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An integrative classification model for multiple
sclerosis lesion detection in multimodal MRI

FENGQING (ZOE) ZHANG*, JI-PING WANG, AND WENXIN JIANG

We study a classification problem of multiple sclerosis
(MS) lesions in three dimensional brain magnetic resonance
(MR) images. Segmentation of MS lesions is essential for
MS diagnosis, assessment of disease progression and eval-
uation of treatment efficacy. Accurate identification of MS
lesions in MR images is challenging due to variability in
lesion location, size and shape in addition to anatomical
variability between subjects. We propose a supervised clas-
sification algorithm for segmenting MS lesions, which inte-
grates the intensity information from multiple MRI modal-
ities, the texture information, and the spatial information
in a Bayesian framework. A multinomial logistic regression
is employed to learn the posterior probability distributions
from the intensity information, combined from three MRI
modalities. Texture features are selected by the Elastic Net
model. The spatial information is then incorporated using a
Markov random field prior. Finally, a maximum a posteriori
segmentation is obtained by the graph cuts algorithm. We
illustrate the effectiveness of our proposed model for lesion
segmentation using both the synthetic BrainWeb data and
the clinical neuroimaging data.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62H30;
secondary 62H35.

KEYWORDS AND PHRASES: Supervised classification algo-
rithm, Multiple sclerosis, Segmentation, Multimodal MRI.

1. INTRODUCTION

Multiple sclerosis (MS) is an autoimmune disease that
affects the brain and spinal cord. MS lesions may form in
the white matter of central nervous system at any location,
and hence clinical presentations may vary. Continuing lesion
formation in MS often brings about physical disabilities in
different organs of the body and, sometimes, to cognitive
decline. There are about 250,000 to 350,000 MS patients in
the United States alone. Though it is unknown what exactly
causes this disease, a virus or gene defect or both are con-
sidered as the most probable causes. Magnetic Resonance
Imaging (MRI) is the most sensitive technique to detect
MS lesions and has proved to be an important paraclini-
cal tool for MS diagnosis, assessment of disease progression,
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and evaluation of the efficiency of drug therapy. A variety of
MRI modalities have been widely used in assessment of MS
lesions, including T1-weighted (T1-w), T2-weighted (T2-w),
proton density-weighted (PD-w), and fluid-attenuated in-
version recovery (FLAIR) MRI. In MS clinical trials, mea-
sures derived from MRI, such as lesion load, have been es-
tablished as standard outcome markers to monitor the nat-
ural history and treatment effects of the disease. Correct
segmentation of MRI images with MS lesions is the first
essential step in characterizing the MS lesion load, and in
calculating and interpreting more specialized measures of
damage. The process of segmenting MRI images with MS
lesions is to assign an anatomically meaningful label to each
voxel of the image. Gray matter (GM), white matter (WM),
cerebrospinal fluid (CSF) and MS lesion (MSL) are the four
main brain tissue types of interest.

Segmentation of MRI images with MS lesions is challeng-
ing due to several reasons. First, MRI images contain various
noise artifacts such as intratissue noise and thermal noise,
and thus have a much lower signal-to-noise ratio than regu-
lar images. Second, the geometry of the brain tissues is com-
plex and hence MRI images are textured in complex ways.
Third, the intensity distributions of different tissues have
non-negligible overlaps. Classifiers solely based on voxel in-
tensity values tend to have poor performance in segmenting
MRI images. Fourth, due to the limited spatial resolution of
MRI, a voxel may contain more than one tissue type, which
is known as the partial volume (PV) effect. Voxels located
on the borders of various tissues tend to contain a mixture
of tissues. Last, abnormal structures of MS lesions make the
segmentation task even more difficult, because they cannot
be precisely defined. In general, MS lesions are brighter than
the surrounding WM in T2-w, PD-w, and FLAIR images
and are darker than the surrounding WM in T1-w images.
But this definition lacks precision as MS lesions have large
overlapping in intensity distribution with healthy tissues.
For example, in T1-w images, lesions have large intensity
distribution overlapping with GM while the borders of le-
sions and CSF are not clear in T2-w images.

Manual segmentation of MS lesions by radiologists is time
consuming and is prone to large intra- and inter-expert vari-
ability. Therefore, it is highly desirable to develop fully au-
tomated and reproducible methods for segmenting MRI im-
ages. A few methods have been proposed in the literature.
A Parzen window density estimation method was used for
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the segmentation [3] after performing histogram-based in-
tensity normalization [15]. Tomas-Fernandez and Warfield
proposed to segment an MRI image by comparing its inten-
sities on a voxel-by-voxel basis to a group of MRI images of
healthy subjects [22]. While voxel intensity information can
be used to effectively detect the MS lesions, incorporating
some spatial information could improve the segmentation.
For example, Souplet et al. proposed to use a Gaussian mix-
ture model together with a priori information of the MNI
registered atlas [17]. A constrained Gaussian mixture model
was proposed to simultaneously include spatial and intensity
features [4]. Additionally, several studies combined inten-
sity information from multiple MRI modalities for MS seg-
mentation. For example, an automated statistical method
was proposed to incorporate multiple MRI modalities using
logistic regression [21]. A local logistic regression together
with inter-modal coupling regression was developed to cap-
ture the relationships between imaging modalities [23]. In
addition, some recent methods employed a large set of fea-
tures calculated from image intensities. Morra et al. used an
Adaboost approach with more than 10,000 features such as
Haar-like filters of various shapes and sizes [14]. Kroon et
al. proposed a principal component analysis approach with
several hundred features such as intensity derivatives and
intensity of the neighbor voxels [12]. While these methods
all provide promising ways for MS lesion segmentation, no
single method has been shown to have dominant advantages
over the rest, probably due to the heterogeneity of lesions
and variability in the MRI acquisitions [6]. MS lesion seg-
mentation remains an open problem.

In this study, we proposed a Bayesian framework for seg-
menting MRI images with MS lesions. Our proposed ap-
proach offers a flexible probabilistic model to incorporate
not only intensity information from multiple MRI modal-
ities (T1-w, T2-w, PD-w, and FLAIR), but also a large
set of texture features while accounting for spatial informa-
tion from voxel neighborhood through Markov random field.
The rest of this paper is organized as follows. We introduce
the mathematical formulation of MS segmentation problem
in Section 2. Since a voxel is basically a three-dimensional
pixel, in this paper we will use voxels and pixels interchange-
ably. We present our proposed model to integrate intensity
information from multiple modalities, spatial information as
well as texture features in Section 3. We evaluate our model
using both simulated brain data and clinical neuroimaging
data of MS patients in Section 4. Finally Section 5 concludes
with some discussion and future work.

2. PROBLEM FORMULATION

Segmentation of MRI images with MS lesions is to as-
sign a tissue type to each point in the image, where we are
particularly interested in four tissue types, i.e., gray mat-
ter (GM), white matter (WM), cerebrospinal fluid (CSF)
and MS lesions (MSL). Consider an image of n pixels,
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x = (x1,...,X,), where each pixel is d-dimensional vec-
tor, i.e., x; € R%. The d dimensions can represent intensity
information from multiple MRI modalities and/or a large
set of texture features. Let K = {1,..., K} be the set of
K classes. In our segmentation problem, classes can be four
tissue types of interest, i.e., GM, WM, CSF and MSL. Image
labels are discrete values, denoted as 'y = (y1,...,yn). For
example, y; can be 0, 1, 2 or 3, representing GM, WM, CSF
or MSL. The goal of our MRI image segmentation problem
is to assign a label y; € K to each pixel vector x;.

In our Bayesian framework, the labels y are usually esti-
mated by maximizing the posterior distribution as follows:

(1)

where p(x|y) is the likelihood function and p(y) is the prior
over the image labels. Assuming conditional independence
of the features given the labels, i.e., p(x|y) = [\ p(x:i|vi),
we can write the posterior as below:

p(ylx) o< p(x|y)p(y).

() p(ylx) = ]ﬁp(xmp(y)

where g(x) = % is a factor not depending on y.

Further, in the prior, we assume the classes are equally likely,
ie., ply; = k) =1/K for any k € K. Thus, the maximum a
posteriori criterion is given as follows:

3)

y = arg max {p(x|y)p(y)}
yexn
n

= arg max {3 _(log p(yifx:)) +logp(y)}-
=1

As discussed earlier, our proposed model can naturally in-
corporate not only intensity information from multiple MRI
modalities, but spatial information from neighborhood vox-
els, and even a large set of texture features. More specifi-
cally, intensity information and texture features are repre-
sented by class densities p(y;|x;), which can be learned from
training data. Notice that p(y;|x;) gives us a general form
for regressing y on x and thus many potential models, such
as logistic regression and penalized regression, can be used
here. On the other hand, the spatial information can be
captured by the prior p(y) that encourages neighborhood
homogeneity for the belief that neighboring pixels should
have higher probability to belong to the same type of tissue.
Although mathematically simple, this type of maximum a
posteriori estimation presents computational challenges. In
this paper, we adopt the graph cuts algorithm proposed by
Boykov et al. [2]. Details of our proposed model are discussed
in the following section.



3. METHODS

3.1 Multinomial logistic regression

If we only consider intensity values from T1-w, T2-w,
and PD-w MRI images, each pixel x; is a three dimensional
vector, combining intensity information from multiple MRI
modalities. We can directly use a multinomial logistic re-
gression. More specifically,

T
p(yi = K|x;, B) = exp(Bi xi)

4 — )
(4) 1+ ZJK:? exp(,@jrxi)

where 3 are regression coefficients and k=1,..,.K-1.

To include texture features, we first apply the Elastic Net
model [26] for feature selection and then use the multinomial
logistic regression to combine the intensity information with
the selected texture information. Due to the heterogeneity
in the data, all features are standardized as recommended
by Zou and Hastie [26]. The resulting model maximizes the
penalized likelihood by incorporating the elastic net penalty.

3.2 Markov random field

In a Markov random field (MRF), the pixel sites S =
{1, ...,n} are related to one another via a neighborhood sys-
tem, defined as N = {N;,7 € S}. A random field z is a
MRF on S with respect to a neighborhood N if and only if
p(z) > 0 and p(z;|2s—:) = p(zi]2n,). A MRF can be charac-
terized by a Boltzmann distribution (also called Gibbs dis-
tribution), p(z) = Z texp(—U(z)), where Z is a normaliz-
ing constant and U(z) is an energy function. One commonly
used MRF for capturing spatial information is the Ising
model p(z) = C(ﬁ)*leacp{ZﬁV ai(zi) + By jwil (2 =
zj)}, where C(f) is a normalizing constant, Ziv a;(z;) rep-
resents the external fleld, and 837, ; wi;I(z; = z;) captures
the internal field, a summation over all neighboring pairs z;
and z;. Here, I(-) is the identity function. More specifically,
in our model, we used a MRF prior as below:

(5) ply) = %exp(uzf(yi =),

i~j

where Z is a normalizing constant, and the parameter p con-
trols the level of smoothness. Notice that under the Equation
5, we have p(y; = k) = 1/K for any k € K.

3.3 Maximum a posteriori via graph cuts

Given the posterior densities p(y;|x;) (Equation 4) and
prior p(y) (Equation 5), the maximum a posteriori can be
written as follows:

(6) y=arg m}g},{z —log p(yilxi, B) — Y I(yi = y))}-

e
Y €S g

This is a combinatorial optimization problem involving
unary and pairwise interaction terms, which poses compu-

tational challenges. We used the Graph Cuts algorithm pro-
posed by Boykov et al. [2]. Note that Z is the constant nor-
malization term and thus is dropped in Equation 6. The
tuning parameter p balances the contribution of intensity
information and spatial information to the model estima-
tion and could be selected using cross-validation.

3.4 Texture analysis

Image texture feature can be regarded as the spatial vari-
ation of pixel intensities calculated from a predefined neigh-
borhood. Statistical approaches for texture analysis attempt
to represent the texture indirectly by statistics that sum-
marize the distributions and relationships between the gray
level of an image.

In the first-order statistical texture analysis, texture in-
formation is extracted from the image intensity histogram
or pixel occurrence probability. The commonly used his-
togram based texture features include mean, variance, skew-
ness, kurtosis, energy and entropy. These features can also
be calculated from the histogram of absolute values of in-
tensity gradients.

In the second-order statistical texture analysis, texture
information is calculated from the joint probability distribu-
tions of a pair of pixels at certain distances and orientations.
The gray-level co-occurrence matrix (GLCM) describes the
number of times that a pair of pixels having gray-level val-
ues ¢ and j occurs at a distance d apart along a given direc-
tion # from a predefined neighborhood. For computational
consideration, an image is often rebinned to N, gray levels
where N, is a positive integer, such as 8, 16, 32, and 64. For
an image of Ny gray levels, the GLCM is a Ny, x N, ma-
trix. Common values for € are 0°,45°,90°, 135°. To capture
fine texture information, a relatively small distance range of
d=1,...,4is commonly used.

Haralick et al. [8] proposed a set of statistics that are ex-
tracted from the GLCM to quantify the spatial dependence
of gray-level values as texture features. Let p(i,j) be the
(7,7)th entry in the given GLCM. The three statistics we
considered are described as below:

e Energy: sum of squared elements in the GLCM,

N, N,
>0 (i)

i=1 j=1

(7)

e Contrast: measures of the intensity contrast between a
pixel and its neighbor,

N, N,
>N - 5)%p(i, ).

i=1 j=1

(8)

e Homogeneity: measure of the closeness of the distribu-
tion of elements in the GLCM to the GLCM diagonal,

Ny Ny
(9) DO w1+ 1i— ).

i=1 j=1
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In higher-order statistical texture analysis, a set of texture
features based on gray-level run length matrix (GLRLM) is
studied by Galloway [5]. The GLRLM matrix element (3, j)
describes the number of times that a predefined neighbor-
hood contains a run of length j consisting of pixels having
gray level 7 along a given direction . Let N, be the number
of different run lengths. Hence, the GLRLM is a Ny x N,.
matrix. Here p(i, ) is the (4, j)th entry in the given GLRLM.
The four texture measures we used are listed as follows:

e Short runs emphasis,

A Pl f) SR
(10) DSOS TEEEYD plisg).
i—1j=1 7 i=1 j=1
e Long runs emphasis,
Ny N, Ny N,
(11) DO P/ Y] plis ).
i=1 j=1 i=1 j=1
e Gray level nonuniformity,
NQ Nr NQ Nr
(12) SO 6,070 pli, ).
i=1 j=1 i=1 j=1
e Run length nonuniformity,
N.,- Ng NQ Nr
(13) O w372 plis ).
j=1 i=1 i=1 j=1

In this study, a large set of texture features generated
from the first-order, second-order and higher-order statisti-
cal texture analyses are included. We consider four different
distance values d ranging from 1 to 4. For each distance
value, we extract features (e.g., energy) from all four direc-
tions 6 = 0°,45°,90°, 135°. Texture features are selected by
the Elastic Net model and then included in the multinomial
logistic regression as input data for predicting MS lesions.

4. RESULTS
4.1 BrainWeb synthetic data

To evaluate segmentation algorithms, synthetic data and
real clinical data are often both used. Synthetic images are
simulated by a computer which have the advantages that
users can fully control all the parameters in the image and
the ground truth is known. In MS segmentation, the images
most widely used for validation are those from BrainWeb
[13]. These images were produced by an MRI simulator,
which combines an anatomic model and MRI acquisition
physics to generate images with different nonuniformity and
noise level. Additionally, it is essential to validate a segmen-
tation algorithm on real clinical images. Lesion regions are
manually segmented by radiologists, which is also prone to
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Figure 1. An image of different tissue type labels. Different
tissue types are color coded as follows: 0 = Background, 1 =
CSF, 2 = Grey Matter, 3 = White Matter, 4 = Fat, 5 =
Muscle/Skin, 6 = Skin, 7 = Skull, 8 = Glial Matter, 9 =
Connective, 10 = MS Lesion.

large intra- and inter-expert variability. These segmented le-
sion labels can be used to evaluate model prediction. One
limitation of using clinical data is the lack of a ground truth
for the MS lesion.

We first evaluated our model on MRI images with MS
lesions obtained from the BrainWeb. Three coregistered
modalities were used including T1-w, T2-w, and PD-w MRI.
Voxel size is 1mm x Imm x Imm. Figure 1 shows an image
of tissue type labels. Each pixel was labeled from 0 to 10,
representing one of the eleven possible tissue types. These
labels serve as the ground truth to evaluate our model per-
formance. Pixels were colored based on their labels accord-
ing to the color bar. Here, we are particularly interested
in segmenting the images to GM, WM, CSF, and MS le-
sions, while everything else is considered as background in
our model.

Figure 2 shows one T1-w MRI image, its contour plot as
well as the intensity histograms of WM, GM, CSF and MS
lesions. Clearly the intensity distributions of WM, GM, and
CSF have different peak locations though the overlapping
of these distributions is not negligible. However, the inten-
sity distribution of MS lesions has a large overlap with the
distribution of GM in T1-w MRI images. As a result, classi-
fiers solely based on intensities cannot produce satisfactory
segmentation results.

Figure 3 shows one T2-w MRI image and its contour plot,
along with the intensity histograms of WM, GM, CSF and
MS lesions. Similar observations can be found in Figures 2
and 3. One difference is that the intensity distribution of
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Figure 2. A T1-w MRI image with its contour plot and
intensity histograms of WM, GM, CSF and MS lesions.
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Figure 3. A T2-w MRI image with its contour plot and
intensity histograms of WM, GM, CSF and MS lesions.
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Figure 4. A PD-w MRI image with its contour plot and
intensity histograms of WM, GM, CSF and MS lesions.

Combined PD, T1,T2

Figure 5. T1-w, T2-w, and PD-w MRI gray images and the
combined color image.

MS lesions has a large overlap with the distribution of CSF
in T2-w MRI images.

Figure 4 shows one PD-w MRI images, its contour plot,
and the intensity histograms of WM, GM, CSF and MS
lesions. We can see in general PD-w MRI images do not
provide good intensity contrast among WM, GM, CSF and
MS lesions.

As discussed earlier, we proposed to combine intensity
information from multiple MRI modalities. Figure 5 shows
T1-w, T2-w, and PD-w MRI gray images and the combined
color image. The combined color image serves as the input
of our model. Texture features are not calculated because
the simulated BrainWeb data is unlikely to have texture
information similar to true MRI images.

Segmentation results on BrainWeb MRI data at 20% in-
tensity non-uniformality level and 3% noise level from our
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Lesion

Figure 6. Segmentation results obtained by our proposed
model.

model are shown in Figure 6. It can be seen that our model
performed well for segmenting the images to GM, WM, CSF,
and even for lesion detection.

In the literature, the most widely employed measure
of segmentation accuracy is the Dice similarity coefficient
(DSC).

B 2 x TP
~ FP+FN+2xTP’

where TP, FP, and FN stand for true positives, false pos-
itives, and false negatives respectively. The value of DSC
varies between 0 and 1, with 0.7 normally considered as a
good segmentation [6]. It should be noted that DSC = 0.7
is considered as the clinical stratification for lesion detection
[25]. In addition, a comparison between two segmentations
given by two different human experts assuming one person’s
segmentation result is the ground truth is likely to yield a
DSC lower than 0.7 [9].

Hence, we summarized the Dice similarity coefficients ob-
tained from our model for different tissue types with differ-
ent values of the parameter p in Figure 7. The parame-
ter p controls the spatial smoothness. With varying level
for p, we can see how this parameter affects classification
results. Further, the optimal parameter y was selected by
cross-validation and we summarized the DSC obtained by
our model in Table 1. For each time, four out of the five
slices from one brain volume simulated by BrainWeb were
used as the training set and the leave-out slice was used as
the test set. This process was repeated five times, as five-fold
cross validation.

DSC

In addition, we compared our proposed multinomial logis-
tic regression with Markov random field (MLMR) approach
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Figure 7. Dice similarity coefficients for different tissue types
with different values of the tuning parameter p.

Table 1. Dice similarity coefficients for different tissue types
from five-fold cross validation using five image slices from one
simulated brain volume by BrainWeb

Slice Number CSF GM WM Lesion Backg
96 0.93 094 0.97 0.91 1
97 091 0.93 097 0.73 0.99
98 0.92 0.94 0.97 0.90 1
99 091 094 0.98 0.78 0.99
100 0.92 0.93 097 0.81 0.99

with two other methods, including the constrained Gaus-
sian mixture model with curve evolution (CGMM+CE) and
KVL algorithm [4, 24]. These methods were tested on bias-
free simulated MRI data taken from BrainWeb with 3%
noise level. Experiments were done on 61 slices (axial slices
60-120) that contain 93% of the lesion burden. Dice simi-
larity coefficients were summarized in Table 2. Results from
CGMM+CE and KVL algorithms were reported in Freifeld
et al. [4]. Result from MLMR was calculated on the same
data set using four-fold cross validation. It can be seen that
MLMR. achieved higher dice similarity coefficients, com-
pared with the other two methods.

4.2 Real clinical data

Datasets of real MR images used for evaluation are pub-
licly available from the MS Lesion Segmentation Challenge
2008 website [18]. There are 10 cases (subjects) provided by
the University of North Carolina at Chapel Hill (UNC) with
lesion labels publicly available. Lesion voxels were manually
segmented by radiologists. For each case, three MRI modali-
ties are available (T1, T2, and FLAIR). Data are re-sliced to



Table 2. Comparison of dice similarity coefficients across
different methods from four-fold cross validation using one
simulated brain volume by BrainWeb. Here, KVL,
CGMM+CE and MLMR represent the algorithm developed by
Van Leemput et al. [24], the constrained Gaussian mixture
model with curve evolution, and our proposed multinomial
logistic regression with Markov random field approach
respectively.

KVL CGMM+CE MLMR
0.80 0.79 0.84

be 512 x 512 x 512 with resolution 0.5mm x 0.5mm x 0.5mm.
MRI sequences of the data are co-registered.

4.2.1 Preprocessing

The data were preprocessed before performing lesion seg-
mentation, including skull-stripping and bias field correc-
tion (Figure 8). The skull-stripping step is to extract the
intracranial space from the image. Connected component

Figure 8. Preprocessing steps: (a) a given T1-w image slice,
(b) skull-stripped T1-w image slice, (c) skull-stripped and
unbiased T1-w image slice, (d) a given T2-w image slice, (e)
skull-stripped T2-w image slice, (f) skull-stripped and
unbiased T2-w image slice, (g) a give FLAIR image slice, (h)
skull-stripped FLAIR image slice, (i) skull-stripped and
unbiased FLAIR image slice.

o 05 1 07 08 Q9 1

Figure 9. Preprocessing steps: (a) segmentation by fuzzy
c-means combined with true lesion labels, (b) intensity
histograms for four tissue types (CSF, GM, WM, LS) in T1-w
images, (c) intensity histograms for four tissue types in T2-w
images, (d) intensity histograms for four tissue types in FLAIR
images.

labeling was used to identify the skull. A bias field is a low
frequency spatial intensity variation that corrupts MRI im-
ages because of the inhomogeneities induced by the radio-
frequency coil in MRI machines. Such inhomogeneities make
intensity-based classification of MRI images difficult [1]. The
bias field correction step is to correct the fact that two voxels
belonging to the same tissue type may not have the same in-
tensity. Lighting correction was applied to fit a linear plane
to estimate the bias field. Intensity normalization was con-
ducted by converting the units from each imaging modality
into z scores based on the methodology developed by Shi-
nohara et al. [16].

Intensity histograms for each tissue type under three MRI
modalities are shown in Figure 9. For this data set, only
lesion labels are provided. In order to plot the intensity dis-
tributions for all tissue types, a fuzzy c-means algorithm [1]
was first applied to segment the image into WM, GM, CSF,
and background. Lesion labels provided by the MS Lesion
Segmentation Challenge 2008 website were then combined
with the segmentation result from the fuzzy c-means algo-
rithm (Figure 9). It can be seen that the intensity overlaps
of these tissue types are much larger, compared with Brain-
Web data (Figures 2, 3).

4.2.2 Lesion segmentation

Our proposed model was applied to the skull-stripped
and unbiased image slices from all three modalities. Texture
features including mean and variance of intensities, mean
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Table 3. Comparison of lesion segmentation performance from different methods using five-fold cross validation. These
methods are three variants of our proposed multinomial logistic regression with Markov random field (MLMR) approach.

Methods  Accuracy Sensitivity Specificity DSC Lesion DSC Others
MLMRF 0.99 0.33 0.99 0.47 0.99
MLMRL 0.98 0.59 0.98 0.25 0.99
MLMRLT 0.99 0.57 0.99 0.50 0.99

and variance of absolute values of intensity gradients, gray-
level co-occurrence matrix based features (contrast, energy,
and homogeneity from all four directions), and gray-level
run length matrix based features (short run emphasis, long
run emphasis, gray-level nonuniformity, run length nonuni-
formity from all four directions) with neighborhood sizes 5,
7, and 9 were calculated for T1-w and FLAIR images. T2-w
images are not used for texture calculation because T2-w
images do not provide as good tissue type contrast as T1-w
and FLAIR images.

Five image slices were taken from UNC dataset case 1. We
compared three variants of our proposed model MLMR on
their lesion segmentation performance using five-fold cross
validation. In the first approach (MLMRF), we applied our
model multinomial logistic regression with Markov random
field to fully combine T1, T2, and FLAIR intensity infor-
mation from the whole image during training (Figure 10
part(a)). The second approach (MLMRL) used MLMR to
locally combine T1, T2, and FLAIR intensity information
from a block of the image containing lesion during training
(Figure 10 part(c)). The third variant (MLMRLT) used the

. :.
(d) (e) )

Figure 10. Lesion segmentation: (a) an image slice with
combined intensities from T1, T2, and FLAIR modalities, (b)
the true lesion region, (c) a block of the image containing
lesion,(d) lesion segmentation by MLMRF, (e) lesion
segmentation by MLMRL, (f) lesion segmentation by
MLMRLT.
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same intensity information as MLMRL but with extra tex-
ture information. Texture features were selected by the Elas-
tic Net model during training stage. Cross validation was
used to evaluate model performance. Segmentation results
from the three approaches are shown in Figure 10 parts (d),
(e) and (f). Compared with the true lesion region (Figure 10
part(b)), we can see that MLMRLT is a good compromise
between MLMRF and MLMRL.

In addition, classification accuracy, specificity, sensitiv-
ity, and dice similarity coefficients are summarized in Ta-
ble 3 based on five-fold cross validation. Comparing the first
two approaches, we found MLMRF has larger dice similar-
ity coefficients (DSC) for lesion segmentation while MLMRL
has higher sensitivity to detect lesion (Table 3). By adding
texture features, MLMRLT obtained higher DSC for lesion
compared to MLMRL, while achieving higher sensitivity for
lesion detection compared to MLMRF (Table 3). In the lit-
erature, it is reported that average sensitivity values are
0.42 £+ 0.13 for the UNC data sets [22]. Hence, the MLM-
RLT model performed well for lesion detection.

Based on the above results, we then applied MLMRLT
(multinomial logistic regression with Markov random field
combining local intensity information and texture features)
to all the image slices of the 10 labeled cases provided by
UNC for the MS Lesion Segmentation Challenge 2008. For
each case (subject), half of the data were used as the train-
ing set and the remaining half were used as the test set.
As sensitivity and positive predictive value (PPV) were re-
ported for the winner algorithm of the MS Segmentation
Challenge 2008 [7, 17], we compared results from MLMRLT
and the winner algorithm [17] using these two metrics (Ta~
ble 4). PPV is defined as the proportion of predicted positive
results that are true positives. As shown in Table 4, MLM-
RLT outperformed the winner algorithm for 8 of 10 cases.
For the two cases (UNCO04 and UNC09), MLMRLT achieved
higher sensitivity but lower PPV than the winner algorithm.
The average sensitivity value obtained by MLMRLT was
0.48 + 0.14, better than the average values (0.42 £ 0.13) re-
ported in the literature [22].

For texture information, features calculated from FLAIR
images with neighborhood size 7 were most helpful to im-
prove classification performance. In addition to the intensity
information from T1-w, T2-w, and FLAIR images, the useful
texture features included the average gradient magnitude,
contrast, average long runs emphasis, run length nonuni-
formity at 90° and 135°. Figure 11 shows the local feature



Table 4. Comparison of our model MLMRLT with the winner
algorithm of the MS Segmentation Challenge 2008

Methods  Winner algorithm MLMRLT

Patient Sensitivity PPV Sensitivity PPV
UNCO01 0.01 0.01 0.40 0.41
UNCO02 0.37 0.39 0.59 0.39
UNCO03 0.12 0.16 0.26 0.37
UNCo04 0.38 0.54 0.64 0.18
UNCO05 0.38 0.08 0.50 0.23
UNCO06 0.09 0.09 0.24 0.09
UNCOo7 0.57 0.18 0.61 0.21
UNCO08 0.27 0.20 0.48 0.21
UNCO09 0.16 0.43 0.56 0.32
UNCO010 0.22 0.28 0.55 0.37
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Figure 11. Local feature maps for lesion segmentation: (a)
the lesion region segmented by a radiologist, (b) the T1-w
image slice, (c) the T2-w image slice,(d) the FLAIR image
slice, (e) the map of average gradient magnitude, (f) the map
of contrast, (g) the map of average long runs emphasis, (h)
the map of run length nonuniformity at 90°, (i) the map of
run length nonuniformity at 135°.

maps. MS lesions are darker than the surrounding WM in
T1-w images and the local maps of average gradient mag-
nitude, contrast, and run length nonuniformity (Figure 11
parts (b), (e), (f), (h) and (i)) and are brighter than the
surrounding WM in T2-w and FLAIR images and the local
map of average long runs emphasis (Figure 11 parts (c), (d),
and (g)).

5. DISCUSSION

In this study, we proposed a Bayesian framework for MS
lesion segmentation that integrates the intensity informa-
tion from multiple MRI modalities, the spatial information
from neighborhood pixels, and the texture information. Re-
sults from both synthetic data and real clinical data show
that the overlapping in intensity distribution of these dif-
ferent tissue types is not negligible. For example, the in-
tensity overlaps between MS lesions and GM in T1-w MRI
images and between MS lesions and CSF in T2-w MRI im-
ages are both substantial. Combining intensity information
from different MRI modalities helps to better differentiate
lesion regions from other tissue types. One innovation of this
paper is to incorporate the inherent spatial information of
pixels, which tend to encourage neighborhood homogeneity
and reduce noise in classification. The smoothness parame-
ter 1 is a tuning parameter that balances the contribution of
intensity information and spatial information to the model
estimation. Furthermore, we examined a large number of
texture features using the clinical data. Texture features de-
rived from FLAIR images with neighborhood size 7 were
found to be most helpful. In summary, both synthetic data
and clinical data analyses have demonstrated the effective-
ness of our proposed model.

In the analysis of clinical data, we observed that the num-
ber of lesion pixels is much smaller than the number of non-
lesion pixels, which leads to imbalanced two classes. The
class imbalance problem poses great challenges for classifi-
cation models [20, 10]. To deal with the imbalance in the
number of lesion and non-lesion pixels, we proposed to use
local intensity information from a block of the image con-
taining lesion during the training stage. This approach pro-
vides a good compromise between sensitivity and specificity.
We compared the lesion segmentation performance of three
variants of our proposed multinomial logistic regression with
Markov random field approach. MLMRLT obtained higher
DSC for lesion compared to MLMRL, while obtaining higher
sensitivity for lesion detection compared to MLMRF. For fu-
ture research, it is worth examining cost-sensitive classifiers
for handling the class imbalance problem in lesion detection
[11, 19]. As we put more penalization on false negatives than
false positives, sensitivity is likely to be improved at the ex-
pense of specificity. An alternative approach to handle the
class imbalance problem is to use re-sampling based tech-
niques to create an artificially balanced training set, such as
random oversampling and undersampling, informed under-
sampling, and adaptive synthetic sampling [10]. The Ising
prior used in our model for capturing spatial information
is a non-informative prior. Another interesting extension is
to utilize a Markov random field that reflects the imbalance
in the number of different tissue types. Additionally, future
studies can consider to explore 3-dimensional (3D) texture
features derived directly from 3D MRI data instead of 2-
dimensional MR image slices.
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