
Statistics and Its Interface Volume 12 (2019) 215–225

Estimation and testing nonhomogeneity
of Hidden Markov model with application
in financial time series
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Both homogeneous and nonhomogeneous Hidden Markov
models (HMM) have been gaining increased attention in fi-
nancial time series modeling. The homogeneous HMM as-
sumes constant transition probabilities, while nonhomoge-
neous HMM assumes varying transition matrix depended on
some covariates. While both assumptions may seem plausi-
ble in different applications, there is a lack of studies from
a statistical inference aspect. In this paper, we study the
nonhomogeneous hidden Markov model, and propose an es-
timation via a modified EM algorithm, the kernel regression
and local likelihood techniques. The motivation for this new
procedure is that it enables us to employ a generalized likeli-
hood ratio test procedure to test whether the transition ma-
trix actually depends on a specific covariate. We propose the
CV method to select bandwidth and the BIC method to se-
lect number of states, and further propose conditional boot-
strap method to assess the standard errors of the estimates.
We conduct a simulation study to demonstrate our proce-
dure, and show that the Wilk’s type of phenomenon holds
for the proposed model. Furthermore, we analyze S&P 500
Index return data. Our analysis reveals different patterns
in bull and bear markets, and show that the time varying
transitions are statistically significant.

AMS 2000 subject classifications: Primary 60J99,
62G08; secondary 62G10.
Keywords and phrases: Hidden Markov model, Nonho-
mogeneous transition matrix, Generalized likelihood ratio
test, Kernel regression, EM algorithm.

1. INTRODUCTION

Hidden Markov model (HMM) has been successfully ap-
plied for several decades in pattern recognition and signal
processing, especially in the field of automatic speech recog-
nition [15]. In recent decades, HMM has been widely ap-
plied in the modelling of financial time series due to its
superior capability of extracting the transition patterns un-
der different market conditions. [12] introduced a hidden
Markov model to the field of financial modelling and stud-
ied the changes in regime of U.S. real GNP through a
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Markov switching AR model. Following this seminal work,
researchers extend traditional time series models in HMM
framework to study the internal regime shifts. [10] analysed
the real interest rate and found several patterns with shifts
in both mean and variance of the series. [3] developed a
Markov-ARCH model to examine the issue of volatility per-
sistence in U.S. treasury market. [11] introduced a switching
GARCH model to establish the conditional distribution of
interest rates. Applications in modelling volatility and re-
turns of stock markets can also be found in [23], [13] and [6].

As the phenomena of momentum, mean reverse and
volatility clustering are obvious in the financial market, the
transition matrix may vary over time or depend on an exoge-
nous covariate when we employ an HMM approach. There
are several studies focusing on the nonhomogeneous HMM in
financial time series. [22] studied speculative attacks against
EMS currencies by setting transition probabilities between
“tranquil” and “speculative” to be a function of fundamen-
tals and expectations. [20] verified that a nonhomogeneous
HMM, where a multinomial logit specification is adopted,
improves the predictive ability of standard HMM in mod-
elling interest rates. [16] proposed to use a multinomial logit
model to parameterize a nonhomogeneous HMM and ap-
plied it to estimate the empirical two-pillar Phillips curve
for the euro area.

Although nonhomogeneous HMM may have some
advantages over homogeneous HMM ([20]), to the best
of our knowledge, there lacks of studies from statistical
inference aspect. One may wonder whether a homogeneous
HMM is appropriate for the data analysis, or whether the
transition matrix does depend on a covariate, and therefore
nonhomogeneous HMM can provide better estimation.
In this paper, we will address this critical issue using
the generalized likelihood ratio test developed in [9]. We
first introduce the model definition of nonhomogeneous
HMM, and then propose a modified EM algorithm using
technique of kernel regression and local likelihood method.
The transition probability functions and parameters of
emission models are estimated simultaneously. Several
works study nonparametric estimation for transition matrix
in HMM, e.g., [19] developed a K-nearest-neighbor based
nonparametric nonhomogeneous HMM, [25] introduced a
flexible nonhomogeneous HMM for panel observed data
based on B-spline smoothing method. Compared to the
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above approach, our method is able to define effective
degree of freedom for kernel estimates, and conduct model
selection based on information criteria. Using effective de-
gree of freedom for kernel estimates, the BIC is proposed to
select the number of states in nonhomogeneous HMM. We
propose conditional bootstrap method for standard error
estimation and confidence intervals. We further employ
generalized likelihood ratio test statistics to test the nonho-
mogeneity hypothesis. Extensive simulations are conducted
to demonstrate our methodologies and show that the Wilk’s
type of phenomenon holds for the proposed model. Finally,
we apply our approach to the daily returns of S&P 500
index. Nonhomogeneous HMM provides smooth estimation
of time-depended transition matrix in the analysis of stock
return data, which reveals different patterns in bull and
bear markets. The generalized likelihood ratio test indicates
that the time varying transitions are statistically significant.

This paper proceeds as follows. In section 2, we develop
estimation procedure for nonhomogeneous HMM and fur-
ther study issues of model selection and inference. In sec-
tion 3, we conduct simulation analysis to demonstrate our
methodologies. Application to the daily returns of S&P 500
index is given in section4. Conclusion and discussion are
presented in section 5.

2. ESTIMATION AND INFERENCE

2.1 Model definition and estimation

Given a stochastic sequence {(Yt, Ut), t ∈ N}, suppose
the corresponding unobserved latent variable {St, t ∈ N}
follows a nonhomogeneous finite state Markov chain with fi-
nite state space {1, 2, . . . , S}. Throughout this paper, we as-
sume that Ut is univariate and observable. Conditioning on
Ut = u, the transition probability of {St, t ∈ N} is a S × S
matrix Γ(u), where the elements are γjk(u) = P (St+1 =
k|St = j, Ut = u), for j, k = 1, 2, . . . , S, with constraints∑S

k=1 γjk(u) = 1 for j = 1, 2, . . . , S. Let the initial distribu-

tion of {St, t ∈ N} be δ = (δ1, . . . , δS) with
∑S

k=1 δk = 1.
We assume that the initial probabilities and transition prob-
abilities are all positive.

The observation couple is {Ut, Yt}, where Ut is the co-
variate. Given St = k and Ut, we assume that the observa-
tion Yt follows a parametric density model pk(y|θk), k =
1, 2, . . . , S. As a special case, when the parametric den-
sity is normal, pk(y|θk) ≡ φ(μk, σ

2
k), k = 1, 2, . . . , S, and

θk ≡ (μk, σ
2
k), where φ is a normal density function. Let

θ = {θk, k = 1, 2, . . . , S}, and P (y|θ) be a S × S diag-
onal matrix with diagonal elements p1(y|θ1), . . . , pS(y|θS).
We have described a nonhomogeneous HMM with unknown
parameters δ and θ, and transition probability functions
Γ(·) = {γjk(·), j, k = 1, 2, . . . , S}.

A modified EM algorithm
In order to estimate the unknown parameters and un-

known functions, we propose a modified EM algorithm, and

introduce kernel regression method to deal with estima-
tion of transition probability functions. Let {(yt, ut), t =
1, 2, . . . , T} be a finite realization of {(Yt, Ut), t ∈ N}.

Let 1
′
be a S × 1 column vector whose elements are all

1, the likelihood function for the observed data is

(1) �(δ,θ,Γ(·)) = δP (y1|θ)Γ(u1) · · ·Γ(uT−1)P (yT |θ)1
′
.

We introduce the latent variables zt = (zt1, . . . , ztS) as-
sociated with St, where the element indicator is

ztk =

{
1 if St = k,

0 otherwise.

Then following the derivation in the Appendix, the complete
log-likelihood function for {(yt, ut, zt), t = 1, . . . , T} is given
by

(2)

L =

T∑
t=2

S∑
j=1

S∑
k=1

zt−1,jztk log(γjk(ut−1))

+

S∑
k=1

z1k log(δk) +

T∑
t=1

S∑
k=1

ztk log(pk(yt|θ)),

where δk is the initial probability which equals to P (S1 = k),
γjk(ut−1) is the transition probability at time t − 1 which
equals to P (St = k|St−1 = j, Ut−1 = ut−1) and pk(yt|θ) is
the parametric density function followed by Yt given St = k.
For example, in case of normal distribution, when Yt follows
normal density given S = k, we have pk(yt|θ) = pk(yt|θk) =

1√
2πσk

e−(yt−μk)
2/2σ2

k , where θk ≡ (μk, σ
2
k), θ = (θ1, · · · , θS).

In the modified EM algorithm, we calculate the expecta-
tions of ztk and zt−1,jztk in the E-step, denoted by rtk and
htjk respectively. Then estimate unknown parameters and
functions by maximizing the complete log-likelihood func-
tion in the M-step. E-step and M-step are iterated until
convergence.

E-step:
Given the entire observed sequence of {yt, ut} and the

estimates of (δ,θ,Γ(·)) from the last iteration (or initial
values for the first iteration), the expectation of the complete
log-likelihood function is

(3)

E(L) =
T∑

t=2

S∑
j=1

S∑
k=1

htjk log(γjk(ut−1))

+

S∑
k=1

r1k log(δk) +

T∑
t=1

S∑
k=1

rtk log(pk(yt|θ))

=�1(δ) + �2(Γ(·)) + �3(θ),

where rtk is the conditional probability of being in state k
at time t given the entire observed sequence, and htjk is the
conditional probability of being in state j at time t− 1 and
in state k at time t given the entire observed sequence. In

216 M. Huang, Y. Huang, and K. He



practice, rtk and htjk can be efficiently calculated by the
following forward-backward algorithm.

Define the 1 × S vector of forward probabilities αt =
(αt1, . . . , αtS) as

αt = δP (y1|θ)Γ(u1)P (y2|θ) · · ·Γ(ut−1)P (yt|θ),

and define the 1 × S vector of backward probabilities βt =
(βt1, . . . , βtS) as

β
′

t=Γ(ut)P (yt+1|θ)Γ(ut+1)P (yt+2|θ) · · ·Γ(uT−1)P (yT |θ)1
′
.

Then, we have

(4)
rtk = αtkβtk/�(δ,θ,Γ(·)),
htjk = αt−1,jγjk(ut−1)pk(yt|θk)βtk/�(δ,θ,Γ(·)).

M-step:
The maximization of E(L) in (3) can be achieved by max-

imizing �1(δ), �2(Γ(·)) and �3(θ) respectively. Under the con-

straint
∑S

k=1 δk = 1, maximizing the first term �1(δ) with
respect to δ gives

(5) δ̂j =
r1j∑S
k=1 r1k

.

The second term �2(Γ(·)) contains nonparametric func-
tions γjk(·), and cannot be estimated directly. We propose
estimation based on the ideas of kernel regression and lo-
cal likelihood method, where the nonparametric functions
are estimated in a pointwise manner. Suppose that we want
to estimate γjk(·) at u, we first use local constant γjk to
approximate γjk(u). Then we construct local log-likelihood
function as

L2(Γ) =

T∑
t=2

S∑
j=1

S∑
k=1

htjk log γjkKh(ut−1 − u),

where Γ = {γjk}, j, k = 1, 2, . . . , S, Kh = h−1K(·/h) is a
rescaled kernel of a kernel function K(·) with a bandwidth

h. These local constants satisfy the constraint
∑S

k=1 γjk = 1.
Maximizing L2(Γ) with respect to Γ gives

(6) γ̂jk(u) = γ̂jk =

∑T
t=2 htjkKh(ut−1 − u)∑T
t=2 rt−1,jKh(ut−1 − u)

.

Note that the rescaled kernel function will assign more
weight to the observations close to u than the observations
far away from u. The solution to the local likelihood func-
tion γ̂jk is a local likelihood estimation for γjk(·) at u. We
take u in a set of evenly distributed grid points, and further
obtain the whole function by interpolation.

Finally, we maximize the third term �3(θ) with respect
to θ, which is

(7) θ̂ = argmax �3(θ).

The maximization is depended on the density models
pk(yt|θ) in �3(θ), k = 1, · · · , S. In some situations, there

exists explicit solutions. For example, when Yt follows a nor-
mal density, and θk = (μk, σ

2
k), the explicit solutions for

k = 1, 2, . . . , S are

μ̂k =

∑T
t=1 rtk · yt∑T

t=1 rtk
,

and

σ̂2
k =

∑T
t=1 rtk · (yt − μ̂k)

2∑T
t=1 rtk

.

In case an explicit solution does not exist, the maximization
can be obtained by, for example, using Newton’s method or
gradient descent method, or by using other more advanced
numerical methods.

2.2 Model selection and inference

Model selection
In practice, we need to consider two model selection is-

sues, the selection of bandwidth and the selection of the
number of hidden states. When the number of hidden states
is known, cross validation (CV) method is used to deter-
mine the bandwidth. Due to the sequence dependence, we
consider the CV approach proposed by Celeux and Durand
(2008). In this CV procedure, we randomly delete part of the
observations, and then estimate the parameters and com-
pute the likelihood for the incomplete sequence. This pro-
cess is repeated M times. Let LCV

m be the likelihood of the
incomplete sequence calculated in themth time, and LOrigin

be the likelihood calculated using the whole sequence. Then
the bandwidth is selected such that

∑M
m=1 |LCV

m − LOrigin|
is minimized. In the simulation, we take M = 30.

For a given number of states, the bandwidth is deter-
mined by the above CV method. Next we can use the BIC
approach to determine the number of hidden states. The
BIC has the form

−2L+ log(T )×DoF,

where L is the maximum log-likelihood, and DoF is the de-
gree of freedom in the model.

To access the degree of freedom of smoothing functions,
we consider the approach used by [9]. The degree of freedom
for an one-dimensional smoothing function is

dfs = τKh−1|Ω|{K(0)− 1

2

∫
K2(t)dt},

where Ω is the support of covariate U , and

τK =
K(0)− 1

2

∫
K2(t)dt∫

{K(t)− 1
2K ∗K(t)}2dt

.

Hence, the degree of freedom for the proposed model is
DoF = S(S − 1) × dfs + df(θ) + S − 1, where df(θ) is
the degree of freedom contributed by θ. Then the selected
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number of states is

S = argmin(−2L+ log(T )×DoF ).

In practice, the implementation is to determine the opti-
mal bandwidth by CV method under different S and then
to determine S by the BIC. In Section 4, we show that this
approach works well in the simulation setting.

Bootstrap standard error
To obtain standard errors for the unknown parame-

ters and functions, we propose a parametric bootstrap
method. Specifically, we fit the model and obtain estimates
{δ̂, θ̂, Γ̂(u)}. We then take samples from the fitted model of
size T , and refit the model again to obtain the bootstrap
estimates. This allows us to calculate standard errors of the
estimates, and further obtain their confidence intervals.

Testing hypothesis
As we study nonhomogeneous HMM, a question arises

whether or not the transition matrix actually depend on the
covariate. To test the homogeneous null hypothesis against
nonhomogeneous alternatives, we use generalized likelihood
ratio(GLR) statistics, which was introduced in [9]. The test-
ing problem is

H0 : γjk(u) = cjk versus H1 : γjk(u) �= cjk

for j, k = 1, 2, . . . , S, where cjk are unknown constants.
Let �∗(H0) and �∗(H1) be log-likelihood functions com-

puted under null and alternative hypothesis respectively.
Then a generalized likelihood ratio test statistic is defined
as

Π = 2{�∗(H1)− �∗(H0)}.

Note that the null model is parametric and its alternative
is semiparametric. Instead of investigating the asymptotic
distribution of Π, we consider the conditional bootstrap
method [4] to construct the null distribution under the fol-
lowing steps:

(a) Estimate δ̂0, θ̂0, Γ̂0 under homogeneous HMM.
(b) Generate bootstrap sample {(Ut, Y

∗
t ), t ∈ N} from

the HMM model with estimated parameters δ̂, θ̂ and Γ̂0.
(c) For each bootstrap sample, we calculate the gener-

alized likelihood test statistics, and then further obtain its
approximate distribution.

We can verify the above conditional bootstrap method by
checking whether the asymptotic null distribution is inde-
pendent of the nuisance parameters Γ0. The verification is
performed via simulation study in section 4, and the result
shows that Wilk’s phenomenon holds in this setting. There-
fore, we can obtain the approximate p-value of the test by
calculating the percentile of the test statistics in the con-
ditional bootstrap sample. A small p-value (e.g., less than
0.01) suggests a rejection of the null hypothesis, and hence
we are confident that the nonhomogeneous HMM is more
appropriate compared to the homogenous HMM.

3. SIMULATION STUDY

To illustrate the efficiency of estimates obtained by the
modified EM algorithm, we perform numerical simulations
in this section. Here, we specify the emission model pk(y|θk)
to be a normal distribution with mean μk and variance
σ2
k, which is denoted by N (μk, σ

2
k). Thus, we have θk =

{μk, σ
2
k}, k = 1, 2, . . . , S.

To assess the performance of the estimated transition
probability functions, we consider the square root of the
average squared errors as

RASEγjk
=

√√√√ 1

T

T∑
t=1

{γ̂jk(ut)− γjk(ut)}2,

where {ut, t = 1, . . . , T} are the grid points evenly in the
range of the covariate U .

To assess the performance of estimated parameters, we
use the root of mean squared error. For the mean μ, it is

RMSEμ =

√√√√ 1

S

S∑
k=1

{μ̂k − μk}2.

Similarly, we define RMSEσ2 for the variance σ2.
In the simulation study, we consider two simulation set-

tings.
Setting 1. A two-state nonhomogeneous HMM with δ =

(0.4, 0.6), μ1 = −1, μ2 = 1, σ2
1 = 0.09, σ2

2 = 0.09,

γ11(u) = 1/2 cos(3πu) + 1/2, γ21(u) = 1/2 sin(2πu) + 1/2.

Setting 2. A three-state nonhomogeneous HMM with
δ = (0.2, 0.3, 0.5), μ1 = −2, μ2 = 0, μ3 = 2, σ2

1 = 0.09, σ2
2 =

0.09, σ2
3 = 0.09,

γ11(u) = 1/4 cos(3πu) + 0.3, γ12(u) = 1/4 sin(3πu) + 0.3,

γ21(u) = 1/4 cos(2πu) + 0.3, γ22(u) = 1/4 sin(2πu) + 0.3,

γ31(u) = 1/4 cos(πu) + 0.3, γ32(u) = 1/4 sin(πu) + 0.3.

We set the sample size T = 200, 400, 800, respectively.
We generate sample sequence {Yt} with length of T , where
covariate U is from a uniform distribution U [0, 1]. The
Epanechnikov kernel is used for kernel regression. Initial val-
ues are obtained by the K-means algorithm. The grid points
of kernel functions to be estimated are set to 100 points
evenly distributed on [0, 1].

We first examine the BIC approach to determine the
number of states S. We run 100 simulations for each sample
size respectively. For each simulated sample, nonhomoge-
neous HMMs are fitted with two, three, four states under
the optimal bandwidths calculated from the CV method,
and the corresponding BIC scores are calculated. Table 1
displays the frequencies of selected S by the BIC approach.
The results show that the BIC approach works well to de-
termine the number of states S in both simulation settings.
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Table 1. Frequencies of selected S by the BIC

Two-state model Three-state model

S=2 S=3 S=4 S=2 S=3 S=4

T=200 96 2 2 2 95 3
T=400 98 2 0 0 97 3
T=800 99 1 0 0 98 2

Next we test the performance of estimation via RMSE
and RASE. To save time, we use fixed optimal bandwidth
instead of optimal bandwidth for each simulated data. We
generate 20 datasets for a given sample size and determine a
optimal bandwidth for each dataset using the CV method,
then we choose the most frequently selected bandwidth
ĥ to be the fixed optimal bandwidth. Then we consider
three different bandwidths: 2

3 ĥ, ĥ, 1.5ĥ, which correspond
to the under-smoothing, appropriate smoothing, and
over-smoothing, respectively. For each sample size and each
bandwidth, we conduct 500 simulations respectively. Table
2 displays the simulation results for the two-state setting
estimated with a two-state model, which contains the

mean and standard deviation (in parentheses) of RMSEμ,
RMSEσ2 , RASEγ11 and RASEγ21 . Table 3 displays the
simulation results for the three-state setting estimated with
a three-state model. The results show that the proposed
procedure performs quite well across the wide range of
bandwidths. We also compare our method to another
nonparametric estimation method for transition matrix,
the K-nearest-neighbor method(KNN). We conduct a
simulation for the two-state nonhomogeneous HMM based
on KNN method. The estimation procedure is similar to
our method and the optimal parameter k̂ is determined by
the BIC. Table 4 displays the results under three different
k: � 2

3 k̂�, k̂, �1.5k̂�. It is noted that the average squared
errors of estimation for transition matrix based on KNN
are larger than our method, which shows that our proposed
procedure is better than the KNN method.

Then we test the accuracy of the standard error esti-
mation via the parametric bootstrap method. We gener-
ate bootstrap samples from the fitted two-state nonhomo-
geneous HMM, and refit again to obtain the bootstrap es-
timates, where standard deviations can be calculated from.
Table 5, 6, 7 and 8 summarize the performance of the stan-

Table 2. Mean and standard deviation (in parentheses) of RMSEs and RASEs for the two-state model

T h RMSEμ RMSEσ2 RASEγ11 RASEγ21

200 0.04 0.0270(0.0139) 0.0114(0.0058) 0.1023(0.0271) 0.1039(0.0261)
0.06 0.0266(0.0142) 0.0116(0.0062) 0.1000(0.0271) 0.0933(0.0254)
0.09 0.0270(0.0138) 0.0114(0.0057) 0.1393(0.0275) 0.1021(0.0234)

400 0.027 0.0188(0.0096) 0.0081(0.0044) 0.0834(0.0193) 0.0779(0.0195)
0.04 0.0189(0.0099) 0.0080(0.0042) 0.0742(0.0178) 0.0718(0.0194)
0.06 0.0182(0.0093) 0.0080(0.0042) 0.0812(0.0191) 0.0789(0.0183)

800 0.02 0.0134(0.0077) 0.0056(0.0029) 0.0675(0.0127) 0.0698(0.0141)
0.03 0.0133(0.0073) 0.0057(0.0030) 0.0570(0.0135) 0.0594(0.0140)

0.045 0.0132(0.0070) 0.0057(0.0030) 0.0562(0.0133) 0.0556(0.0138)

Table 3. Mean and standard deviation (in parentheses) of RMSEs and RASEs for the three-state model

T h RMSEμ RMSEσ2 RASEγ11 RASEγ12 RASEγ21 RASEγ22 RASEγ31 RASEγ32

200 0.06 0.0431 0.0171 0.1187 0.1295 0.1276 0.1228 0.1372 0.1133
(0.0167) (0.0071) (0.0350) (0.0348) (0.0345) (0.0341) (0.0360) (0.0328)

0.09 0.0440 0.0184 0.1140 0.1176 0.1055 0.1050 0.1071 0.0895
(0.0180) (0.0077) (0.0331) (0.0323) (0.0340) (0.0327) (0.0353) (0.0320)

0.135 0.0426 0.0181 0.1324 0.1246 0.1017 0.1079 0.0943 0.0756
(0.0168) (0.0081) (0.0276) (0.0278) (0.0318) (0.0374) (0.0356) (0.0340)

400 0.053 0.0290 0.0124 0.0871 0.0964 0.0919 0.0907 0.0985 0.0847
(0.0125) (0.0051) (0.0230) (0.0236) (0.0256) (0.0258) (0.0242) (0.0216)

0.08 0.0294 0.0123 0.0805 0.0877 0.0807 0.0800 0.0851 0.0723
(0.0131) (0.0051) (0.0212) (0.0226) (0.0245) (0.0267) (0.0246) (0.0238)

0.12 0.0286 0.0128 0.1077 0.1006 0.0799 0.0781 0.0729 0.0576
(0.0125) (0.0059) (0.0210) (0.0160) (0.0212) (0.0266) (0.0279) (0.0252)

800 0.04 0.0217 0.0092 0.0689 0.0737 0.0720 0.0736 0.0811 0.0701
(0.0090) (0.0040) (0.0160) (0.0168) (0.0162) (0.0165) (0.0178) (0.0162)

0.06 0.0194 0.0085 0.0624 0.0690 0.0610 0.0594 0.0681 0.0568
(0.0086) (0.0035) (0.0164) (0.0154) (0.0167) (0.0187) (0.0182) (0.0164)

0.09 0.0214 0.0090 0.0737 0.0773 0.0630 0.0594 0.0587 0.0478
(0.0091) (0.0038) (0.0170) (0.0156) (0.0174) (0.0183) (0.0192) (0.0168)
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Table 4. Mean and standard deviation (in parentheses) of RMSEs and RASEs for the two-state model based on KNN

T k RMSEμ RMSEσ2 RASEγ11 RASEγ21

200 19 0.0252(0.0141) 0.0112(0.0058) 0.1254(0.0253) 0.1192(0.0256)
29 0.0272(0.0138) 0.0126(0.0064) 0.1155(0.0298) 0.1088(0.0233)
43 0.0260(0.0148) 0.0124(0.0063) 0.1479(0.0293) 0.1140(0.0210)

400 35 0.0189(0.0094) 0.0079(0.0042) 0.0923(0.0188) 0.0895(0.0188)
53 0.0190(0.0102) 0.0082(0.0043) 0.0843(0.0186) 0.0835(0.0165)
79 0.0196(0.0106) 0.0082(0.0045) 0.1187(0.0209) 0.0942(0.0156)

800 62 0.0139(0.0072) 0.0057(0.0029) 0.0666(0.0125) 0.0676(0.0125)
93 0.0134(0.0067) 0.0059(0.0031) 0.0627(0.0126) 0.0639(0.0118)

139 0.0134(0.0068) 0.0059(0.0031) 0.0879(0.0163) 0.0765(0.0120)

Table 5. Standard errors of nonparametric functional estimates via the parametric bootstrap (T = 200 and h = 0.06)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

γ11(·) SD 0.097 0.102 0.051 0.068 0.110 0.076 0.052 0.102 0.092
SE 0.096 0.097 0.067 0.076 0.100 0.078 0.068 0.098 0.093
Std 0.022 0.019 0.018 0.018 0.017 0.020 0.019 0.020 0.019

Cov.P 0.940 0.956 0.870 0.926 0.918 0.960 0.878 0.940 0.954

γ21(·) SD 0.090 0.045 0.044 0.090 0.117 0.095 0.046 0.047 0.096
SE 0.085 0.051 0.050 0.084 0.102 0.086 0.053 0.053 0.087
Std 0.023 0.018 0.018 0.017 0.018 0.022 0.020 0.020 0.025

Cov.P 0.946 0.936 0.946 0.938 0.874 0.944 0.928 0.922 0.930

Table 6. Standard errors of nonparametric functional estimates via the parametric bootstrap (T = 400 and h = 0.04)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

γ11(·) SD 0.073 0.091 0.040 0.061 0.094 0.055 0.035 0.093 0.076
SE 0.074 0.084 0.046 0.059 0.087 0.060 0.045 0.083 0.077
Std 0.017 0.016 0.015 0.016 0.016 0.016 0.014 0.014 0.015

Cov.P 0.970 0.932 0.930 0.940 0.938 0.938 0.890 0.850 0.934

γ21(·) SD 0.074 0.035 0.033 0.076 0.096 0.077 0.037 0.033 0.081
SE 0.072 0.034 0.035 0.073 0.089 0.075 0.037 0.036 0.074
Std 0.016 0.015 0.015 0.015 0.016 0.018 0.015 0.015 0.017

Cov.P 0.960 0.945 0.965 0.950 0.935 0.960 0.950 0.955 0.925

Table 7. Standard errors of nonparametric functional estimates via the parametric bootstrap (T = 800 and h = 0.03)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

γ11(·) SD 0.064 0.069 0.027 0.046 0.075 0.044 0.026 0.078 0.060
SE 0.061 0.070 0.030 0.047 0.071 0.047 0.030 0.067 0.060
Std 0.013 0.012 0.010 0.012 0.011 0.011 0.009 0.011 0.011

Cov.P 0.950 0.945 0.925 0.950 0.940 0.940 0.935 0.850 0.955

γ21(·) SD 0.061 0.028 0.026 0.063 0.078 0.057 0.025 0.024 0.060
SE 0.059 0.026 0.025 0.059 0.073 0.058 0.026 0.028 0.059
Std 0.012 0.010 0.010 0.011 0.012 0.011 0.011 0.010 0.012

Cov.P 0.945 0.960 0.935 0.955 0.925 0.965 0.965 0.960 0.975

dard errors for the functional estimates of transition prob-
abilities at nine points, the standard errors of the means
and variances. The standard deviation of the 500 estimates,
denoted by SD, can be viewed as the true standard error
and served as benchmark. The sample average and the stan-
dard deviation of the 500 estimated standard errors using
bootstrap, denoted by SE and Std, are then calculated. The

coverage probabilities of the estimated standard errors with
the confidence level of 0.95, denoted by Cov.P, are showed to
verify the validity of our bootstrap method. As the results
demonstrate, the proposed bootstrap procedure works rea-
sonably well since the estimated standard error SE is close
to the true standard error SD, the coverage probabilities are
close to nominal 0.95.
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Figure 1. The estimated density of unconditional null distributions of Π (solid lines), and the estimated density of conditional
null distributions of Π (dotted lines).

Table 8. Standard errors of estimates via the parametric
bootstrap

SD SE(Std) Cov.P

T = 200,h = 0.06 μ1 0.028 0.029(0.005) 0.942
μ2 0.032 0.029(0.006) 0.924
σ2
1 0.012 0.012(0.003) 0.952

σ2
2 0.013 0.012(0.003) 0.956

T = 400,h = 0.04 μ1 0.022 0.021(0.004) 0.945
μ2 0.022 0.020(0.004) 0.960
σ2
1 0.008 0.009(0.002) 0.895

σ2
2 0.010 0.009(0.002) 0.910

T = 800,h = 0.03 μ1 0.014 0.014(0.002) 0.945
μ2 0.015 0.014(0.002) 0.935
σ2
1 0.006 0.006(0.001) 0.950

σ2
2 0.006 0.006(0.001) 0.960

In order to investigate whether the Wilk’s type phe-
nomenon holds for the proposed model, we conduct a
simulation of testing in the two-state setting. Under the
null hypothesis H0, the transition probabilities γjk are
constants. For 4 sets of different values, (γ11, γ21) =
{( 13 ,

1
3 ), (

1
3 ,

2
3 ), (

2
3 ,

1
3 ), (

2
3 ,

2
3 )}, we first calculate the uncon-

ditional null distribution with T = 200 via 500 Monte Carlo
simulations. As showed in Figure 1, the resulting 4 densities
are quite close which means that the asymptotic distribution
of the LRT statistic under the null hypothesis is not sensi-
tive to the true value of Γ. Next, we select 4 typical samples
generated from the 4 sets of values of (γ11, γ21) and calculate
the conditional null distribution based on its 500 bootstrap
samples respectively. As showed in Figure 1, the resulting 4
densities are quite close to the true null distribution which
suggests that our conditional bootstrap method works rea-
sonably well to approximate the true null distribution.

Furthermore, the power of the proposed test is also of
interest. We evaluate the power functions in the two-state

setting under a set of local alternatives with different λ:

H0 :γ11(u) = c11, γ21(u) = c21,

H1 :γ11(u) = 1/2λ cos(3πu)/
√
Th+ 1/2,

γ21(u) = 1/2λ sin(2πu)/
√
Th+ 1/2,

and γ12(u) = 1−γ11(u), γ22(u) = 1−γ21(u), where λ/
√
Th ∈

[0, 1]. We calculate the power functions under three different
significance levels: 0.01, 0.05, 0.1, based on 500 simulations
for sample size T = 200, 400, 800. The results in Figure 2
show that the powers increase rapidly as λ increases. When
λ = 0, the alternative collapses into the null hypothesis,
and the powers at λ = 0 are indeed the sizes of the test. As
showed in Table 9, the sizes for the three significance levels
are close to the nominal level. This shows that the proposed
bootstrap procedure approximately provides the right levels
of the test.

Table 9. The sizes of the test (The powers at λ = 0)

0.01 0.05 0.1

T = 200,h = 0.06 0.018 0.063 0.122
T = 400,h = 0.04 0.024 0.074 0.126
T = 800,h = 0.03 0.020 0.064 0.118

4. APPLICATION TO S&P 500 INDEX DATA

In this section, we illustrate our model by analysing a
S&P 500 index dataset. The data contains the daily returns
of S&P 500 index from January 1st, 2014 to September 7,
2018. The price sequence during this period is showed in
Figure 3. When HMM is employed for analysis, it is ex-
pected that the transition probability may be different in a
bull and a bear market conditions. Hence, we analyse this
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Figure 2. The power functions of the test against local alternatives.

Figure 3. The price sequence.

dataset with the nonhomogeneous HMM. The main purpose
is to study how the transition probabilities change over time.
Therefore, the covariate is set to be the time. For conve-
nience of analysis, we rescale time to the range from 0 to 1.
The grid points of kernel functions to be estimated are set
to 100 points evenly distributed on [0, 1].

To determine the number of hidden states and the band-
width, we first calculate the cross-validated likelihood un-
der 8 different number of states S from 2 to 9, and dif-
ferent bandwidth h in the range of [0.02, 0.1]. The optimal
bandwidths under different S are then determined. Then we
calculate the BIC score under different S with correspond-
ing optimal bandwidth and select the model of S = 6 and
h = 0.09 with the smallest value of BIC score. Thus, we
consider a six-state nonhomogeneous HMM and set the op-
timal bandwidth to be 0.09. We further compare the BIC
scores of the selected model and a homogeneous HMM with
constant transition probabilities. The BIC score for selected
model and a homogeneous HMM is -5212.2 and -5087.1, re-

spectively. This result shows that the return data is more
likely to follow a nonhomogeneous HMM than a homoge-
neous HMM as the former model has a smaller BIC score.

Next, we test whether transition probabilities are func-
tions of time by using the generalized likelihood ratio test.
Based on 500 conditional bootstrap simulations, the result-
ing LRT statistics Π is 77.11 and the approximate p-value
of the test is less than 0.01. This means that we can reject
the null hypothesis and think that the transition probabil-
ities change all the time, which also reflects that it is more
appropriate to use a nonparametric HMM here compared to
the homogenous HMM.

Based on the proposed estimation method, we obtain the
estimated means of six states, and the corresponding stan-
dard errors in Table 10. The six states can be interpreted as
strong bear, medium bear, weak bear, weak bull, medium
bull, and strong bull patterns of the market. The time-
depended estimates of transition probabilities are showed in
Figure 4. Our method is able to provide smooth estimates of
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Figure 4. The estimated transition probability functions.

Table 10. Estimated means and standard errors

State Mean StD

State 1 -0.017 0.007
State 2 -0.007 0.003
State 3 -0.001 0.002
State 4 0.004 0.002
State 5 0.012 0.003
State 6 0.023 0.007

the transition probability functions. The results show signif-
icant different transition probability in bull and bear mar-
kets. From the price data showed in Figure 3, we can roughly
identify a bull market during time interval [0.65,1] (Jan.
2016 - Feb. 2017), and a bear market during time interval
[0.4, 0.65] (Apr. 2015 - Jan. 2016). We observe that in a bull
market from Jan. 2016 to Feb. 2017, transition probabilities
from state 3, 5, 6 to state 4 are increasing and relatively
large. This suggests that bull market tends to rise slowly
from medium/large positive movements and small negative
movement. However, during the bear market from Apr. 2015
to Jan. 2016, the transition probabilities from state 5, 6 to
state 4 are flat and relatively small. The transition probabil-
ity from state 1 to state 4 is relatively large. This suggests
that the market tends to rise slowly after big loss in bear
market.

5. CONCLUSION

In this paper, we study nonparametric hidden Markov
Model (HMM) with covariate dependent emission probabili-
ties and transition probabilities. The advantage of nonpara-

metric HMM is to allow the impact of covariate included
in the whole model no matter what part is influenced. We
propose a modified EM algorithm by combining the EM al-
gorithm and the kernel regression method. This approach
allows us to define effective number of parameters and fur-
ther conduct model selection. We propose conditional boot-
strap method for standard error, and demonstrate our meth-
ods via extensive simulations. A generalized likelihood ratio
test procedure is introduced, and simulations show that the
Wilk’s type of phenomenon holds for the proposed model.
The proposed model has also been applied to model the
daily returns of S&P500 index. The testing procedure indi-
cates that for the S&P500 dataset, the proposed nonpara-
metric HMM is more appropriate than a parametric HMM
statistically.

Asymptotic properties for the estimates are of interest;
however, they are out of scope of this paper. To evaluate the
accuracy of our proposed bootstrap method, we introduce
and calculate coverage probability in simulation. The results
show that the bootstrap method performs well in estimation
of standard errors, as the coverage probability is close to
nominal level.

APPENDIX

Derivation of Equation 2
If the hidden states S1, . . . , ST are observed, the complete

log-likelihood function is

L = log(δS1pS1(yt|θS1)γS1,S2(u1) · · · γST−1,ST
(uT−1)

× pST
(yT |θST

))
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= log

(
δS1

T∏
t=2

γSt−1,St(ut−1)
T∏

t=1

pSt(yt|θSt)

)

= log(δS1) +

T∑
t=2

log(γSt−1,St(ut−1))

+

T∑
t=1

log(pSt(yt|θSt)).

As the hidden states S1, . . . , ST are missing, we introduce
the latent variables zt = (zt1, . . . , ztS), where the element
indicator is

ztk =

{
1 if St = k,

0 otherwise.

Using the indicators, log(δS1) can be rewritten as∑S
k=1 z1k log(δk), and log(pSt(yt|θSt)) can be rewritten as∑S
k=1 ztk log(pk(yt|θk)). For the term of transition proba-

bility, indicator multiplication is formed as

zt−1,jztk =

{
1 if St−1 = j and St = k,

0 otherwise.

Therefore, log(γSt−1,St(ut−1)) can be rewritten as∑S
j=1

∑S
k=1 zt−1,jztk log(γjk(ut−1)). We have completed

the derivation of Equation 2.
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