Supplementary Materials for "An L^2 -norm based ANOVA test for the equality of weakly dependent functional time series"

Jia Guo

College of Economics and Management, Zhejiang University of Technology

and

Ying Chen

Department of Statistics and Applied Probability, National University of Singapore

October 18, 2018

A Appendix: Technical proofs

Lemma A.1 is a natural result of the central limit theorem for functional time series developed by Horváth et al. (2013).

Lemma A.1. Under Assumptions 1, 2 and the null hypothesis, as $n \to \infty$, we have $\mathbf{z}_n(t) \stackrel{d}{\longrightarrow} \mathbf{z}(t) \sim GP_k\{\mathbf{0}, diag(c_1, \ldots, c_k)\}$. In particular, when Assumption 5 is satisfied, we have $\mathbf{z}_n(t) \stackrel{d}{\longrightarrow} \mathbf{z}(t) \sim GP_k(\mathbf{0}, c\mathbf{I}_k)$.

Proof of Lemma A.1. From Theorem 1 in Horváth et al. (2013), we know that $z_{ni}(t) = \sqrt{n_i} \{ \bar{y}_{i.}(t) - \mu_i(t) \} = \sqrt{n_i} \frac{1}{n_i} \sum_j (y_{ij} - \mu_i) = \frac{1}{\sqrt{n_i}} \sum_j \epsilon_{ij} \xrightarrow{d} \operatorname{GP}\{0, c_i(t, s)\}, 1 \le i \le k$. Since different groups of samples are independent, we can easily get the conclusion. \Box

Proof of Lemma 1. Firstly, by Lemma A.1, the continuous mapping theorem for random elements taking values in a Hilbert space (Billingsley 1968, p.34; Cuevas et al. 2004), and the fact that $\mathbf{M}_n \to \mathbf{M} = \mathbf{I}_k - \mathbf{b}\mathbf{b}^{\top}$ with $\mathbf{b} = (\sqrt{\tau_1}, \dots, \sqrt{\tau_k})^{\top}$, we have

$$T_n = \int_{\mathcal{T}} \mathbf{z}_n(t)^\top \mathbf{M}_n \mathbf{z}_n(t) dt \xrightarrow{d} T_0 = \int_{\mathcal{T}} \mathbf{z}(t)^\top \mathbf{M} \mathbf{z}(t) dt.$$

Let $\mathbf{z}(t) = [z_1(t), \dots, z_n(t)]^\top$, then,

$$E(T_0) = \int_{\mathcal{T}} E\{\mathbf{z}(t)^{\top} \mathbf{M} \mathbf{z}(t)\} dt = \int_{\mathcal{T}} E\{\sum_{\alpha} \sum_{\beta} m_{\alpha\beta} z_{\alpha}(t) z_{\beta}(t)\} dt$$
$$= \sum_{\alpha} m_{\alpha\alpha} \operatorname{tr}\{c_{\alpha}(s,t)\}.$$

And,

$$Var(T_0) = E(T_0^2) - E^2(T_0),$$

where

$$\begin{split} \mathbf{E}(T_0^2) &= \int_{\mathcal{T}} \int_{\mathcal{T}} \mathbf{E}\{\sum_{\alpha} \sum_{\beta} m_{\alpha\beta} z_{\alpha}(t) z_{\beta}(t)\} \{\sum_{\alpha_1} \sum_{\beta_1} m_{\alpha_1\beta_1} z_{\alpha_1}(s) z_{\beta_1}(s)\} dt ds \\ &= \int_{\mathcal{T}} \int_{\mathcal{T}} \left[\mathbf{E} \sum_{\alpha} \{m_{\alpha\alpha}^2 z_{\alpha}^2(t) z_{\alpha}^2(s)\} + \mathbf{E} \sum_{\alpha} \sum_{\alpha_1 \neq \alpha} \{m_{\alpha\alpha} m_{\alpha_1\alpha_1} z_{\alpha}^2(t) z_{\alpha_1}^2(s)\} \right. \\ &\left. + \mathbf{E} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\alpha_1} \sum_{\beta_1 \neq \alpha_1} \{m_{\alpha\beta} m_{\alpha_1\beta_1} z_{\alpha}(t) z_{\beta}(t) z_{\alpha_1}(s) z_{\beta_1}(s)\} \right] dt ds. \end{split}$$

The last term of $E(T_0^2)$ are not equal to 0 only when $\alpha = \alpha_1$, $\beta = \beta_1$ or $\alpha = \beta_1$, $\alpha_1 = \beta$, so we have

$$\int_{\mathcal{T}} \int_{\mathcal{T}} \mathbf{E} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\alpha_1} \sum_{\beta_1 \neq \alpha_1} \{ m_{\alpha\beta} m_{\alpha_1\beta_1} z_{\alpha}(t) z_{\beta}(t) z_{\alpha_1}(s) z_{\beta_1}(s) \} \mathrm{d}t \mathrm{d}s$$
$$= 2 \sum_{\alpha} \sum_{\beta \neq \alpha} \int_{\mathcal{T}} \int_{\mathcal{T}} m_{\alpha\beta}^2 \mathbf{E} \{ z_{\alpha}(t) z_{\alpha}(s) \} \mathbf{E} \{ z_{\beta}(t) z_{\beta}(s) \} \mathrm{d}t \mathrm{d}s$$
$$= 2 \sum_{\alpha} \sum_{\beta \neq \alpha} m_{\alpha\beta}^2 \mathrm{tr}(c_{\alpha} \otimes c_{\beta}).$$

From Theorem 4.5(d) of Zhang (2013), we have

$$\int_{\mathcal{T}} \int_{\mathcal{T}} \sum_{\alpha} m_{\alpha\alpha}^2 \mathbb{E}\{z_{\alpha}^2(t) z_{\alpha}^2(s)\} dt ds = \sum_{\alpha} m_{\alpha\alpha}^2 \operatorname{tr}^2(c_{\alpha}) + 2 \sum_{\alpha} m_{\alpha\alpha}^2 \operatorname{tr}(c_{\alpha} \otimes c_{\alpha}).$$

Then we can get

$$\operatorname{Var}(T_0) = 2 \sum_{\alpha} \sum_{\beta} m_{\alpha\beta}^2 \operatorname{tr}(c_{\alpha} \otimes c_{\beta}).$$

The following lemma shows that as long as the functional part can be extracted from the covariance function matrix of the pivotal test vector function $\mathbf{x}(t) = \mathbf{M}_n^{1/2} \mathbf{z}_n(t)$, the L^2 norm of the test statistic is a χ^2 -type mixture plus a constant. This condition is satisfied under both multi-sample homoscedastic case and two-sample heteroscedastic case which allows us to derive the approximate null distribution of T_n .

Lemma A.2. If $\mathbf{x}(t) \sim GP_k\{\mathbf{\mu}(t), f(s,t)\mathbf{\Sigma}\}, t \in \mathcal{T} \text{ with } \mathbf{\mu}(t) \in L^2(\mathcal{T}), f(s,t) \text{ is a function}$ with finite trace, i.e., $tr(f) = \int_{\mathcal{T}} f(t,t) dt < \infty$, and $\mathbf{\Sigma}$ is a positive semi-definite matrix with $tr(\mathbf{\Sigma}) < \infty$, then the squared L^2 -norm of $\mathbf{x}(t)$ can be expressed as

$$\int_{\mathcal{T}} ||\boldsymbol{x}(t)||^2 dt = \sum_{i=1}^k \int_{\mathcal{T}} x_i^2(t) dt = \sum_{i=1}^k \sum_{r=1}^q \vartheta_i \lambda_r A_{ir} + \sum_{i=1}^k \sum_{r=q+1}^\infty \delta_{ir}^2 dt$$

where $A_{ir} \sim \chi_1^2(\vartheta_i^{-1}\lambda_r^{-1}\delta_{ir}^2)$, $r = 1, \ldots, q$, $i = 1, \ldots, k$ are independent, ϑ_i , $i = 1, \ldots, k$ are the eigenvalues of Σ , λ_r , $r = 1, \ldots, \infty$ are the decreasing-ordered eigenvalues of f(s, t), $\delta_{ir} = \int_{\mathcal{T}} \mu_i^*(t)\phi_r(t)dt$, $i = 1, \ldots, k$, $r = 1, \ldots, \infty$, with $\mu_i^*(t)$ being the *i*-th entry of $\Gamma^{\top}\mu(t)$, $\phi_r(t)$, $r = 1, \ldots, \infty$ being the associated eigenfunctions of f(s, t) and the columns of Γ being the associated eigenvectors of Σ , and q is the number of all the positive eigenvalues so that $\lambda_q > 0$ and $\lambda_r = 0$, r > q.

Proof of Lemma A.2. Since Σ is a positive semi-definite matrix, it has the following eigendecomposition,

$$\boldsymbol{\Sigma} = \boldsymbol{\Gamma} \operatorname{diag}(\vartheta_1, \dots, \vartheta_k) \boldsymbol{\Gamma}^{\mathsf{T}}$$

where ϑ_i , i = 1, ..., k, are the eigenvalues of Σ and the columns of Γ are the associated eigenvectors with $\Gamma^{\top}\Gamma = \mathbf{I}_k$.

Then

$$\boldsymbol{x}^{*}(t) = [\boldsymbol{x}_{1}^{*}(t), \dots, \boldsymbol{x}_{k}^{*}(t)]^{\top} = \boldsymbol{\Gamma}^{\top}\boldsymbol{x}(t) \sim \mathrm{GP}_{k}\{\boldsymbol{\Gamma}^{\top}\boldsymbol{\mu}(t), f(s, t)\mathrm{diag}(\vartheta_{1}, \dots, \vartheta_{k})\}.$$

Note f(s,t) has the following Karhunen-Loève decomposition:

$$f(s,t) = \sum_{r=1}^{q} \lambda_r \phi_r(s) \phi_r(t),$$

where $\lambda_1, \ldots, \lambda_q$ are all the decreasingly ordered positive eigenvalues of f(s, t), and $\phi_1(t), \ldots, \phi_q(t)$ are the associated orthonormal eigenfunctions of f(s, t) such that

 $\int_{\mathcal{T}} \phi_r^2(t) dt = 1$, $\int_{\mathcal{T}} \phi_r(t) \phi_l(t) dt = 0$, $r \neq l$, and q is the smallest integer such that when r > q, $\lambda_r = 0$. Then every entry of $\boldsymbol{x}^*(t)$ has the following Karhunen-Loève expansion:

$$x_i^*(t) = \mu_i^*(t) + \sum_{r=1}^q \xi_{ir} \phi_r(t),$$

where μ_i^* is the *i*-th entry of $\Gamma^{\top} \mu(t)$ and $\xi_{ir} = \langle x_i^* - \mu_i^*, \phi_r \rangle, r = 1, \ldots, q \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \vartheta_i \lambda_r)$. We can obtain

$$\begin{aligned} ||x_i^*(t)||^2 &= ||\mu_i^*(t)||^2 + 2\sum_{r=1}^q \xi_{ir}\delta_{ir} + \sum_{r=1}^q \xi_{ir}^2 = \sum_{r=1}^q (\xi_{ir} + \delta_{ir})^2 + \sum_{r=q+1}^\infty \delta_{ir}^2 \\ &= \sum_{r=1}^q \vartheta_i \lambda_r A_{ir} + \sum_{r=q+1}^\infty \delta_{ir}^2, \end{aligned}$$

where $A_{ir} = (\xi_{ir} + \delta_{ir})^2 / \vartheta_i \lambda_r \sim \chi_1^2 (\vartheta_i^{-1} \lambda_r^{-1} \delta_{ir}^2), r = 1, \dots, q$ are independent as $(\xi_{ir} + \delta_{ir}) / \sqrt{\vartheta_i \lambda_r} \sim \mathcal{N}(\delta_{ir} / \sqrt{\vartheta_i \lambda_r}, 1).$

We conclude that

$$\int_{\mathcal{T}} ||\mathbf{x}(t)||^2 \mathrm{d}t = \int_{\mathcal{T}} ||\mathbf{\Gamma}^{\top} \mathbf{x}(t)||^2 \mathrm{d}t = \sum_{i=1}^k \int_{\mathcal{T}} x_i^{*2}(t) \mathrm{d}t$$
$$= \sum_{i=1}^k \sum_{r=1}^q \vartheta_i \lambda_r A_{ir} + \sum_{i=1}^k \sum_{r=q+1}^\infty \delta_{ir}^2.$$

Proof of Theorem 1. Note that $\mathbf{I}_k - \mathbf{b}\mathbf{b}^{\top}$ is also an idempotent matrix and it has the following singular value decomposition:

$$\mathbf{I}_k - \mathbf{b}\mathbf{b}^{\top} = \mathbf{U} \begin{pmatrix} \mathbf{I}_{k-1} & \mathbf{0} \\ \mathbf{0}^{\top} & \mathbf{0} \end{pmatrix} \mathbf{U}^{\top} = \mathbf{U}(\mathbf{I}_{k-1}, \mathbf{0})^{\top} (\mathbf{I}_{k-1}, \mathbf{0})\mathbf{U}^{\top},$$

where the columns of **U** are the eigenvectors of $\mathbf{I}_k - \mathbf{b}\mathbf{b}^{\top}$. Then according to the pivotal term of the limit test statistic

$$\boldsymbol{z}^*(t) = (\mathbf{I}_{k-1}, \mathbf{0}) \mathbf{U}^\top \boldsymbol{z}(t) \sim \mathrm{GP}_{k-1}(\mathbf{0}, c\mathbf{I}_{k-1}).$$

From Lemma A.2, we can get

$$T_n \xrightarrow{d} \int_{\mathcal{T}} ||\boldsymbol{z}^*(t)||^2 \mathrm{d}t = \sum_{i=1}^{k-1} \sum_{r=1}^q \lambda_r A_{ir} = \sum_{r=1}^q \lambda_r A_r,$$

where $A_{ir} \sim \chi_1^2$, $r = 1, \ldots, q$, $i = 1, \ldots, k-1$ are independent and λ_r , $r = 1, \ldots, \infty$ are the decreasing-ordered eigenvalues of the common long run covariance c(s, t), with q is the number of all the positive eigenvalues.

Proof of Theorem 2. Based on Theorem 2 in Horváth et al. (2013), we can get $\int_{\mathcal{T}} \int_{\mathcal{T}} \{\hat{c}(s,t) - c(s,t)\}^2 dt ds \xrightarrow{P} 0$. By the continuous mapping theorem for random elements taking values in a Hilbert space, it is easy to obtain $\operatorname{tr}(\hat{c}) \xrightarrow{P} \operatorname{tr}(c), \operatorname{tr}(\hat{c}^{\otimes 2}) \xrightarrow{P} \operatorname{tr}(c)$ $\operatorname{tr}(c^{\otimes 2})$ and $\operatorname{tr}^2(\hat{c}) \xrightarrow{P} \operatorname{tr}^2(c)$. Then this theorem follows immediately.

Proof of Theorem 3.

$$T_n = \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix}^{\top} \left(\mathbf{I}_2 - \mathbf{b}_n \mathbf{b}_n^{\top} / n \right) \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}^{\top} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

where

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \left(\mathbf{I}_2 - \mathbf{b}_n \mathbf{b}_n^{\mathsf{T}}/n \right) \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix}$$
$$\xrightarrow{d} \operatorname{GP} \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \left(\mathbf{I}_2 - \mathbf{b}_n \mathbf{b}_n^{\mathsf{T}}/n \right) \begin{bmatrix} c_1(t,s) & 0 \\ 0 & c_2(t,s) \end{bmatrix} \left(\mathbf{I}_2 - \mathbf{b}_n \mathbf{b}_n^{\mathsf{T}}/n \right) \right\},$$

with

$$\begin{aligned} \left(\mathbf{I}_{2} - \mathbf{b}_{n} \mathbf{b}_{n}^{\mathsf{T}}/n\right) \begin{bmatrix} c_{1}(s,t) & 0\\ 0 & c_{2}(s,t) \end{bmatrix} \left(\mathbf{I}_{2} - \mathbf{b}_{n} \mathbf{b}_{n}^{\mathsf{T}}/n\right) \\ &= n_{1} n_{2}/n \left(\frac{\sqrt{n_{2}}}{\sqrt{n}}\right) \left(\frac{\sqrt{n_{2}}}{\sqrt{n}}\right)^{\mathsf{T}} \left\{c_{1}(s,t)/n_{1} + c_{2}(s,t)/n_{2}\right\} \\ &= \mathbf{\Gamma} \left(\begin{array}{c} 1 & 0\\ 0 & 0 \end{array}\right) \mathbf{\Gamma}^{\mathsf{T}} \left\{n_{2} c_{1}(s,t)/n + n_{1} c_{2}(s,t)/n\right\}, \end{aligned}$$

where the columns of Γ are the associated eigenvectors of $\begin{pmatrix} \frac{\sqrt{n_2}}{\sqrt{n}} \\ -\frac{\sqrt{n_1}}{\sqrt{n}} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{n_2}}{\sqrt{n}} \\ -\frac{\sqrt{n_1}}{\sqrt{n}} \end{pmatrix}^{\top}$.

From Lemma A.2, we can get

$$T_0 = \sum_{i=1}^q \lambda_i A_i,$$

where $A_i \sim \chi_1^2$ and λ_i , i = 1, ..., q are the eigenvalues of $n_2 c_1(s, t)/n + n_1 c_2(s, t)/n$. Proof of Theorem 4. Under the alternative hypothesis (9), we have $\mathbf{z}_n(t) \xrightarrow{d} \mathbf{z}_1(t) \sim \mathrm{GP}_k\{\mathbf{d}(t), c\mathbf{I}_k\}$. Then we can get

$$T_n = \int_{\mathcal{T}} \mathbf{z}_n(t)^\top \mathbf{M}_n \mathbf{z}_n(t) dt \longrightarrow \int_{\mathcal{T}} \mathbf{z}_1(t)^\top \mathbf{M} \mathbf{z}_1(t) dt,$$

and the pivotal term of the limit test statistic

$$\boldsymbol{z}_1^*(t) = (\mathbf{I}_{k-1}, \boldsymbol{0}) \mathbf{U}^\top \boldsymbol{z}_1(t) \sim \mathrm{GP}_{k-1}\{(\mathbf{I}_{k-1}, \boldsymbol{0}) \mathbf{U}^\top \mathbf{d}(t), c\mathbf{I}_{k-1}\}.$$

where \mathbf{M}_n , \mathbf{M} and \mathbf{U} are defined in Theorem 1. We denote $\mathbf{d}^*(t) = (\mathbf{I}_{k-1}, \mathbf{0})\mathbf{U}^{\top}\mathbf{d}(t) = [d_1^*(t), \dots, d_k^*(t)].$

From Lemma A.2, we can get

$$T_n \xrightarrow{d} \int_{\mathcal{T}} ||\boldsymbol{z}_1^*(t)||^2 \mathrm{d}t = \sum_{i=1}^{k-1} \sum_{r=1}^q \lambda_r A_{ir} + \sum_{i=1}^{k-1} \sum_{r=q+1}^\infty \delta_{ir}^2$$
$$= \sum_{r=1}^q \lambda_r A_r + \sum_{r=q+1}^\infty \delta_r^2,$$

where $A_r = \sum_{i=1}^{k-1} A_{ir} \sim \chi^2_{k-1,\lambda_r^{-1}\delta_r^2}$, $r = 1, \ldots, q$, $i = 1, \ldots, k-1$ are independent, λ_r , $r = 1, \ldots, \infty$ are the decreasing-ordered eigenvalues of the common long run covariance c(s,t) with q being the number of all the positive eigenvalues so that $\lambda_q > 0$ and $\lambda_r = 0$, r > q, $\delta_r^2 = \sum_{i=1}^{k-1} \delta_{ir}^2 = || \int_{\mathcal{T}} (\mathbf{I}_{k-1}, \mathbf{0}) \mathbf{U}^{\top} \mathbf{d}(t) \phi_r(t) dt ||^2$, $i = 1, \ldots, k-1$, $r = 1, \ldots, \infty$ with $\phi_r(t), r = 1, \ldots, \infty$ being the associated eigenfunctions of the common long run covariance c(s, t).

Proof of Theorem 5. The test statistics

$$T_{n} = \sum_{i=1}^{k} n_{i} \int_{\mathcal{T}} \{\hat{\mu}_{i}(t) - \hat{\mu}(t)\}^{2} dt$$

$$= \sum_{i=1}^{k} n_{i} \int_{\mathcal{T}} \{\tilde{\mu}_{i}(t) - \bar{\bar{\mu}}(t)\}^{2} dt - 2 \sum_{i=1}^{k} n_{i} \int_{\mathcal{T}} \{\tilde{\mu}_{i}(t) - \bar{\bar{\mu}}(t)\} \{\mu_{i}(t) - \bar{\mu}(t)\} dt$$

$$+ \sum_{i=1}^{k} n_{i} \int_{\mathcal{T}} \{\mu_{i}(t) - \bar{\mu}(t)\}^{2} dt$$

$$:= T_{n0} - 2S_{n} + \sum_{i=1}^{k} n_{i} \int_{\mathcal{T}} \{\mu_{i}(t) - \bar{\mu}(t)\}^{2} dt,$$

where $\tilde{\mu}_i(t) = \hat{\mu}_i(t) - \mu_i(t), \ \bar{\tilde{\mu}}(t) = \frac{1}{n} \sum_{1 \le i \le k} n_i \tilde{\mu}_i(t), \ \bar{\mu}(t) = \frac{1}{n} \sum_{1 \le i \le k} n_i \mu_i(t).$

Under the alternative hypothesis H_{1n} , note $S_n = \sum_{i=1}^k n_i \int_{\mathcal{T}} \{\tilde{\mu}_i(t) - \bar{\tilde{\mu}}(t)\} \{\mu_i(t) - \bar{\tilde{\mu}}(t)\} \} \{\mu_i(t) - \bar{\tilde{\mu}}(t)\} \{\mu_i(t) - \bar{\tilde{\mu}}(t)\} \{\mu_i(t) - \bar{\tilde{\mu}}(t)\} \{\mu_i(t) - \bar{\tilde{\mu}}(t)\} \} \{\mu_i(t) - \bar{\tilde{\mu}}(t)\} \{\mu_i(t) - \bar{\tilde{\mu}}(t)\} \{\mu_i(t) - \bar{\tilde{\mu}}(t)\} \} \{\mu_i(t) - \bar{\tilde{\mu}}(t)\} \} \{\mu_i(t) - \bar{\tilde{\mu}}(t)\} \{\mu_i(t) - \bar{\tilde{\mu}}(t)\} \} \}$

$$\bar{\mu}(t) \} dt = \int_{\mathcal{T}} \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix}^\top \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \mu_1(t) \\ \vdots \\ \sqrt{n_k} \mu_k(t) \end{bmatrix} dt, \text{ and } \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \xrightarrow{d} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \xrightarrow{d} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_1(t) \\ \vdots \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix} \mathbf{M}_n \begin{bmatrix} \sqrt{n_1} \tilde{\mu}_k(t) \\ \sqrt{n_k} \tilde{\mu}_k(t) \end{bmatrix}$$

Then $S_n \xrightarrow{d} \mathcal{N}\{0, \operatorname{Var}(S)\}$, where

$$\begin{aligned} \operatorname{Var}(S) &= \operatorname{E} \left\{ \int_{\mathcal{T}} \left[\begin{array}{c} \sqrt{n_{1}} \tilde{\mu}_{1}(t) \\ \vdots \\ \sqrt{n_{k}} \tilde{\mu}_{k}(t) \end{array} \right]^{\top} \mathbf{M}_{n} \left[\begin{array}{c} \sqrt{n_{1}} \mu_{1}(t) \\ \vdots \\ \sqrt{n_{k}} \mu_{k}(t) \end{array} \right]^{d} t \right\}^{2} \\ &= \int_{\mathcal{T}} \int_{\mathcal{T}} \left[\begin{array}{c} \sqrt{n_{1}} \mu_{1}(s) \\ \vdots \\ \sqrt{n_{k}} \mu_{k}(s) \end{array} \right]^{\top} \mathbf{M}_{n} \operatorname{diag}\{c_{1}(s,t), \dots, c_{k}(s,t)\} \mathbf{M}_{n} \left[\begin{array}{c} \sqrt{n_{1}} \mu_{1}(t) \\ \vdots \\ \sqrt{n_{k}} \mu_{k}(t) \end{array} \right] ds dt \\ &= \int_{\mathcal{T}} \int_{\mathcal{T}} \sum_{i=1}^{k} \tilde{d}_{i}(s) c_{i}(s,t) \tilde{d}_{i}(t) ds dt, \end{aligned}$$

where \tilde{d}_i is the i-th component of $\tilde{\mathbf{d}}(t) = \mathbf{M}_n \mathbf{d}(t), i = 1, \dots, k$.

Then the power is

$$\Pr\left(T_n \ge \hat{C}_\alpha\right) = \Pr\left[T_0 - 2S_n + \sum_{i=1}^k n_i \int_{\mathcal{T}} \{\mu_i(t) - \bar{\mu}(t)\}^2 \mathrm{d}t \ge \hat{C}_\alpha\right].$$

Based on Theorem 2, we have $\hat{C}_{\alpha} \xrightarrow{P} C_{\alpha}$ where C_{α} can be $\beta_1 \chi^2_{d_1}$ or $\beta_2 \chi^2_{d_2} + \beta_0$ and note $\sum_{i=1}^k n_i \int_{\mathcal{T}} \{\mu_i(t) - \bar{\mu}(t)\}^2 dt = \sum_{i=1}^k \int_{\mathcal{T}} \tilde{d}_i^2(t) dt = \delta^2.$

The power function is $\Pr(T_0 - 2S_n + \delta^2 \ge C_\alpha) + o(1)$. If $\delta^2 \to \infty$, we now show the above power function tends to 1. When $\operatorname{Var}(S) < \infty$, this is obviously true, and when $\operatorname{Var}(S) \to \infty$,

$$\Pr\left(S_n \leq \delta^2/2 - C_\alpha/2 + T_0/2\right) + o(1)$$

$$= \Pr\left[S_n/\sqrt{\operatorname{Var}(S)} \leq \delta^2/\{2\sqrt{\operatorname{Var}(S)}\} - C_\alpha/\{2\sqrt{\operatorname{Var}(S)}\} + T_0/\{2\sqrt{\operatorname{Var}(S)}\}\right] + o(1).$$
Note $\sqrt{\operatorname{Var}(S)} = \sqrt{\sum_{i=1}^k \int_{\mathcal{T}} \int_{\mathcal{T}} \tilde{d}_i(s)c_i(s,t)\tilde{d}_i(t)\mathrm{d}s\mathrm{d}t} \leq \sqrt{\lambda_{\max}\sum_{i=1}^k \int_{\mathcal{T}} \tilde{d}_i^2(t)\mathrm{d}t},$ so

Note $\sqrt{\operatorname{Var}(S)} = \sqrt{\sum_{i=1}^{j} \int_{\mathcal{T}} d_i(s) c_i(s,t) d_i(t) \operatorname{dsdt}} \leq \sqrt{\lambda_{\max} \sum_{i=1}^{j} \int_{\mathcal{T}} d_i(t) \operatorname{dt}}$, so $\delta^2 / \{2\sqrt{\operatorname{Var}(S)}\} \longrightarrow \infty$ where λ_{max} is the largest eigenvalue among all the eigenvalues of the long run covariance function $c_i(s,t), i = 1, \ldots, k$. Thus, we also have power function tends to 1.

B Appendix: Additional simulations

In this section, we consider the data are observed with missing values and measurement errors by the following model:

$$y_{ij}(t) = \mu_i(t) + \epsilon_{ij}(t) + v_{ij}(t)$$

where $v_{ij}(t), j = 1, \ldots, n_i, i = 1, \ldots, k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}[0, \sigma_v(1+t)]$ represent measurement errors, and are independent of $\epsilon_{ij}(t), j = 1, \ldots, n_i, i = 1, \ldots, k$. The functional time series are again sampled discretely at J = 100 evenly spaced design time points within $\mathcal{T} = [0, 1]$, but we also randomly remove some design time points so there are about 90 design time points actually observed for each curve. The above settings are similar to those used in Zhang and Chen (2007). For the simulated functional time series above with missing values and measurement errors, we firstly use regression spline method (Ramsay and Silverman 2005, Ch.4; Zhang 2013, Ch.3) to reconstruct the curves, and then apply the tests to the reconstructed data. With all the other settings being the same as in the main paper, we repeat the two simulations represented in the main paper.

The results for the homoscedastic case (repeated Simulation HOM of the main paper) are presented in Tables 1–2, and the results for the heteroscedastic case (repeated Simulation HET of the main paper) are presented in Tables 3–4. It is seen from the results that missing values and measurement errors do have an effect on the performance, especially the powers, of these tests. However, the overall results are very similar to those presented in Tables 1–4 of the main paper, and the main conclusions are also the same.

References

Billingsley, P. (1968). Convergence of probability measures. John Wiley & Sons.

- Cuevas, A., Febrero, M., and Fraiman, R. (2004). An anova test for functional data. Computational Statistics & Data Analysis, 47(1):111–122.
- Horváth, L., Kokoszka, P., and Reeder, R. (2013). Estimation of the mean of functional time series and a two-sample problem. *Journal of the Royal Statistical Society: Series B* (Statistical Methodology), 75(1):103–122.

					Test.	s for depe	endent fui	nctional d	ata							Tests	for inde	pendent f	unctional	data			
	<u> </u>			Homosce	edastic				He	terosceda	stic				Homosci	edastic				Het	eroscedas	tic	
Model	n	L2OM2d	L20M3d	HRO3d	HRO4d	HRO5d	HRO.9d	L2TM26	I HRT3d	HRT4d	HRT5d	HRT.9d	L20M2i	L20M3i	HRO3i	HRO4i	HRO5i	HRO.9i	L2TM2i	HRT3i	HRT4i	HRT5i	IRT.9i
	\mathbf{n}_1	7.90	7.51	8.43	8.60	9.01	8.69	7.41	11.54	13.39	15.95	14.51	5.43	5.09	5.71	5.16	4.84	4.74	5.37	6.37	6.45	6.21	6.13
	\mathbf{n}_2	6.94	6.61	7.46	8.06	8.02	7.97	6.74	9.53	11.39	12.41	12.05	5.29	5.04	5.49	5.27	4.87	4.77	5.16	6.01	5.77	5.48	5.34
IID	\mathbf{n}_3	6.67	6.24	6.63	7.04	7.13	6.88	6.51	7.76	8.67	9.43	8.97	5.37	5.09	5.14	5.03	4.48	4.45	5.34	5.27	5.29	4.82	4.77
	\mathbf{n}_4	5.90	5.59	6.25	6.37	6.31	6.20	5.78	6.73	7.48	7.98	7.72	5.13	4.88	4.99	4.71	4.19	4.14	5.10	5.11	4.91	4.45	4.35
·	ARE 5	37.05	29.75	43.85	50.35	52.35	48.70	32.20	77.80	104.65	128.85	116.25	6.10	1.70	6.75	3.75	8.10	9.50	4.85	13.80	13.00	12.10	11.75
	\mathbf{n}_1	9.31	9.03	9.57	9.88	10.08	9.47	8.92	13.72	16.00	18.15	15.17	14.96	14.46	12.07	10.78	10.05	9.91	14.95	13.13	12.17	11.94	11.55
	\mathbf{n}_2	7.68	7.40	7.96	8.06	8.17	7.82	7.49	10.19	11.22	12.72	10.66	14.45	14.01	11.64	10.37	9.36	9.17	14.37	12.28	10.98	10.45	10.29
AR	\mathbf{n}_3	6.94	6.55	6.88	7.16	7.27	6.99	6.74	8.09	8.71	9.56	8.42	14.99	14.42	11.25	9.95	9.27	9.16	14.93	11.54	10.46	9.78	9.65
	\mathbf{n}_4	6.16	5.89	6.28	6.58	6.46	6.41	6.01	7.10	7.88	8.30	7.63	14.02	13.57	11.07	10.13	9.08	8.87	13.99	11.28	10.51	9.44	9.27
	ARE 5	50.45	44.35	53.45	58.40	59.90	53.45	45.80	95.50	119.05	143.65	109.40	192.10	182.30	130.15	106.15	88.80	85.55	191.20	141.15	120.60	108.05	103.80
	\mathbf{n}_1	8.64	8.39	9.63	9.75	10.06	9.44	8.40	12.91	15.67	17.95	14.92	12.44	11.94	10.53	9.65	8.83	8.79	12.37	11.44	10.71	10.60	10.37
	\mathbf{n}_2	7.26	6.93	7.31	7.43	7.72	7.19	6.98	9.35	10.65	11.69	10.28	11.72	11.24	9.22	7.95	7.09	6.81	11.59	9.67	8.55	7.81	7.62
MA	\mathbf{n}_3	6.56	6.31	7.10	7.42	7.20	7.18	6.47	8.15	8.88	9.73	8.62	12.04	11.62	9.89	8.90	7.65	7.63	11.97	10.02	9.15	8.16	8.06
	\mathbf{n}_4	5.96	5.63	6.66	7.13	7.28	7.00	5.89	7.70	8.49	8.85	8.46	11.61	11.16	9.51	8.55	7.79	7.70	11.59	9.58	8.66	8.11	7.99
	ARE 4	12.10	36.30	53.50	58.65	61.30	54.05	38.70	90.55	118.45	141.10	111.40	139.05	129.80	95.75	75.25	56.80	54.65	137.60	103.55	85.35	73.40	70.20
ARE	£ 4	13.20	36.80	50.27	55.80	57.85	52.07	38.90	87.95	114.05	137.87	112.35	112.42	104.60	77.55	61.72	51.23	49.90	111.22	86.17	72.98	64.52	61.92
										c													
Та	tble 2	2: Em	pirica	l pow	vers (in pe	rcents	ages) i	of oui	ΓL^2 - Γ	norm	based	tests	and	the e	xistir	lg tes	sts un	der h	omos	cedas	ticity	
						Tests for	dependen	t function	al data							Test	ts for inc	lependent	function	al data			
				Hon	noscedast	ic				Heterosc	cedastic				Hom	oscedast	.2			He	terosced	stic	

Table 1: Empirical sizes (in percentages) of our L^2 -norm based tests and the existing tests under homoscedasticity.

9

			Aodel n	\mathbf{n}_1	\mathbf{n}_2	n n	\mathbf{n}_4	\mathbf{n}_1	$^{\Lambda \mathrm{D}}$ n_2	n ₃ n ₃	\mathbf{n}_4	\mathbf{n}_1	\mathbf{n}_1 \mathbf{n}_2	na n ₃	\mathbf{n}_4
			з	0.07	0.05	0.04	0.03	0.08	0.06	0.04	0.04	0.09	0.07	0.04	0.04
•			L20M2d	74.20	60.55	89.79	63.63	65.46	58.92	44.09	80.55	90.18	93.51	52.03	90.70
•			L20M3d	72.10	58.46	88.30	60.93	63.80	57.19	42.38	78.74	89.09	92.68	50.04	89.38
		Homosce	HRO3d	9.19	7.87	7.23	6.53	10.60	8.70	7.40	7.51	10.55	8.49	7.31	7.05
	Tests	dastic	HRO4d	11.74	9.94	9.85	8.45	13.70	11.92	9.83	10.78	14.33	12.63	9.99	10.43
,	for depe		HRO5d	14.62	12.09	11.30	9.38	17.24	14.31	11.44	12.42	18.83	16.24	11.72	12.73
)	ndent fun		HRO.9d	12.90	11.27	10.58	8.94	12.62	10.76	8.98	9.67	13.46	11.79	9.52	9.95
	ctional data		L2TM2d	71.46	58.70	89.03	62.49	63.30	57.32	43.11	79.77	89.01	92.48	51.04	90.03
	6	Hete	HRT3d	12.97	10.15	8.48	7.45	14.99	11.53	8.60	8.15	14.53	10.64	8.64	8.19
		roscedas	HRT4d	17.74	13.70	11.71	10.24	20.32	15.87	12.09	12.25	21.22	16.39	12.46	12.21
		tic	HRT5d	23.65	17.08	14.25	11.54	27.37	20.02	14.43	14.74	29.01	21.93	15.00	15.01
			HRT.9d	20.34	15.33	13.27	10.96	18.53	14.22	11.17	10.92	19.92	15.29	11.90	11.71
			L20M2i	62.05	50.16	87.54	57.25	93.01	93.95	88.33	100.00	99.78	100.00	87.21	100.00
			L20M3i	58.93	47.28	84.94	54.21	91.51	92.60	86.06	99.98	69.66	99.99	84.58	100.00
		Homosce	HRO3i	6.15	5.90	5.75	5.35	13.42	13.10	11.56	11.90	11.19	10.26	10.07	9.67
)	Tests fc	edastic	HRO4i	7.73	6.74	7.05	6.67	15.04	14.59	13.20	14.64	13.89	13.48	11.53	12.80
	r indepei		HRO5i	8.60	7.59	8.03	6.58	15.83	15.43	13.20	15.24	15.93	14.95	11.57	13.20
	ndent fur		HRO.9i	9.09	7.88	8.76	7.27	16.75	16.02	13.67	16.38	16.40	15.83	12.18	14.30
	nctional d		L2TM2i	60.74	49.45	87.30	56.97	92.31	93.69	88.03	99.99	99.75	99.99	87.06	100.00
	lata	Heter	HRT3i	7.09	6.46	5.93	5.49	14.65	13.83	11.47	12.16	12.42	11.03	10.32	9.93
		roscedast	HRT4i	9.10	7.46	7.43	6.88	17.11	15.41	13.46	15.00	15.76	14.07	12.05	13.22
•		ic	HRT5i]	10.54	8.65	8.46	6.94	18.34	16.70	13.86	15.47	18.42	16.19	12.28	13.63
			HRT.9i	11.20	8.98	9.15	7.64	19.30	17.36	14.40	16.59	19.13	17.10	12.94	14.74

					Tests	for depe	ndent fune	ctional dat:	6							Tests f	or indepe	endent fu	nctional a	lata			
				Homosce	dastic				Hete	roscedasi	ic				Homosce	dastic				Hete	oscedas1	ic	
Model	п	L20M2d	L20M3d	HRO3d	HRO4d	HRO5d	HRO.9d	L2TM2d	HRT3d	HRT4d	HRT5d	HRT.9d	L20M2i	L20M3i	HRO3i	HRO4i	HRO5i	HRO.9i	L2TM2i	HRT3i	HRT 4i	HRT5i I	IRT.9i
	\mathbf{n}_1	0.87	0.85	0.42	0.44	0.47	0.47	5.23	2.58	2.91	3.47	15.43	0.67	0.64	1.58	1.33	1.07	0.06	4.88	3.77	3.67	3.93	1.14
IID	\mathbf{n}_2	0.83	0.78	0.86	0.73	0.55	0.23	5.44	2.99	3.04	3.57	6.29	0.72	0.69	2.02	1.56	1.23	0.02	5.03	4.43	4.67	4.55	0.56
7	ARE	83.00	83.70	87.20	88.30	89.80	93.00	$\frac{0.70}{2}$	44.30	40.50	29.60	117.20	86.10	86.70	64.00	71.10	77.00	99.20	1.50	18.00	16.60	15.20	83.00
	\mathbf{n}_1	2.05	1.90	1.12	0.76	0.58	0.50	7.28	4.10	4.08	4.52	16.04	3.13	3.00	5.61	4.52	3.57	0.18	12.20	10.15	9.27	8.77	2.73
AR	\mathbf{n}_2	1.61	1.51	1.41	0.93	0.66	0.27	6.67	3.84	3.68	3.88	6.53	3.13	2.98	6.69	5.01	3.71	0.09	12.26	10.78	9.83	9.36	1.18
T	\RE	63.40	65.90	74.70	83.10	87.60	92.30	39.50	20.60	22.40	16.00	125.70	37.40	40.20	23.00	4.90	27.20	97.30	144.60	109.30	91.00	81.30	60.90
	\mathbf{n}_1	1.44	1.33	1.01	0.81	0.57	0.50	6.21	3.71	3.73	4.04	15.47	2.15	2.04	4.35	3.20	2.36	0.20	9.57	8.26	7.34	7.06	1.89
$\mathbf{M}\mathbf{A}$	\mathbf{n}_2	1.28	1.22	1.14	0.84	0.70	0.17	5.79	3.52	3.41	3.57	6.85	2.05	1.98	4.74	3.56	2.69	0.08	9.62	8.35	7.75	7.53	1.01
7	ARE	72.80	74.50	78.50	83.50	87.30	93.30	20.00	27.70	28.60	23.90	123.20	58.00	59.80	9.10	32.40	49.50	97.20	91.90	66.10	50.90	45.90	71.00
ARE		73.07	74.70	80.13	84.97	88.23	92.87	22.07	30.87	30.50	23.17	122.03	60.50	62.23	32.03	36.13	51.23	97.90	79.33	64.47	52.83	47.47	71.63
Ē	الم	1. E.m.	leoiria	JANOU	ri) or		rantao	ne) of	1 4110	2 200	, - , -	+	.vata	1+ pur		atino.	+00+	, con		000			

Table 3: Empirical sizes (in percentages) of our L^2 -norm based tests and the existing tests under heteroscedasticity.

3	1) 1		4				0	· · · · ·	1		2	5				0				2		6	
					Tests	for deper	ident func	tional data								Tests for	: indepen	ident fun	ictional d	ata			
				Homosce	dastic				Hete	roscedasi	tic				Homosce	dastic				Hete	roscedas	tic	
Model	л В	L20M2d	L20M3d	HRO3d	HRO4d	HRO5d	HRO.9d	L2TM2d	HRT3d	HRT4d	HRT5d	HRT.9d	L20M2i	L20M3i	HRO3i	HR04i	HRO5i I	HRO.9i	L2TM2i	HRT3i	HRT4i	HRT5i	HRT.9i
	ι ₁ 0.26	36.69	35.43	0.74	0.65	0.57	2.03	80.43	5.94	8.70	12.58	81.72	33.36	32.27	1.95	1.48	1.48	0.65	79.71	6.96	8.98	12.33	63.52
I I	ι ₂ 0.20) 52.95	51.40	1.14	1.01	1.08	1.99	90.96	6.28	8.66	13.33	83.92	50.57	49.52	2.30	2.18	1.95	0.72	90.93	7.61	9.53	13.79	74.39
	ι ₁ 0.28	3 41.07	39.11	1.24	1.11	1.05	2.77	78.46	7.62	10.77	15.53	85.55	56.17	54.96	6.36	5.01	4.05	1.79	92.19	14.21	16.09	19.80	79.17
AR	ι ₂ 0.20	(41.22	39.11	1.70	1.34	1.37	2.09	78.40	7.55	10.50	14.04	82.16	59.31	58.37	7.46	5.91	5.23	1.38	92.93	14.66	16.15	20.59	77.54
I VIV	η ₁ 0.28	3 42.94	40.99	1.37	0.91	1.05	2.97	81.00	7.37	10.37	15.51	85.83	54.20	53.05	4.44	3.99	3.38	1.59	91.01	11.79	14.11	18.67	78.04
T ALM	b 0.20	(43.89	41.89	1.62	1.25	1.35	2.00	81.85	7.51	6.77	13.85	82.55	56.85	55.78	6.05	4.70	4.36	1.19	92.57	13.35	14.43	18.94	77.87

- Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis. Spring, New York, 2nd edition.
- Zhang, J.-T. (2013). Analysis of variance for functional data. CRC Press.
- Zhang, J.-T. and Chen, J. (2007). Statistical inferences for functional data. The Annals of Statistics, 35(3):1052–1079.