so on. One
important objective of high-dimensional data analysis is to
segregate a small set of regressors, associated with the re-
sponse of interest, from the large number of redundant ones.
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Penalized least square approaches like lasso [46], SCAD [18],
Elastic Net [51], adaptive lasso [50] etc. are widely employed
for high-dimensional regression analysis. Bayesian alterna-
tives typically proceed by using hierarchical priors for the
regression coefficients aimed at achieving variable selection.
Common approaches include the spike-and-slab prior [24] or
its variants [29, 35] or, more generally, scale mixture of nor-
mal priors, like Bayesian lasso [39] and horseshoe prior [11]
among others.

Most of the aforementioned approaches assume a single
underlying model from which the data is generated. Such
homogeneity assumptions are often violated for time series
data spanning different economic regimes [14, 48]. Such ex-
amples of structural change in relationship between vari-
ables is also common in other fields like climate change [41],
DNA micro-array analysis [3] and so on. Change point mod-
els provide a convenient depiction of such complex relation-
ships by splitting the data based on a threshold variable
and using a homogeneous model for each segment. There is
a burgeoning literature on Bayesian methodology addressing
various change point problems [see, e.g., 10, 5, 33, 1, 47].

Changing linear regression models are a subclass of
change point problems, where the linear model relating the
response to the predictors varies over different segments of
the data. Segmentation of the dataset is typically based on
unknown change points of a threshold variable like time or
age or some other contextual variable observed along with
the data. In a low dimensional setting, [10] used Gibbs sam-
pling techniques for changing linear models to deliver fully
Bayesian inference about the location of the change points
and the regression coefficients for each segment.

When the set of possible predictors is large, an additional
objective is to identify the (possibly different) sparse sup-
ports for each segment. Even when the sample size n is larger
than the number of predictors p, in presence of one or more
change points, the effective sample size for each segment
may be much less than p, thereby necessitating shrinkage or
variable selection based approaches.

This manuscript demonstrates how we can seamlessly
exploit Bayesian variable selection techniques in a change
point setup to simultaneously detect the location of the
change points as well as to identify the true sparse support
for each of the linear models. The Bayesian approach deliv-
ers full posterior inference on the change points, posterior
selection probabilities for each variable for all segments and
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posterior predictive distributions for the response. Flexibil-
ity in the choice of variable selection priors offers the scope
for structural variable selection tailored to specific data ap-
plications. For example, constraints like grouping the se-
lection of a variable across all the segments can be easily
achieved using group selection priors. Other constraints like
partial selection within or between the segments can also be
accommodated.

Classical penalized least square approaches mentioned
earlier can also be used in a change point setup. By treating
the unknown change points as additional tuning parameters,
one can split the data using fixed values of these change
points and use some penalized loss function to achieve vari-
able selection for each segment. For example, [30] uses lasso
penalty to estimate the coefficients for each segment. Subse-
quent application of cross validation or model selection tech-
niques will yield the optimal change points from a grid of
possible values. However, a fully Bayesian approach has sev-
eral advantages over this. Firstly, the grid search approach is
computationally highly inefficient especially for more than
one change points. On the other hand, a prior specifica-
tion for the change points in the Bayesian model enables
standard MCMC techniques to efficiently generate poste-
rior samples. Moreover, in many real applications, change
in association between variables can occur over a range of
the threshold variable. Point estimates of change points ob-
tained from classical approaches fail to accurately depict
such scenarios. Bayesian credible intervals obtained from the
posterior distributions provide a much more realistic quan-
tification of the uncertainty associated with the location of
the change points.

Numerical studies reveal that for a wide range of scenar-
ios, our proposed methodology performs uniformly better
than the frequentist approach both in terms of model se-
lection and parameter estimation. We also demonstrate the
applicability of our method for a macro-economic analysis
of Minnesota house price index data. The results strongly
favor our change point model over a homogeneous high-
dimensional regression model.

The rest of the manuscript is organized as follows. The
motivating dataset of Minnesota house price index time se-
ries is presented in Section 2. In Section 3 we present our
methodology in details including extensions to unknown
number of change points and alternate prior choices. Re-
sults from several simulated numerical studies are provided
in Section 4. In Section 5 we present the details of the house
price index data analysis using our change point method-
ology. We conclude in Section 6 with a brief review and
pointers to future research.

2. MOTIVATING DATA

Economic datasets constitute a major domain of appli-
cation of change point models. Many economic time series
datasets may be collected over different political and finan-
cial regimes, thereby containing several change points with

respect to the association with the predictors. For example,
the relationship between house prices and macro-economic
variables is often observed to exhibit differential trends over
time. As noted in [2], the US stock market crash in the ‘In-
ternet bubble burst’ of 2001-2002 was not accompanied by
declining house prices whereas in the sub-prime mortgage
crisis in 2007-2009, stocks and house prices witnessed simul-
taneous collapse.

Multivariate regression models have been used to under-
stand the relationship between house price index (hpi) and
macro economic variables in Ukraine [32], Sweden [45] and
Malaysia [37]. These analyses often assume a single under-
lying time-homogeneous relationship between hpi and the
explanatory variables, which may not be always appropri-
ate. To illustrate, in Figure 1, we present the quarterly hpi
time-series of Minnesota for a 24-year period from first quar-
ter of 1991 to first quarter of 2015. We observe that there
are two possible change points (marked by red dots) with
respect to time — one around 2006-2008 where hpi starts
to depreciate after reaching a peak and, later, one around
2012 where hpi starts its revival. This only suggests possi-
ble change points in terms of the overall temporal trend for
hpi and doesn’t necessarily imply concurrent change points
in terms of association with macroeconomic variables like
stocks. To understand how hpi co-varied with stock prices,
we also added the quarterly Dow Jones Industrial Average
on the secondary y-axis. We see that there are roughly three
segments (separated by dotted gray vertical lines) with dis-
tinct relationships between house and stock prices. Both
indices were upward moving till the early 2000s when the
stock market crashed but hpi continued to appreciate and
there seem to be little correlation among the two series for a
period. Finally after the sub-prime mortgage crisis both in-
dices showed strong co-movement, plummeting for a while
and subsequently rallying. Hence from Figure 1 it seems
that a change-point regression model would be more suited
to analyze Minnesota hpi data.

While the impact of macroeconomic variables on US
house prices has been analyzed in the literature [12, 13] any
relevant literature focusing on similar analysis at state level
has eluded us. As housing markets are local in nature [22], a
state level macro-analysis may reveal trends not reflected in
a similar nationwide study. The state of Minnesota is home
to 18 Fortune 500 companies and has the second highest
number of Fortune 500 companies per capita. Furthermore,
the Minneapolis-St. Paul metropolitan area hosts the high-
est number of Fortune 500 companies per capita among the
30 largest metropolitan areas in US. Our objective for this
analysis was to understand association between real estate
prices and local industries in Minnesota.

In this analysis, we use 22 macro-economic variables, in-
cluding 16 Minnesota based stock prices, (detailed in Sec-
tion 5) as covariates. Given the reach of modern high-
dimensional methods to analyze datasets with millions of
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Figure 1. Minnesota hpi time series (left y-axis) and Dow Jones Industrial Average (right y-axis). Red dots indicate eyeballed
change-points in terms of temporal trend of hpi. Grey vertical lines indicate eyeballed change-points with respect to

relationship of the two series.

covariates, this may not seem to be a high-dimensional prob-
lem. However, as mentioned earlier, changing linear regres-
sion estimates the regression coefficient vector for each of the
data segments separated by change points. Hence, the total
sample size n need not be less than the number of covari-
ates p for requiring high-dimensional techniques in change
point analysis. For example, as discussed above, the trends
of house and stock prices displayed in Figure 1 insinuates
that there may be a change point near 2008-2009 (the right
gray vertical line), implying that sample size of rightmost
segment of the data will be close to or less than 22. Hence,
the although the number of time points (n = 96) was larger
than the number of covariates (p = 22), if there is indeed
a change point around 2008-09 (as the analysis will confirm
in Section 5), this becomes a p > n (or at least p ≈ n)
problem, and, shrinkage is essential to obtain reliable infer-
ence. This points out a general issue in regression analysis
with change points. A change point towards the very end
or very beginning, or two very proximal change points in
the middle will result in small data segments, thereby, ne-
cessitating high-dimensional techniques like shrinkage and
variable selection.

3. BAYESIAN HIGH-DIMENSIONAL
CHANGING LINEAR REGRESSION

We consider a traditional high-dimensional setup with the
n×1 response vector y = (y1, y2, . . . , yn)

′ and corresponding
n× p covariate matrix X = (x1, x2, . . . , xn)

′ where p can be
larger than n. We further assume that for every observation
yi, we observe another quantitative variable ti such that
the association between yi and xi depends on the values
of ti. In a linear regression setup, this dynamic relationship
between the response yi and the corresponding p×1 vector of

covariates xi can be expressed as E(yi |xi, ti) = x′
iβk for all i

such that τk−1 < ti < τk where τ0 < τ1 < . . . < τK < τK+1

where τ0 and τK+1 are two arbitrary constants such that
τ0 < ti < τK+1 for all i. The change-points τ1, τ2, . . . , τK
are typically unknown while the number of change-points
K may or may not be known depending on the application.

As the number of regressors (p) is large, our goal is to
select the relevant variables for this regression. However, for
this changing linear regression, the set of relevant regres-
sors may depend on the value of the threshold variable t
and variable selection procedures applied disregarding the
dependence on t can lead to erroneous conclusions. Let Sk

denotes the support of βk where sk = |Sk| is typically much
less than p. We intend to simultaneously detect the change-
points τk and estimate Sk for all k = 1, 2, . . . ,K. We ini-
tially assume only one change-point τ i.e. K = 1. Exten-
sion to more than one change points is discussed in Sec-
tion 3.2.

3.1 One change point model

We assume a changing linear regression model

yi =

{
x′
iβ1 + εi if ti ≤ τ

x′
iβ2 + εi if ti > τ

(1)

where β1, β2 are both sparse p×1 vectors such that β1 �= β2

and εi ∼ N(0, σ2) denotes the independent and identically
distributed noise. In order to accomplish variable selection
both before and after the change point, we use spike-and-
slab type shrinkage priors [24] for β1 and β2. To be specific,
we assume βk |Zk, σ

2 ∼ N(0, σ2diag(γ1kZk + γ0k(1− Zk)))
for k = 1, 2 where Zk = (Zk1, Zk2, . . . , Zkp)

′ is a p×1 vector
of zeros and ones. The hyper-parameters γ0k and γ1k are
scalars chosen to be very small and very large, respectively.
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Under this prior specification, βkj—the jth component of
βk—is assigned a shrinking (concentrated around zero) prior
if Zkj equals 0 and a diffusion (flat) prior if Zkj = 1.
Zkj ’s are assumed to be apriori independent each follow-
ing Bernoulli(qk). Hence qk controls the prior model size
for the kth segment. The choices for the hyper-parameters
γ0k, γ1k and qk are discussed in Section 4. We assume a uni-
form prior for the change-point τ and a conjugate Inverse
Gamma prior for the noise variance σ2. The full Bayesian
model is∏

i:ti≤τ

N(yi |x′
iβ1, σ

2)×
∏

i:ti>τ

N(yi |x′
iβ2, σ

2)×

Unif(τ | aτ , bτ )× IG(σ2 | aσ, bσ)×
2∏

k=1

(
N(βk | 0, σ2diag(γ1kZk + γ0k(1− Zk)))×(2)

p∏
j=1

Bernoulli(Zkj | qk)
)

.

We use Gibbs sampler to obtain posterior samples of all
the parameters. Let τ | · denote the full-conditional distri-
bution of τ in the Gibbs sampler. We use similar notation
to denote the other full conditionals. Let U1 = {i | ti ≤ τ}
and U2 = {i | ti > τ}. For k = 1, 2, let Yk and Xk denote
the response vector and covariate matrix obtained by stack-
ing up the observations corresponding to Uk. From the full
likelihood in (2), we have

βk | · ∼ N(VkX
′
kYk, σ

2Vk), where

Vk = (X ′
kXk + diag(γ1kZk + γ0k(1− Zk))

−1)−1,

σ2 | · ∼ IG(aσ + n/2, bσ +
1

2

2∑
k=1

||Yk −Xkβk||2),

p(τ | ·) ∝
2∏

k=1

∏
i∈Uk

N(yi |x′
iβk, σ

2)× Unif(τ | aτ , bτ ),

Zkj | · ∼ Bernoulli(πkj), where

πkj =
qk φ(βkj/

√
σ2γ1k)

qk φ(βkj/
√
σ2γ1k) + (1− qk) φ(βkj/

√
σ2γ0k)

where φ(·) denotes the density of standard normal distribu-
tion. We observe that the full conditionals of βk, Zkj and
σ2 follow conjugate distributions and are easily updated via
the Gibbs sampler. Only p(τ | ·) does not correspond to any
standard likelihood and we use a Metropolis-Hastings ran-
dom walk step within the Gibbs sampler to update τ .

3.2 Multiple change points

A highlight of our approach is the ease with which the
setup in Section 3.1 can be extended to multiple change
points. This is important as although many methods exist
for single change points, analyzing datasets with multiple

change points are trickier and few methods generalize to
this case. If we have K change points τ1 < . . . < τK , the
joint likelihood in (2) can be generalized to

K+1∏
k=1

⎛
⎝ ∏

i:τk−1<ti≤τk

N(yi |x′
iβk, σ

2)×

N(βk | 0, σ2diag(γ1kZk + γ0k(1− Zk)))×
(3)

p∏
j=1

Bernoulli(Zkj | qk)

⎞
⎠×

p(τ1, τ2, . . . , τK)× IG(σ2 | aσ, bσ).

To ensure identifiability of the change points, the prior
p(τ1, τ2, . . . , τK) should be supported on τ1 < τ2 < . . . < τK .
The Gibbs sampler remains essentially same as in Section
3 with the Metropolis random walk step now being used to
update the entire change point vector (τ1, τ2, . . . , τK)′.

3.3 Determining the number of change
points

Often in applications, the number of change points is un-
known. In our fully Bayesian approach this can potentially
be handled by adding a prior for the number of change points
(K). Introducing this additional level of hierarchy comes
with the caveat that different values of K yields parameter
sub-spaces of different sizes and interpretations. [25] pro-
posed the extremely general and powerful reversible jump
MCMC (RJMCMC) sampler for sampling across multiple
parameter spaces of variable dimensions. We can seamlessly
adopt an RJMCMC joint sampler to obtain the posterior
distribution for the number of change points. When naively
implemented, RJMCMC experiences poor acceptance rates
for transitions to parameter sub-spaces with different di-
mensionality. This leads to widely documented convergence
issues [26, 19]. The problem will be exacerbated in our setup
due to the high-dimensionality of the parameter spaces.

Several improvements and alternatives to RJMCMC have
been proposed over the years including efficient proposal
strategies to effectuate frequent cross-dimensional jumps
[42, 7, 17, 20], product space search [9, 16] and parallel tem-
pering [31]. All these approaches can be adapted in our setup
to determine the number of change points. However, many
of these approaches are accompanied by their own compu-
tational burden such as running several chains or apriori
obtaining posterior distributions for each individual model
before running the joint sampler. We concur with [27] and
[28] that it is often expedient to use simpler model selec-
tion approaches based on individual models. Hence, popu-
lar Bayesian model comparison metrics like DIC [44] and
posterior predictive loss [23] remains relevant to select the
number of change points in our case. For example, if θ is the
complete set of parameters associated with the model, for
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each K we can compute the DIC score

DIC = 2E (D(y | θ) | y)−D (y |E(θ | y))
(4)

= E (D(y | θ) | y) + pD

where D(y | θ) is the deviance function and pD =
E (D(y | θ) | y) − D (y |E(θ | y)) is interpreted as effective
sample size. The DIC penalizes more complex models and
is particularly appropriate for our change point problem,
where higher number of change points will lead to overfit-
ting. Parallel computing enables us to simultaneously run
the MCMC sampler for different values of K. Subsequently,
the optimal K is selected as the one yielding lowest DIC
score.

All the methods for selecting the number of change points
discussed here can be used in conjunction with our approach.
It is prudent to predicate the choice on the nature of the ap-
plication at hand and the computational resources available.

3.4 Alternate prior choices

We observe from Equation 2 that, conditional on the
value of the change point τ , the joint likelihood can be de-
composed into individual likelihoods for the regression be-
fore and after the change point along with the correspond-
ing priors for the regression coefficients. This allows for a
lot of flexibility in the choice of priors for the regression
coefficients. One can also use other priors to achieve vari-
able selection. For example, using Laplace (double expo-
nential) priors for the βk’s will yield a Bayesian lasso [39]
with change point detection. However, unlike spike-and-slab
priors, Bayesian lasso does not perform model selection.

Additional information regarding grouping or structuring
of the variables is often available in the context of variable
selection. In the presence of a change point, additional con-
straints can specify grouped selection both within and/or
between the βk’s. For example, in a single change point
setup, it may be plausible that the set of relevant vari-
ables remain unchanged before and after the change point,
with change occurring only with respect to the strength of
association between yi and xi. Such additional structural
constraints both within and across βk’s can easily be ac-
commodated in our setup via a suitable choice of prior. To
elucidate, we can rewrite (1) as yi = zi(τ)

′ζ + εi where
zi = (I(ti ≤ τ)x′

i, I(ti > τ)x′
i)

′ and ζ = (β′
1, β

′
2)

′. To incor-
porate the constraint that β1 and β2 share the same support,
one can use a Bayesian group lasso [40] with M-Laplace pri-
ors on the groups ζj = (β1j , β2j)

′ for j = 1, 2, . . . , p. The
M-Laplace prior

p(ζj |σ2, λ2) ∝ 2λ2

σ2
exp(−

√
2λ2

σ2
||ζj ||2)

has a convenient two-step hierarchical specification:

(5)
ζj | ηj ind∼ N(0, σ2ηjI);

ηj |λ2 ind∼ Gamma(3/2, λ2); λ2 ∼ Gamma(r, s)

The full conditional distributions of the parameters provided
in [40] can now be used to implement the Gibbs sampler with
the additional Metropolis random walk step for updating
the change point τ . Any other information like hierarchi-
cal selection or anti-hierarchical selection both within and
between the βk’s can also be accommodated via suitable
priors.

Often, in real data applications, prior knowledge dictates
the inclusion of certain variables in the model and variable
selection is sought only for the remaining variables. Such
constraints can be easily achieved in our setup by using
standard Gaussian prior for that specified subset and spike-
and-slab prior for the remaining variables.

3.5 Variable selection after MCMC

When there are finitely many candidate models, Bayesian
model selection typically proceeds by selecting the candi-
date model with the highest posterior probability. However,
in our setup the regression coefficients are continuous. For
variable selection, we use the median probability model [4]
which is computationally easy and is optimal in terms of
prediction. To be specific, βkj is included in the model if
the posterior probability of Zkj = 1 is greater than 0.5.

4. NUMERICAL STUDIES

We conducted numerical experiments to assess the per-
formance of our method both for single and multiple change
points. For assessing convergence and determining length
of MCMC runs for all the simulation scenarios, we gener-
ated data from one of the simulation settings in the single
change point model and ran three MCMC chains of length
10,000 with different initial values. Satisfactory convergence
was confirmed using a combination of trace plots, posterior
density plots and Gelman-Rubin shrink factors. Similarly
using three MCMC chains for the two change point model,
satisfactory convergence was achieved in 30,000 iterations.
Nonetheless, for all the simulations we were more conser-
vative and ran a single chain of 100,000 iterations.We dis-
carded the first 50,000 as burn-in and used the subsequent
50,000 samples for inference.

4.1 One change point

We assume ti = i and generate data from the model
yi = N(x′

iβ1, σ
2) for i ≤ τ and yi = N(x′

iβ2, σ
2) for

i > τ where β1 = (3, 1.5, 0, 0, 2, 0, . . . , 0) and β2 = −β1. The
rows of X were independent and identically distributed nor-
mal random variables with zero mean and covariance ΣX .
Two structures were used for ΣX — auto-regressive (AR)
with ΣX,ij = 0.5|i−j| and compound symmetry (CS) with
ΣX,ij = 0.5 + 0.5I(i = j). The noise variance σ2 was fixed
at 1 and the sample size was chosen to be 200. Two dif-
ferent model sizes, p = 250 and p = 500, were used. The
change point τ was chosen to vary among 50, 100 and 150.
Since the sample size is 200, these three choices of τ corre-
spond to a change point at the initial, middle or later portion
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of the data, respectively. For each combination of parame-
ter choices, we generated 100 Monte Carlo replicates. We
used three different models – the Bayesian change points
models using the spike-and-slab prior (BSAS), the Bayesian
Group lasso (BGL) prior [40], and a frequentist change point
lasso (FL) which, for a given value of the change point, es-
timates the lasso-penalized regression coefficients for each
segment. The optimal value of the change point for FL
is selected using cross-validation. This is a variant of the
method proposed in [30] and is much simpler to implement.
The Bayesian group lasso model was used to investigate any
possible benefits of using a grouped variable selection as it
is known here that β1 and β2 has same support. The range
of the uniform prior for τ was chosen to be (20, 180) and
a normal proposal density with tuning variance of 0.1 was
used for the Metropolis update of τ . The prior for σ2 was
chosen to be IG(2, 1). The hyper-parameters γ0k, γ1k and
qk were chosen as follows. Let τ0 denote the initial estimate
for τ . Then n1 = [τ0] and n2 = n − n1 denotes the ini-

tial sample sizes for the two segments. We used γ0k =
σ̂2
k

10nk

and γ1k = σ̂2
k max

(
p2.1

100nk
, log nk

)
where σ̂2

k was the sam-

ple variance of Yk for k = 1, 2. The hyper-parameters qk
were chosen such that the prior model sizes

∑p
j=1 Zkj were

greater than min(p−1,max(10, lognk)) with probability 0.1.
These choices of γ0k, γ1k and qk were adapted from [35].

Let Ck and ICk denote the number of true and false
regressors respectively selected for the kth segment of the
data for k = 1, 2. As discussed earlier, we used a cut-
off of 0.5 for the posterior probability of the binary Zkj ’s
in the spike-and-slab model to select the variables. The
Bayesian group lasso is devoid of such binary selection pa-
rameters and variable selection was based on the poste-
rior credible intervals i.e βkj was not selected if its pos-
terior credible interval covered zero. In addition to the
variable selection metrics, we also assess the three meth-
ods based on the coefficient estimates for the true predic-
tors. Let βk[Sk] denote the sub-vector of βk corresponding
to the true support Sk. We use the Mean Squared Error
MSEk = ||βk[Sk] − β̂k[Sk]||22 for k = 1, 2 where β̂k denote
the posterior estimate of βk.

Table 1 presents the C, IC andMSE numbers along with
estimates of τ for all the three models. The numbers are av-
erages over 100 Monte Carlo simulations. We only present
the numbers for the scenarios with p = 500. The analogous
set of results for p = 250 were similar. Firstly, we observe
that both Bayesian models estimate the change point τ with
high accuracy while the frequentist lasso is slightly inaccu-
rate in some instances. The C and IC numbers reveal that
the spike-and-slab prior achieves perfect variable selection
for all the scenarios while group lasso prior performs nearly
as well. The selection accuracy for the group lasso was some-
what surprising given the crude variable selection technique
used. The frequentist approach, although almost always ac-
curately selecting the true set of regressors, tends to select a

Table 1. Summary statistics for one change point model for
p = 500

τ = 50

Model τ̂ C1 C2 IC1 IC2 MSE1 MSE2

BSAS 50.5 3.0 3.0 0.1 0.0 0.45 0.22
AR FL 57.0 2.8 3.0 13.3 1.7 3.37 3.20

BGL 50.5 3.0 3.0 0.0 0.0 1.39 0.54

BSAS 50.5 3.0 3.0 0.0 0.0 0.55 0.27
CS FL 51.1 2.6 3.0 18.2 22.7 3.39 3.09

BGL 50.5 2.6 3.0 0.0 0.0 1.86 0.81

τ = 100

Model τ̂ C1 C2 IC1 IC2 MSE1 MSE2

BSAS 100.4 3.0 3.0 0.0 0.0 0.28 0.27
AR FL 99.6 3.0 3.0 6.6 3.3 3.20 3.21

BGL 100.4 3.0 3.0 0.0 0.0 0.77 0.75

BSAS 100.4 3.0 3.0 0.0 0.0 0.34 0.32
CS FL 100.5 3.0 3.0 21.6 20.9 3.17 3.16

BGL 100.4 3.0 3.0 0.0 0.0 1.13 1.11

τ = 150

Model τ̂ C1 C2 IC1 IC2 MSE1 MSE2

BSAS 150.3 3.0 3.0 0.0 0.0 0.23 0.41
AR FL 145.1 3.0 2.8 3.6 10.3 3.18 3.31

BGL 150.4 3.0 3.0 0.0 0.0 0.53 1.34

BSAS 150.2 3.0 3.0 0.0 0.1 0.28 0.55
CS FL 149.8 3.0 2.8 23.9 16.5 3.11 3.34

BGL 150.4 3.0 2.7 0.0 0.0 0.79 1.81

large number of uncorrelated regressors as indicated by the
high IC numbers.

In terms of estimating the regression coefficients βk, once
again we observe that spike-and-slab prior stands out with
uniformly lowest MSE numbers across all scenarios. The
MSE for the frequentist method is significantly higher in-
dicating that the estimates corresponding to the true predic-
tors gets considerably shrunk. It is important to note that,
for all models, MSE1 tends to be higher when τ = 50.5
while MSE2 is higher when τ = 150.5. This behavior is ex-
pected as for τ = 50.5, sample size for estimating β1 is effec-
tively 50 while that for β2 is 150. Overall, the spike-and-slab
priors produced the most accurate variable selection, change
point detection and estimation across all scenarios while the
frequentist lasso consistently performed worst.

4.2 Two change points

We demonstrate the applicability of our method to multi-
ple change points using a two change point setup. The three
coefficient vectors are given by

β1 = (3,0, 0, . . . , 0)′, β2 = (3, 1.5, 0, 0, . . . , 0)′,

β3 = (3, 1.5, 0, 0, 2, 0, 0, . . . , 0)′

The change in βk’s at each change point in this simula-
tion study is much lesser than what was used in Section
4.1. Three pairs of values for the change points (τ1, τ2) are
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Table 2. Summary statistics for two change point model for p = 500

τ1 = 50, τ2 = 100

Model τ̂1 τ̂2 C1 C2 C3 IC1 IC2 IC3 MSE1 MSE2 MSE3

AR
BSAS 51.5 102.0 1 2.0 3.0 0.4 0.0 0.0 0.15 0.35 0.28
FL 67.2 132.9 1 2.0 2.9 13.3 32.2 10.1 2.95 3.00 3.18

CS
BSAS 50.5 101.8 1 1.9 3.0 0.6 0.1 0.0 0.23 0.52 0.37
FL 62.9 136.5 1 1.9 2.7 17.2 35.5 21.8 2.94 3.11 3.27

τ1 = 50, τ2 = 150

Model τ̂1 τ̂2 C1 C2 C3 IC1 IC2 IC3 MSE1 MSE2 MSE3

AR
BSAS 51.6 150.3 1 2.0 3.0 0.1 0.0 0.0 0.15 0.23 0.45
FL 75.1 146.7 1 2.0 2.7 14.4 30.0 7.8 2.93 3.11 2.99

CS
BSAS 51.1 150.9 1 2.0 2.8 0.2 0.0 0.0 0.21 0.28 0.69
FL 60.4 143.9 1 1.9 2.5 17.4 40.9 22.2 2.89 3.15 3.19

τ1 = 100, τ2 = 150

Model τ̂1 τ̂2 C1 C2 C3 IC1 IC2 IC3 MSE1 MSE2 MSE3

AR
BSAS 89.3 145.0 1 1.8 2.9 0.1 0.1 0.0 0.13 0.59 0.60
FL 71.2 139.6 1 1.9 2.8 9.3 34.6 9.9 2.92 3.09 3.04

CS
BSAS 94.8 146.0 1 1.8 2.7 0.1 0.0 0.0 0.16 0.58 0.90
FL 69.1 152.4 1 1.6 2.5 16.4 44.0 18.8 2.96 3.18 3.23

selected — (50, 100), (50, 150) and (100, 150). Other specifi-
cations including sample size, model size and covariance of
the predictors are kept unchanged from Section 4.1. We do
not use the Bayesian group lasso here as the coefficient vec-
tors for different segments do not share a common support.
Hence, we only present the results for the other two meth-
ods. Table 2 presents the C, IC and MSE numbers along
with estimates of τk’s for all the two models. The numbers
are averages over 50 Monte Carlo simulations. Once again,
we only present the numbers for the scenarios with p = 500
as the numbers for p = 250 were similar.

We observe from Table 2 that for the two change point
model the frequentist approach becomes quite erratic in
terms of estimating the change points. The Bayesian model
remains much more accurate, except for the scenario with
τ1 = 100 and τ2 = 150 where the estimates are slightly
off. In general, the estimates of the change points are less
accurate than those in Section 4.1. This is not surprising
as the effective sample size per segment for the two-change
point model is smaller. Also, the change in the regression
coefficients are also of smaller magnitude, thereby making
it harder to detect the change points accurately. Turning
to variable selection, the Bayesian model identified the ex-
act set of predictors across all scenarios almost in all the
Monte Carlo simulations. The frequentist lasso, once again
accurately identified the true predictors but produced a high
false discovery rate. The MSE numbers were also an order
of magnitude lower for the Bayesian model.

5. MINNESOTA HOUSE PRICE INDEX
DATA

All the data used in the analysis were publicly available.
We use quarterly Minnesota hpi data published by the Fed-

eral Housing Finance Agency (FHFA). The macro-economic
indices used as explanatory variables include national un-
employment rate (unemp) and national consumer price in-
dices (cpi). Instead of including a national stock index in the
model like the S&P 500 or the Dow Jones Industrial Aver-
age, we use the stock prices of Minnesota based Fortune 500
companies. Fourteen out of the 18 Minnesota-based Fortune
500 companies were publicly traded since before 1991 and we
include their stock prices in the regression model. Addition-
ally, the list of top 10 employers in Minnesota include Wal-
Mart Stores Inc. and Wells Fargo Bank Minnesota. Hence,
the stock prices of these two companies are also included in
the model. The 16 stocks used in total are listed in Table 3.

Financial indices often exhibit strong autocorrelation and
consequently autoregressive components commonly feature
in house price models [34]. Figure 2 plots the partial auto-
correlation values of the hpi time series as a function of the
lag. We observe that the index lagging one quarter behind
(AR(1)) has very high correlation with the hpi time series
but it quickly falls off beyond the first lag and all the subse-
quent lags have insignificant partial correlations. Hence, we
include only the AR(1) term in the regression model.

Statistical analysis involving economic time series is often
preceded by customary seasonality adjustment of the indices
using standard techniques. It is well known that house price
time series reveal a predictable and repetitive pattern with
systematic highs in summer and lows in winter [36]. Con-
sequently, publishers of popular house price indices like the
FHFA or Standard and Poor’s (Case-Shiller index) produce
a version of their indices discounting this effect [21]. How-
ever, Minnesota is a land of extreme climates experiencing
one of the widest range of temperatures in U.S. It is of inter-
est to investigate if the impact of weather in Minnesota on
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Table 3. List of stocks used in Minnesota hpi analysis

Company Name Ticker Symbol Company Name Ticker Symbol

3M Company MMM St. Jude Medical, Inc. STJ
Best Buy Co., Inc. BBY SuperValu, Inc. SVU

Ecolab, Inc. ECL Target Corporation TGT
Fastenal Co. FAST UnitedHealth Group Inc. UNH

General Mills, Inc. GIS U.S. Bancorp USB
Hormel Foods Corporation HRL Wal-Mart Stores, Inc. WMT

Medtronic Plc. MDT Wells Fargo & Company WFC
Mosaic Company MOS Xcel Energy Inc. XEL

Figure 2. Partial autocorrelation function for Minnesota hpi time series.

its house prices extends beyond the routine pattern. Hence,
we include the state level quarterly average temperatures
(temp) and precipitation (precip) in the model.

Our model for the kth segment τk−1 ≤ t ≤ τk is given by:

hpit = βintercept
k + β

ar(1)
k hpit−1 + βcpi

k cpit + βunemp
k unempt

+ βtemp
k tempt + βprecip

k precipt + βstocks
k

′
stockst + εt

(6)

Here stockst denote the 16×1 vector formed by stacking up
the stock prices at time t of the companies listed in Table 3
and βstocks

k is the corresponding coefficient vector.

5.1 Results

We used data from the second quarter of 1991 to the sec-
ond quarter to 2014 for model fitting. The first quarter data
of 1991 was used for the AR(1) term, whereas the data for
last two quarters of 2014 and first quarter of 2015 were held
out for out-of-sample validation. Under the assumption of
K change points, separate regression models are fit to each
of the K+1 segments. Higher values of K (≥ 3) implies that
average sample size for each segment (n/(K + 1)) becomes
small and the estimates obtained may not be reliable. Hence,

we restrict ourselves toK = 0, 1 and 2 and fit model (6) with
spike-and-slab priors for the coefficient vectors in each seg-
ment. Note that for K = 0 i.e. no change point, the model is
simply the traditional Bayesian high-dimensional regression
model. The models for different values of K were assessed
based on their in-sample DIC score and out-of-sample root
mean square predictive error (RMSPE) [49]. Due to the pres-
ence of the autoregressive term, out-of-sample forecasts were
obtained using one-step-ahead predictions.

The models for K = 0, 1 and 2 are denoted by BSAS0,
BSAS1 and BSAS2 respectively. For comparison, we also
used the frequentist lasso with one change point, referred as
FL1. Additionally, to elucidate why low dimensional analysis
is not suitable for this data, we also used two low dimen-
sional models — a low dimensional one change point linear
model (LM1) which is similar to FL1 but uses classical least
squares to estimate the coefficients for each τ1, and a low
dimensional Bayesian linear model BLM1 with one change
point [similar to 10] with normal Inverse gamma (NIG) pri-
ors for (β1, β2, σ

2) and uniform prior for τ1. Since the size of
this dataset was considerably smaller than what is consid-
ered in the simulation settings, it sufficed to run the MCMC
for 10,000 iterations discarding the first 5,000 as burn-in.
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Table 4. Minnesota hpi analysis: DIC, RMSPE scores and estimated change points

Model DIC RMSPE τ̂1 τ̂2
BSAS0 287 4.72
BSAS1 250 2.17 2008Q4 (2008Q2, 2009Q1)
BSAS2 269 2.23 2006Q2 (2005Q4, 2007Q3) 2011Q1 (2010Q4, 2011Q2)
FL1 2.71 2008Q2
BLM1 288 10.00 2008Q3 (2008Q2, 2008Q4)
LM1 23.31 2008Q2

Figure 3. Minnesota hpi analysis: Posterior median probabilities of variable selection using single change point model.

Table 4 contains the DIC scores (only for the Bayesian
models), RMSPE values and estimated change points for all
the models. Both the DIC score and the RMSPE score for
K = 0 were significantly worse than the scores for K = 1
and 2 justifying the use of a change point model. The single
change point model detected change around late 2008- early
2009 which coincides with the sub-prime mortgage crisis.
The two change point model detected change points in mid
2006 and early 2011. The DIC score for the single change
point model was substantially better. RMSPE scores for
change point models for time series data only validate the
accuracy of the models after the last change point. We ob-
served that the RMSPE score were similar for K = 1 and
2 with the former turning out to be marginally better. The
FL1 model also estimated a change point around mid 2008
but the RMSPE score was higher than our Bayesian model.

The low dimensional models LM1 and BLM1 were also
able to detect a change point in 2008. However, their model
evaluation metrics were significantly worse. This is not sur-
prising as a change point in mid 2008 leaves less than 25 ob-
servations to estimate a 22-dimensional vector β2. In a low
dimension approach like linear least squares and, to a lesser
extent, in Bayesian linear model, this will lead least to unsta-
ble estimates. This elucidates that in-spite of n = 93 being

sufficiently larger than p = 22, in presence of a change point,
the location of the change point may warrant a regular-
ized approach to ensure numerically stable analysis. Table 4
also provides the credible intervals for the estimated change
points for the Bayesian models. The frequentist approach
does not provide confidence intervals of the change points.

We present the subsequent analysis only for the single
change point model BSAS1 as both in-sample and out-of-
sample validations provide strongest evidence in favor of a
single change point. Figure 3 plots the probability of selec-
tion for each of the regressors in model (6) before and after
the change point. We observe that the set of variables se-
lected by the median probability model differs across the
two segments. The AR(1) index and precipitation are se-
lected with high probabilities in both segments. However,
the selection of stocks differ considerably on either side of
the change point. We see that prior to change point in 2008,
there was little correlation between hpi and stocks with only
General Mills (GIS) having a posterior median probability
close to 0.5 (0.498). Perhaps this is a reflection of the fact
discussed earlier that stock prices and hpi did not exhibit co-
movements during the early 2000s. After the change point
in 2008 the stocks of 3M (MMM), Medtronic (MDT) and
Xcel Energy (XEL) are selected with high probability.
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Table 5. Minnesota hpi analysis: Posterior median for the
selected coefficients. (* indicates that the variable was

selected in that segment)

Before τ After τ Before τ After τ

AR(1) 1.034* 0.761* GIS -0.151* -0.002
precip 0.964* 1.952* MDT 0.071 1.214*
MMM 0.019 -0.573* XEL -0.005 1.279*

Table 5 presents the coefficient estimates for the vari-
ables selected either before or after the change point. We
observe that the value for the coefficient corresponding to
the AR(1) index drops significantly post change point indi-
cating less autoregressive behavior after the change point.
We also observe a positive association of hpi with precipita-
tion. Since summer months witness significantly higher pre-
cipitation than winter, this merely corroborates the tradi-
tional ‘hot season cold season’ trend of house prices. A more
interesting observation from Table 5 is the fact that this ef-
fect is much more pronounced after 2008 indicating more
disparity between summer and winter house prices in the
post-recession market.

Observe from Figure 3 that in presence of the stock
prices of Minnesota based companies, national level macro-
economic indicators like the cpi or unemployment were not
selected in the model. This perhaps provides evidence in sup-
port of the conjecture that hpi is strongly correlated with
local macro-economics [22]. However, its worthwhile to point
out that multivariate regression models, although a simple
and powerful tool to determine correlation, rarely implies
causality. Any confirmatory assessment of the change points
detected and the variables selected by our method would
require further research. Nevertheless, the model evaluation
metrics in Table 4 provide very strong evidence in favor of
one or more change points thereby justifying the use of our
methodology to analyze the data.

6. CONCLUSION

We have demonstrated the effectiveness of combining ex-
isting Bayesian shrinkage priors in a changing linear regres-
sion setup. The fully Bayesian approach offers several in-
ferential advantages including quantifying uncertainty re-
garding the change points as well as variable selection for
each segment. This framework is flexible to the choice of
variable selection priors although the spike-and-slab prior
empirically outperformed other competing choices. A wide
range of constrained variable selections like grouping or par-
tial selection can be seamlessly accomplished in this setup.
The Bayesian method consistently and substantially out-
performed the change point lasso for all the simulated and
real data analyses. This, in fact, corroborates the findings
by [35] in alternate settings not involving changing linear
regression. The analysis of the Minnesota hpi data using
our methodology revealed strong evidence for a potential

change point with respect to the association of Minnesota
house price with other macro-economic variables.

Many methods exist for detection of single change point
in regression. These include long-established control chart
-based tests for change points using arithmetic sums of
residuals (CUSUM) [38, 8] and geometric sums (EWMA)
[43]. However, we are not aware of any literature that ex-
tends these testing procedures to a high-dimensional re-
gression setting. Also, we believe that instead of tests for
change points that predicate decision-making on single p-
values, a Bayesian approach providing adequate uncertainty
information about the location of change points is probably
more useful and realistic. Furthermore, these control-chart-
based methods do not extend to multiple change points.
Our method, as demonstrated through simulations and the
hpi data analysis, works for both single and multiple change
points, and outperforms the frequentist change point lasso
[30] by significant margins for both these scenarios. The per-
formance of our method for multiple change points is in par-
ticular very promising as few methodologies exist for mul-
tiple change points. If the number of change points is 3 or
more, the cross-validation for the frequentist change point
lasso will become exponentially more expensive. It will be
much easier to use our Bayesian approach.

We have discussed several approaches for handling un-
known number of change points. However, most of them
comes with statutory warnings regarding computational re-
quirements. More efficient models and algorithms for simul-
taneous detection of number of change points need to be
researched. Other potential extensions include accommo-
dating missing data, measurement errors or non-Gaussian
responses in a high-dimensional changing regression setup.
Extensions to change point detection in high-dimensional
VAR models also need to be explored due to the exten-
sive usage of VAR models in economics research [15, 6]. In
a time series context, our work is restricted to detecting
historical change points. Detecting future change points in
high-dimensional time series is equally important to provide
accurate predictions. We identify all these areas as directions
for future research. Also, implementing this methodology as
a software package in a widely accessible platform like R
would be a first priority.

SUPPLEMENTARY MATERIALS

Code to generate data and run the single and two change
point high dimensional regression models are provided as
supplementary materials http://intlpress.com/site/pub/
files/ supp/sii/2019/0012/0002/SII-2019-0012-0002-s001.
zip.
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