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Robust change point detection for linear
regression models
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Linear models incorporating change points are very com-
mon in many scientific fields including genetics, medicine,
ecology, and finance. Outlying or unusual data points pose
another challenge for fitting such models, as outlying data
may impact change point detection and estimation. In this
paper, we propose a robust approach to estimate the change
point/s in a linear regression model in the presence of po-
tential outlying point/s or with non-normal error structure.
The statistic that we propose is a partial F statistic based
on the weighted likelihood residuals. We examine its asymp-
totic properties and finite sample properties using both sim-
ulated data and in two real data sets.
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1. INTRODUCTION

Linear regression is one of the most popular statistical
models to describe a relationship between a response and a
set of independent variables:

yi = β0+β1xi1+β2xi2+. . .+βkxik+εi for i = 1, 2, . . . , n,

where yi is the response variable, and xij is the ith observa-
tion on the jth independent variable for j = 1, 2, . . . , k. The
random quantities {εi} comprise the set of n independent
and identically distributed Normal random variables with
E(εi) = 0 and V ar(εi) = σ2 (εi ∼ N(0, σ2)). While sim-
ple linear regression models describe many data sets well, in
many cases the nature of the relationship between the re-
sponse and the independent variables changes at some value
or values of the explanatory variables so that the regression
relationship is, effectively, “bent” at certain points, these
points generally referred to as change points. Obviously, if a
model involving such changes is justified, then using a simple
linear regression model to study the data results in a poor fit
and a lack of explanatory power [8]. Thus, testing for and es-
timating change points in regression settings are useful capa-
bilities. Regression models incorporating change points have
been employed in many areas of application such as cancer
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research [21, 32], animal science [7], genetics [36], finance
[8], meteorology [33], and even in the tire industry [13], in
each case reflecting experience or theory that the nature
of the regression relationship fundamentally changes at cer-
tain threshold values of the covariates. Approaches to change
point detection have been numerous in the literature, using a
variety of techniques, for example “traditional” approaches
based on residual sums of squares, Bayesian approaches, in-
formation theoretic approaches, and employing permutation
tests, likelihood ratio tests, partial F tests or score tests
[17, 8, 6, 9, 12, 19, 26, 30, 31, 34, 35, 27, 14, 15, 23, 20, 28]).
[29] provides an in-depth discussion on a normal mean
change point model that offers insight into the modelling
situation underpinning this paper.

Quite apart from the broad question of how to detect and
estimate change points in linear models, the effects of indi-
vidual data points on change point detection and estimation
need also to be considered. For example, there may be dis-
cordant data points that suggest a change point but which
are, in fact, a result of errors or excessively “noisy” data.
These points, often called outliers or influential points, are
common in real data sets. Such points may reflect unusual
values in the response variable or in the covariate space.
Both types typically adversely affect the regression model,
albeit in different ways. Outlying points may, in a sense,
be false flags for change points – that is, they may be con-
fused as evidence of a structural change in the relationship
when they are, in fact, not of structural significance. Robust
change point detection techniques have thus been proposed
as a solution for outliers – for a detailed survey on robust
change point detection see, for example, [18]. Test statistics
based on divergence measures have also been used for ro-
bust change point detection. For example, [22] considered
a method for robust change point estimation for a general
parameter case based on the minimum density power di-
vergence estimator proposed by [5]. A detailed study of ex-
tensions of some classical methods in change point analysis
using divergence-based statistics is provided by [26]. In this
paper, we propose a new robust approach to detect change
points. Our approach will be shown to be robust not only
to outliers but also to non-normal error structure. We in-
troduce a robust partial F test, Fwle, based on weighted
likelihood methodology to estimate the change points in
the relationship between the response and the covariates.
The statistic Fwle is a robust alternative to the classical F .
Ours is the first study using a robust approach based on the
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weighted likelihood methodology in linear regression models
with change points.

In our formulation, change may be in the mean structure
or in the variance structure or in both. By way of introduc-
tion, we examine changes in the mean structure in the case
of simple linear regression model (k = 1) with fixed vari-
ance structure and the proposed model is continuous at the
change point. While our focus in this paper is on estimating
one or two unknown change points, the procedure can be
readily extended to situations with several change points.

The rest of the paper is organized as follows. In Section 2,
we describe the change point problem for a simple linear
regression model. In Section 3, we introduce the proposed
test statistic and show the asymptotic equivalence of the
proposed Fwle and the classical F statistic. We compare the
finite sample performance of two statistics on simulated and
real data sets in Section 4.

2. THE CHANGE POINT MODEL

2.1 Simple linear regression with one change
point

Consider two putative regression models relating the re-
sponse y to a single covariate x.

(1) yi = β0 + β1xi + εi i = 1, 2, . . . , n,

and

(2) yi =

{
β10 + β11xi + εi, a ≤ xi ≤ γ;

β20 + β21xi + εi, γ < xi ≤ b,

under the continuity constraint

(3) β10 + β11γ = β20 + β21γ.

Without loss of generality, the explanatory variable is or-
dered, with xi ≤ xj for i < j, so that “change” is interpreted
in the sense of a “bend” in the model when the covariate in-
creases beyond the change point, γ, the condition (3) ensur-
ing continuity of the model at the change point. The change-
point γ is not constrained to be one of the data points, and
can take on any value between two adjacent existing data
points. The situations covered by our prescription fits both
type 1 and type 2 joins defined in [17]. Combining (2) and
(3), the model (2) can be rewritten as

(4) yi =

{
β10 + β11xi + εi, xi ≤ γ;

β10 + β11γ + β21(xi − γ) + εi, xi > γ,

If γ is known, (3) reflects a linear constraint on the unknown
parameters β1 = (β10, β11) and β2 = (β20, β21) but when
γ is unknown it reflects a nonlinear constraint on the un-
known parameters γ, β1 = (β10, β11), and β2 = (β20, β21)
[17]. Under the continuity constraint, once (β10, β11, β21) are
estimated for model (4), β20 in model (2) can be calculated
using (3).

We use a hypothesis testing approach to determine if
there is any significant change point. We will test

(5)
H0 : β1 = β2 = β

Ha : β1 �= β2,

where β = (β0, β1) are the coefficients in model (1). Under
the continuity constraint in (3), (5) is equivalent to

H0 : β11 = β21 = β1

Ha : β11 �= β21,

since β11 = β21 implies that β10 = β20. Failing to reject H0

means there is insufficient evidence from the data to con-
clude a change in the mean structure at x = γ. The classical
partial F -statistic using ordinary least squares residuals can
be used to compare model (1) with model (4):

(6) F =
(SSE(0) − SSE(a))/1

SSE(a)/(n− 3)
,

where

SSE(a) =

n∑
i=1

ri(β̃1; β̃2)
2,

SSE(0) =

n∑
i=1

ri(β̃1)
2,

are the residual sums of squares under (1) and (4), respec-

tively, the vectors β̃1 =
(
β̃10, β̃11

)
and β̃2 =

(
β̃20, β̃21

)
are

the ordinary least squares (OLS) estimates of the respective
parameters, and the functions ri(β̃) = yi−(β̃10+ β̃11xi) and
ri(β̃1, β̃2) = yi−{β̃10+β̃11xi+I(γ < xi ≤ b)β̃21(xi−γ)} are
the residuals, where I(·) is the indicator function. When γ
is known, this quantity is asymptotically F distributed with
1 and n− 3 degrees of freedom [19]. The larger the value of
F , the greater the evidence is against H0; that is, the more
the evidence for a change point at γ. Use of the F statistic
is justified through expressing model (1) as a suitably re-
stricted, or nested, version of model (4). Following [16], this
construction is made clear by expressing (4) in the form

yi = β10 + β11xi + zi(η0 + η1xi) + εi, i = 1, 2, . . . , n,

where β2 = β1 + η with η = (η0, η1)
′
and zi = I(xi > γ).

2.2 The model with two change points

As an extension to the model discussed in the previous
section, we consider models with two change points at γ1
and γ2:

(7) yi =

⎧⎪⎨
⎪⎩
β10 + β11xi + εi, xi ≤ γ1,

β20 + β21xi + εi, γ1 < xi ≤ γ2,

β30 + β31xi + εi, xi > γ2,

again assuming without loss of generality that the explana-
tory variable is ordered as xi ≤ xj for i < j, and with
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continuity constraints:

(8)
β10 + β11γ1 = β20 + β21γ1,

β20 + β21γ2 = β30 + β31γ2.

Using the continuity constraints in (8), the model in (7) can
be rewritten as

yi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
β10 + β11xi + εi, xi ≤ γ1

β10 + β11γ1 + β21(xi − γ1) + εi, γ1 < xi ≤ γ2

β10 + β11γ1 + β21(γ2 − γ1)+

β31(xi − γ2) + εi xi > γ2,

Evidence for the existence of two change points, γ1 and γ2
can be gathered through a hypothesis test of

H0 : β11 = β21 = β31 = β1

Ha : β11 �= β21 and β21 �= β31.

The classical F statistic similar to that in (6), modifying
the degrees of freedom to be 2 and n− 4, can again be used
to test these hypotheses, with the null distribution of the
statistic F being F with 2 and n − 4 degrees of freedoms
when the location of the change point is known.

3. THE ROBUST WEIGHTED PARTIAL F
TEST

3.1 The weighted likelihood methodology

Weighted likelihood methodology based on the minimum
disparity estimation was proposed by [25] as a means of
improving the efficiency and robustness in estimation, and
discussed in the regression context by [1], [2], and [4]. Let
us consider the simple linear regression model (1) with y
having density function f = f(y;x,β, σ). Assume a density
m(ε;σ), σ ∈ R

+ for the theoretical residual ε having zero
mean for each given σ. Denote by ri(β) = yi − (β0 + β1xi)
the residuals for a specific value of the parameter vector
β. Let f∗(r;β) =

∫
k(r, t, h)dF̂n(t;β) represent a kernel

density estimator with bandwidth h based on the empirical
distribution F̂n(·;β) of the residuals ri(β). Let m∗(r;σ) =∫
k(r, t, h)dM(t;σ) be the kernel smoothed version of the

residual model density where M(·;σ) is the distribution
function corresponding to the density m(·;σ). The Pearson

residuals are δ(r;σ, F̂n(β)) =
f∗(r;β)
m∗(r;σ) −1, which capture the

agreement between the empirical distribution of the residu-
als and their assumed probability model. Following [25], we

use h =
√
kσ2, where k is a constant independent of the

scale of the data, so that very small weight is assigned to an
outlying observation. Unlike the usual definition of an out-
lier as a point lying far away from the bulk of the data, in the
present context an outlier is defined as a point unlikely to
occur under the assumed probabilistic model. The weighted

likelihood of the parameter β and the scale parameter σ are
the solutions to the estimating equations

n∑
i=1

ω(ri(β))uβ(yi) = 0,

n∑
i=1

ω(ri(β))uσ(yi) = 0,

where the functions uβ(yi) = ∂
∂β ln f(yi|x;β;σ) and

uσ(yi) = ∂
∂σ ln f(yi|x;β;σ) are the usual score functions

and the weight function ω(ri(β)) is

ω(ri(β)) = min

{
1,

[A(δ(ri(β))) + 1]
+

δ(ri(β)) + 1

}
,

where [·]+ is the positive part function and weights are con-
strained to be in [0, 1]. The function A(·) as introduced by
[24] is a residual adjustment function. The choice A(δ) = δ
corresponds to usual maximum likelihood estimates (MLE)
for the parameters, while the choice

(9) A(δ) = 2(δ + 1)1/2 − 1

produces weighted likelihood estimates (WLE) based on
Hellinger distance weights, the latter producing more sta-
ble estimates than the usual maximum likelihood approach
when certain assumptions do not hold.

3.2 Change point location known case

Since the classical F statistic is calculated using the or-
dinary least squares (equivalent to maximum likelihood in
the case of normal errors) residuals, it is sensitive to outlying
points. Therefore, we propose using an F -statistics based on
the weighted likelihood residuals to test the null hypothesis
of the no change model in (1) against change point alterna-
tives. We propose using the Hellinger distance weights given
in (9). The use of these weights promoted robustness against
both outliers having unusual y values and against points
having high leverage. The proposed F statistic for testing
the no change model against the one change model is

(10) Fwle =
(SSEwle(0) − SSEwle(a))/1

SSEwle(a)/ (
∑n

i=1 ω̂(ri)− 3)
.

Here, SSEwle(0) and SSEwle(a) are the weighted likelihood
versions of the error sum of squares under the null and
alternative hypotheses

SSEwle(a) =

n∑
i=1

ω̂(ri)ri(β̂1; β̂2)
2,

SSEwle(0) =

n∑
i=1

ω̂(ri)ri(β̂1)
2,

where β̂1 = (β̂10, β̂11), β̂2 = (β̂20, β̂21) are the weighted
likelihood estimates (WLE) of the parameters esti-
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mated under the assumption that m(r;σ) is N(0, σ2),

ri(β̂1) = y − (β̂10 + β̂11x) and ri(β̂1, β̂2) = yi − (β̂10 +

β̂11γ + I(γ < xi ≤ b)β̂21(xi − γ)) are the residual functions,
and the weights ω̂(ri) = ω(ri(β̂1; β̂2);σ, F̂n(β̂1; β̂2)). The
proposed statistic Fwle may be written as

(11) Fwle =
σ̂2
wle(0) − σ̂2

wle(a)

σ̂2
wle(a)

∑n
i=1 ω̂(ri)− 3

1
,

with the estimators of scale parameter for models under
the null and alternative hypotheses being

σ̂2
wle(0) =

1∑n
i=1 ω̂(ri)

n∑
i=1

ri(β̂1)
2,

σ̂2
wle(a) =

1∑n
i=1 ω̂(ri)

n∑
i=1

ri(β̂1; β̂2)
2.

Under the assumption of the change point location being
known, asymptotic equivalence of (11) and the classical F ,
that is, the null distribution of Fwle ∼ F1,n−3, follows from
Theorem 1 in [3].

For two change points, the proposed Fwle is defined analo-
gously to (10), but the quantities 1 and

∑n
i=1 ω(ri(β̂1; β̂2))−

3 therein are replaced by 2 and
∑n

i=1 ω(ri(β̂1; β̂2; β̂3))− 4,

respectively, with β̂3 = (β̂30, β̂31).

3.3 Unknown change point location case

When the location of the change point is unknown, and
therefore must be estimated along with the regression pa-
rameters, (3) and (8) impose non-linear constraints on the
parameters and change point/s. Thus, in practice we need
to estimate the parameters through numerical optimization
[19], using techniques as described in [17] or [19]. [23]’s dis-
crete grid search is another commonly cited technique used
in such a situation. Here, we propose using a grid search in
concert with the hypothesis testing approach described in
the preceding section. Consider G equi-spaced grid points
spanning the range of values of the independent variable,
indexed by g = 1, . . . , G. We omit the first and last grid
points from our search, as a change point at the extremes
of the grid cannot reasonably be posited given the available
data. For the case of a single putative change point, we con-
sider each of the values in the grid as the potential change
point, and for each such candidate we calculate the Fwle

statistic, denoted Fwle(g) for g = 2, . . . , G− 1 for the set of
G such Fwle values. Similarly, for the case of two putative
change points, we would calculate the value of Fwle, denoted
Fwle(g1,g2) for each pair (g1, g2) for which 2 ≤ g1 ≤ G−1 and
g1 < g2 ≤ G − 1 and imposing the requirement on (g1, g2)
that there be at least 3 data points positioned between the
grid points indexed by g1 and g2. This latter requirement,
for which the value 3 is an arbitrary choice that could be
raised as appropriate to the specific situation, is to allow
for reasonable estimation precision of regression parameters

between the two change points. Our rationale in computing
the values of Fwle at each grid point is that at the grid points
closest to “correct” change point values, the corresponding
F statistic should be large compared to the other F values.
Thus, we estimate as the change point the grid value for
which Fwle(g) (one change-point) or Fwle(g1,g2) (two change
points) is maximized across the grid values. Note that we
use the WLE F -statistic as opposed to the usual OLS-based
F -statistic to take advantage of the robustness of the for-
mer against outlying observations or non-normal error struc-
ture. By way of comparison, we can also estimate the change
points using the maximum of the classical (OLS-based) F -
statistics, and we denote the maximum F values for the
WLE and classical cases as Fwlemax and Fmax, respectively.

Considering the case of a single change point (the two
change-point case proceeds analogously), once we have a
candidate for a change point, we need to determine its
significance. The distributions of each of the Fwlemax and
Fmax statistics are, respectively, the distributions of the
maximum of G − 2 correlated random variables. We pro-
pose using the nonparametric bootstrap [11] to estimate the
sampling distributions of Fwlemax and Fmax, with such re-
sampling reflecting the null hypothesis assumption of no
change point over the range of available data. There are
two “standard” bootstrap approaches for linear regression
models: case-based resampling, based on resampling (x, y)
pairs; and residual-based resampling, based on resampling
residuals from a model fit and then building back resam-
pled cases using the fitted model and resampled residuals.
In this paper, we consider residual-based resampling. Specif-
ically, for each of the ordinary least squares and wle fitting
methods, respectively, within this resampling we impose the
null hypothesis by first fitting the no-change-point model
(the correct model under the null hypothesis) to the original
data, computing residuals from this fit, and then selecting
B same-size random samples with replacement from these
residuals before re-assembling residual-based bootstrap re-
samples using the original model fit applied to the xi for
each fitting method. For the WLE method, the resamples
are (xi, y

∗b
i ) for b = 1, 2, . . . , B where y∗bi = β̂0 + β̂1xi + e∗bi

where β̂0 and β̂1 are the WLE regression coefficient esti-
mates from the fit to the original data and the {e∗bi } are
the resampled WLE residuals. Similarly, for the OLS fitting
method, we use resamples (xi, ỹ

∗b
i ) for b = 1, 2, . . . , B where

ỹ∗bi = β̃0 + β̃1xi + ẽ∗bi where β̃0 and β̃1 are the OLS regres-
sion coefficient estimates from the fit to the original data
and the {ẽ∗b} are the resampled OLS residuals. Because the
original no-change-point model parameters are included in
the construction of resamples, this approach explicitly im-
poses the null hypothesis within the resampling. For each
of those B resamples, we calculate the Fmax and Fwlemax

statistics, designating F ∗b
max and F ∗b

wlemax as the respective
values of the two statistics arising from the b’th bootstrap
resample (b = 1, . . . , B). For an α-level test, we use as the
critical value the (1−α)’th percentile of the bootstrap sam-
pling distributions of the two F statistics, denoted F ∗

max(1−α)
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and F ∗
wlemax(1−α)

, respectively. The estimated p-values for

the test based on the original sample statistics Fmax and
Fwlemax are also simply calculated as

p−value(wlemax) =
1

B

B∑
b=1

I(F ∗b
wlemax > Fwlemax),

p−value(max) =
1

B

B∑
b=1

I(F ∗b
max > Fmax).

We note that from a practical perspective, change point de-
tection close to the endpoints of the data range may be
simply infeasible as potential change points at the extremes
of the data may not be distinguished from more benign out-
lier behaviour. Of course, edge effects are common artefacts
of most model validation exercises.

4. NUMERICAL RESULTS

4.1 Simulation study

In this section, we report on a simulation study to ex-
plore the finite sample properties of the statistics Fmax and
Fwlemax, for a simple linear regression model versus one
change point and two change points models, respectively.
First, we consider a single change point alternative. We con-
sider three low to moderate sample sizes n = 20, 40, 60.
For convenience, we choose x = 1, . . . , n, β1 = (0, 1) and
β2 = (γ(1 − β21), β21) with β21 = 4, 5, 6 and change point
value γ. We simulate data from four different scenarios:

1 Normally distributed errors: ε ∼ N(0, 1),
2 Errors having heavy-tailed but symmetric distribution:

ε ∼ t(5),
3 Normal errors with 10% contamination: N(0, 1) with

probability 0.9 and N(20, 1) with probability 0.1,
4 Normal errors (ε ∼ N(0, 1)) but with one deliberately

placed outlier in terms of its y value.

The values on which Figures 1–3 are based were calculated
using 10,000 Monte-Carlo simulations. They illustrate the
detection rates – that is, the proportion of the cases for
which the statistics correctly detect the change point. Since
the performance of the methods are very similar across
the considered β21 values, we only present the results for
β21 = 5. For the case of standard normal errors without
any contamination, both statistics perform very similarly,
as expected. For the case of heavy-tailed errors, ε ∼ t(5),
the classical Fmax performs slightly better for the smallest
sample size, but that difference vanishes as the sample size
gets larger. We also consider the normal errors case with one
deliberately-placed outlier as the n/2’th data point. Unlike
Fmax, the proposed Fwlemax proves robust against the in-
clusion of this outlier. For the case of errors with 10% con-
tamination, the proposed Fwlemax was able to detect the
change point successfully except when the change point was

Figure 1. Estimated detection rate when n = 20 and β21 = 5
(a) ε ∼ N(0, 1) (b) ε ∼ N(0, 1) with one outlier yi at i = 10
(c) ε ∼ t(5) (d) ε ∼ N(0, 1) w.p. 0.9 and N(20, 1) w.p. 0.1.

Figure 2. Estimated detection rate when n = 40 and β21 = 5
(a) ε ∼ N(0, 1) (b) ε ∼ N(0, 1) with one outlier yi at i = 20
(c) ε ∼ t(5) (d) ε ∼ N(0, 1) w.p. 0.9 and N(20, 1) w.p. 0.1.

located towards the right extreme of the x-data range, re-
flecting the difficulty that the test statistic faces in distin-
guishing between the effect of a systemic change point in
the relationship and of a large outlying observation. This
phenomenon suggests that, in general, if a change point is
too close to the edges of the range over which data is gath-
ered, the capability of algorithms to detect system change
is diminished. Indeed, this effect can be seen in all cases ex-
amined, with the detection rate declining at each end of the
data range.

We also examine the observed type-I error probabilities
(α) for each of the Fmax and Fwlemax tests by using a boot-
strap approach. Under the null hypothesis assumption of
no change point, we carry out S = 500 Monte Carlo simu-
lations, and for each of those simulated samples, we select
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Figure 3. Estimated detection rate when n = 60 and β21 = 5
(a) ε ∼ N(0, 1) (b) ε ∼ N(0, 1) with one outlier yi at i = 30
(c) ε ∼ t(5) (d) ε ∼ N(0, 1) w.p. 0.9 and N(20, 1) w.p. 0.1.

B = 300 bootstrap resamples. The steps to calculate the
observed α values are:

(1) Simulate a sample, and fit the no-change-point model
to the sample using each of the OLS and WLE fit-
ting methods, respectively, and calculate the residuals
(ẽ1, ẽ2, . . . , ẽn) and (e1, e2, . . . , en) to obtain OLS coef-
ficient estimates β̃0 and β̃1 and WLE coefficient esti-
mates β̂0 and β̂1.

(2) Calculate the corresponding statistics Fmax and
Fwlemax.

(3) Select B bootstrap resamples, ẽ∗b = (ẽ∗b1 , ẽ∗b2 , . . . , ẽ∗bn )�

and e∗b = (e∗b1 , e∗b2 , . . . , e∗bn )� for b = 1, 2, . . . , B, by
same-size random sampling with replacement from each
set of residuals calculated in Step (1).

(4) Re-assemble residual-based bootstrap resamples
(xi, ỹ

∗b
i ) where ỹ∗bi = β̃0 + β̃1xi + ẽ∗bi , and (xi, y

∗b
i )

where y∗bi = β̂0 + β̂1xi + e∗bi for b = 1, 2, . . . , B, where

(β̃0, β̃1) and (β̂0, β̂1) are the original OLS and WLE
coefficient estimates calculated in Step (1), and xi is
the i’th sample point from x = (x1, x2, . . . , xn).

(5) Corresponding to each of the bootstrap resamples
(xi, ỹ

∗b
i ) and (xi, y

∗b
i ), calculate the bootstrap statistics

F ∗b
max and F ∗b

wlemax for b = 1, 2, . . . , B.
(6) Calculate the (1−α)’th percentiles (call these the crit-

ical values), F ∗
max(1−α)

and F ∗
wlemax(1−α)

, of the above

two statistics based on their bootstrap sampling distri-
butions.

(7) Determine if the original statistics exceed the critical
values obtained in Step (6).

(8) To estimate the estimated α’s via simulation, repeat
steps (1)-(7) S times and calculate the proportion of
simulated samples for which the original statistics ex-
ceed their corresponding bootstrap critical values:

αFmax =
1

S

S∑
i=1

I(Fmaxi > F ∗
max(1−α)

)

αFwlemax
=

1

S

S∑
i=1

I(Fwlemaxi > F ∗
wlemax(1−α)

),

where I(·) is the indicator function. These quantities
estimate the probabilities, under the null hypothesis, of
observing a value as or more extreme than those origi-
nally observed, respectively, for the two tests statistics
– that is, the observed significance level, or type-1 error,
in each case.

Figure 4 illustrates the calculated observed α values for
n = 20, 40, 60 under four different error distributions, noting
that the nominal α is 0.05. The results for the normal error
case are equivocal, but in the other cases, the results reveal
that the non-robust Fmax is the more liberal of the two when
the error distribution is heavy-tailed, and much more con-
servative in the case of normally distributed errors with one
outlying point in the y direction. The contaminated error
case reveals a significant failure of the test based on Fmax

(Figure 4(d-2)), yielding extraordinary error rates for each
sample size.

Figure 4. Type-I errors
(a) ε ∼ N(0, 1) (b) ε ∼ N(0, 1) with one outlier yi at i = n/2
(c) ε ∼ t(5) (d) ε ∼ N(0, 1) w.p. 0.9 and N(20, 1) w.p. 0.1.

For the alternative model with two change points, we
study two different scenarios. First, we consider a design

yi =

⎧⎪⎨
⎪⎩
5 + 1.2xi + εi, xi ≤ 20,

21 + 0.5xi + εi, 20 < xi ≤ 40,

49− 0.3xi + εi, xi > 40,
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Figure 5. Density of the estimated change points by the
statistics Fmax and Fwlemax for ε ∼ N(0, 1).

where i = 1, . . . , 60, εi ∼ N(0, 0.25) and the covariate x is
generated using xi = 4.5 + 0.9xi−1 + vi with vi ∼ N(0, 10),
similar to the data generation process used by [10] for two
change points in a continuous-mean, constant-variance al-
ternative hypothesis model. Figure 5 shows the densities of
the estimated change points determined using each of the
two statistics Fmax (first row of plots) and Fwlemax (second
row). Since the generated data include no abnormal points,
the two approaches perform roughly equivalently, identify-
ing the change points at 20 and 40 reasonably accurately.
However, when we intentionally add two outliers to the gen-
erated data, as Figure 6 shows, the density of the estimated
change points estimated by the test based on Fwlemax (sec-
ond row of plots) has considerably smaller variation in the
identified change points compared to its non-robust coun-
terpart Fmax (first row), supporting the contention that use
of Fwlemax offers a test that is more robust against outlying
observations.

For the second two change-point design, we consider
n = 60, x = 1, . . . , n, β2 = (20(1 − β21), β21) with β21 = 4,
and β3 = (β20 +40(β21 − β31), β31) using the same four dif-
ferent error distributions as for the one change design case
considered earlier. Figures 7 and 8 present the proportion
of cases for which the change points are correctly detected
with respect to the different values of β31 for the various
error distributions for each of the two change points, respec-
tively. When the errors are normal or t(5)-distributed with
no unusual points inserted, there is no significant difference
between the performance of the tests based on the two F
statistics. However, when both of the 15th and 35th points
positioned close to the change points are replaced with out-
lying points or when the error distribution is contaminated
(90% standard normal, 10% shifted normal), the test based
on Fmax fails entirely to detect the change points, with a
detection rate of zero observed across the simulation. As we

Figure 6. Density of the estimated change points by the
statistics Fmax and Fwlemax when there are two outliers

inserted into the generated data set.

Figure 7. Detection rates for the first change point
(a) ε ∼ N(0, 1) (b) ε ∼ N(0, 1) with two vertical outliers

(c) ε ∼ t(5) (d) ε ∼ N(0, 1) w.p. 0.9 and N(20, 1) w.p. 0.1.

showed for the first design, Figure 9 displays the densities
of the estimated change points determined using each of the
two statistics Fmax (first row of plots) and Fwlemax (second
row). In this case, even for standard normal error struc-
ture, the approach using Fwlemax results in smaller varia-
tion. Again, for the case of data generated with no abnormal
data points, the two approaches perform roughly equiva-
lently, identifying the change points at 20 and 40 reasonably
accurately. However, when we intentionally add two outliers
to the generated data, as Figure 10 shows, the density of
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Figure 8. Detection rates for the second change point
(a) ε ∼ N(0, 1) (b) ε ∼ N(0, 1) with two vertical outliers

(c) ε ∼ t(5) (d) ε ∼ N(0, 1) w.p. 0.9 and N(20, 1) w.p. 0.1.

Figure 9. Density of the change points estimated by the
statistics Fmax and Fwlemax.

the estimated change points estimated by the test based
on Fwlemax (second row of plots) again has considerably
smaller variation in the identified change points compared
to its non-robust counterpart Fmax (first row), offering fur-
ther evidence that use of Fwlemax offers a test that is more
robust against outlying observations.

4.2 The stagnant band height data

This data set has also been studied by [10] and some ref-
erences therein and examines how the stagnant surface layer

Figure 10. Density of the change points estimated by the
statistics Fmax and Fwlemax when there are two outliers.

height of water (stagnant band height) behaves as it flows
down an incline at differing rates. The response variable is
the logarithm of the band height in centimeters and the ex-
planatory variable is the logarithm of the flow rate of water
down an inclined furrow in grams per centimeter per sec-
ond. Each of the procedures based on the statistics Fmax

and Fwlemax estimate 0.04 as the change point value, with
parameters of the change point model estimated by each of
the OLS and the WLE methods, with very similar models
fit using each approach - see also Figure 11(a):

ŷi(ols) =

{
0.5450− 0.4217xi xi ≤ 0.04,

0.5689− 1.0201xi xi > 0.04;

ŷi(wle) =

{
0.5452− 0.4212xi xi ≤ 0.04,

0.5692− 1.0202xi xi > 0.04.

The original data set does not include any unusual obser-
vations, so to examine the robustness of both approaches, we
intentionally replaced the third data point of the response
with an outlying y-value when the independent variable is
−0.25. Under this contamination of the data set, the ap-
proach based on the statistic Fmax falsely estimates −0.25
as the change point – it is overly influenced by the outlying
value – but the proposed approach using the Fwlemax statis-
tic successfully estimates the change point occurring at the
“correct” original value of x = 0.04. Even for a model built
with a false change point imposed at x = −0.25, the model
with parameters estimated using the WLE approach fits
the data better. Figures 11(b) and (c) illustrate the change
point models built by OLS and the WLE methods when the
change is at 0.04 and at −0.25, respectively. Table 1 includes
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Figure 11. (a) Stagnant band height original data
(b) Stagnant band height data with one outlying point

(change point = 0.04) (c) Stagnant band height data with
one outlying point (change point = -0.25).

Table 1. Scale estimates for Stagnant data

σ̂WLE σ̂OLS

Original data (no outliers) 0.01898 0.01952
Outlier included, γ = 0.04 0.01945 0.21710
Outlier included, γ = −0.25 0.03739 0.19455

the scale estimates for the various fitted models. The model
standard errors are calculated as

σ̂WLE =

{∑n
i=1 ω̂(ri)ri(β̂1; β̂2)

2∑n
i=1 ω̂(ri)− 4

}1/2

,

σ̂OLS =

{∑n
i=1 ri(β̃1; β̃2)

2

n− 4

}1/2

,

where σ̂WLE denotes the robust weighted likelihood stan-
dard error estimate and σ̂OLS the usual least squares esti-
mate. For the original data, the estimates σ̂WLE and σ̂OLS

are very close to one another since there are no significant
outliers. However, when there is an outlying observation, the
robustness of σ̂WLE is evident.

4.3 The plant data

This data set has been studied by [27] and [10] and de-
scribes three response attributes (denoted RWC, RKV and
RKW) of a plant organ measured through time, which is the
sole covariate. As pointed out by [10], two change points are
indicated by biological theory for these data, for each of

Table 2. The estimated change points for the plant data

RWC RKV RKW

CP-1 CP-2 CP-1 CP-2 CP-1 CP-2

Fwlemax 330 470 300 440 450 600
Fmax 330 470 300 440 450 600
[27] 300 450 300 450 450 600
[10] 351.63 480.12 350.80 478.40 450.43 577.29

Figure 12. (a) RWC (b) RKV (c) RKW.

the three response variables. We fit the two change points
model in (4) for each of these three attributes. Table 2 lists
the change points estimated by the approaches based on
Fwlemax, Fmax, and by the analyses reported by [27] and
[10] for each of the three attributes. The models fit by the
WLE method are

ŷRWC(wle) =

⎧⎪⎨
⎪⎩
0.2393 + 0.0021xi, 140 ≤ xi ≤ 330,

1.2293− 0.0009xi, 330 < xi ≤ 470,

1.5113− 0.0015xi, 470 < xi ≤ 760;

ŷRKV (wle) =

⎧⎪⎨
⎪⎩
0.0534 + 0.0026xi, 140 ≤ xi ≤ 300,

0.5034 + 0.0011xi, 300 < xi ≤ 440,

1.2074− 0.0005xi, 440 < xi ≤ 710;

ŷRKW (wle) =

⎧⎪⎨
⎪⎩
−0.2078 + 0.0023xi, 140 ≤ xi ≤ 450,

0.4672 + 0.0008xi, 450 < xi ≤ 600,

0.8272 + 0.0002xi, 600 < xi ≤ 710.

As depicted by Figure 12, each of the approaches based
on Fwlemax and Fmax resulted in very similar fits (in most
places, the dotted line, representing WLE is obscured by the
solid line representing OLS, with only very slight variations
visible).
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In order to examine the robustness of the WLE and OLS
approaches to change point estimation in this case, the re-
sponse variable RKV was considered, with the 20th value
of response variable for RKV replaced by an outlying value.
As in the stagnant band height data example, the approach
based on the classical Fmax statistic is overly influenced by
the outlier, and falsely estimates the position of the outly-
ing data point as one of the change points suggesting the
change points are (400, 460), while the approach based on
the robust Fwlemax statistic estimates the change points as
(310, 430) (as opposed to (300, 440) for the original data –
a mild change). Figure 13 illustrates the model fits for the
change points estimated by the two competing approaches.
For both of the change points, the models with the parame-
ters estimated by the approach based on WLE clearly offer
a better fit to the data, a finding that is also supported
by the difference in scale estimates, σ̂WLE = 0.03281 and
σ̂OLS = 0.07949 between the two methods in Figure 13(a),
and σ̂WLE = 0.0258, σ̂OLS = 0.0853 between the two meth-
ods in Figure 13(b).

Figure 13. RKV with an outlying data;
(a) The change points estimated using the Fmax statistic are

(400, 460) (b) The change points estimated using the
Fwlemax statistic are (310, 430).

5. CONCLUSION

Detecting change points within linear regression models
is essential for better model fit and interpretation when un-
derlying theory or visualization suggest that “bent” lines
reflect an appropriate model. However, the potential for out-
lying data points can result in poor fits to available data as
these outlying points can be confused as change points in
the relationship between the response and the covariates.
In this paper, we propose a method based on grid search

and hypothesis testing to estimate unknown change points
in a linear regression context. The maximum of partial Fwle

statistics, Fwlemax, based on weighted likelihood residuals
is proposed as a test statistic to determine the appropri-
ate position of change points. This approach offers a robust
alternative to a test based on the maximum of classical F
statistics, Fmax, based on ordinary least squares residuals.
We extensively studied the finite sample performance of the
proposed approaches based on Fwlemax and Fmax on sim-
ulated and real data for models incorporating one and two
change points, respectively, using a bootstrap approach to
characterise the sampling distributions of the competing test
statistics. All of the considered numerical studies strongly
supported the contention that the proposed statistic offers
robustness against outlying observations.

We note that for the case of two change points, we pro-
posed grid searching of each possible combinations of poten-
tial change points. We acknowledge that for situations for
which there are more than two potential change points, this
approach may not be practical. It may be possible to pur-
sue grid-search methods that seek to sequentially determine
multiple change points rather than searching over a high-
dimensional grid, although such an investigation falls be-
yond the scope of the present investigation which was rather
intended to establish the robustness properties of the WLE
approach to change point estimation.
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