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Network-incorporated integrative sparse linear
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Linear discriminant analysis (LDA) has been extensively
applied in classification. For high-dimensional data, results
generated from a single dataset may be unsatisfactory be-
cause of the small sample size. Under the regression frame-
work, integrative analysis, which pools and analyses raw
data from multiple datasets, has presented superior perfor-
mance than single dataset analysis and meta-analysis. In
this study, we conduct integrative analysis for LDA (iLDA).
A network structure for variables is constructed to accom-
modate their interconnections, which have not been consid-
ered in many of the existing classification studies. We adopt
the 1-norm group MCP method for simultaneous estima-
tion and discriminative variable selection, and a Laplacian
penalty to incorporate the network. The proposed method
has intuitive formulations and can be computed using an
effective coordinate descent algorithm. Simulation study
shows that iLDA outperforms benchmarks with more ac-
curate variable identification and classification. Analysis of
three breast cancer datasets demonstrate that iLDA can im-
prove prediction performance.

Keywords and phrases: Integrative analysis, Discrimi-
nant analysis, Network.

1. INTRODUCTION

Binary classification is commonly encountered in the field
of biology and economics, such as the diagnosis of cancer,
and recognition of credit default. Among the existing classi-
fication methods, linear discriminant analysis (LDA) is one
of the most popular (Guo et al., 2006). In practice, high-
dimensional data with the “large p, small n” characteristic
appear more and more frequently. For example, a breast
cancer study as analyzed in Section 4 may profile the ex-
pressions of ∼ 105 genes on only tens of subjects. To an-
alyze such data, a series of studies have proposed ways to
modify LDA, including for example the nearest shrunken
centroids classifier (NSC) (Tibshirani et al., 2002), l1 pe-
nalized linear discriminant (l1PLD) (Witten and Tibshirani,
2011), and direct sparse discriminant analysis (DSDA) (Mai
and Zou, 2012). The goal of these methods is to identify
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variables that contribute the most to classification (referred
to as discriminative variables) as well as to accommodate
the high-dimensional characteristic. Despite many promis-
ing successes, it is still often observed that results generated
from analyzing a single dataset are unsatisfactory (Guerra
and Goldsterin, 2009). For instance, there may be a lack
of reproducibility in variable identification. Many factors
may contribute to the unsatisfactory performance, and in
regression models, an important or perhaps the most im-
portant one is the small sample size of a single dataset.
Existing studies suggest that pooling and analysing data
from multiple datasets may effectively increase sample size
and hence improve performance (Guerra and Goldsterin,
2009; Ma et al., 2011(b); Liu et al., 2014). As a family of
multi-dataset analysis methods, integrative analysis pools
and analyses raw data from multiple studies and outper-
forms single-dataset analysis and many other multi-dataset
analysis approaches especially including the classic meta-
analysis (Ma et al., 2011(a); Huang et al., 2012(a); Liu et
al., 2013(a) and references therein). In classification, as our
empirical study in Section 4 shows, there are indeed multi-
ple independent studies sharing comparable designs. These
studies publish their raw data at data warehouses such as
GEO. This makes it feasible to pool multiple datasets and
borrow information across them to conduct integrative anal-
ysis. With the importance of LDA, successes of integrative
analysis, and convenience of data acquisition, it is naturally
desirable to investigate integrative analysis for LDA (iLDA).

Variables can be interconnected. For example, genes be-
longing to the same pathways tend to have similar biological
functions and correlated expressions. This can be partly ob-
served from Figure 1 in our empirical study where genes
present moderate to high correlations. Taking the intercon-
nection into consideration when modeling can not only in-
terpret the relationships among variables, but also lead to
better variable selection and prediction performance (Huang
et al., 2011; Liu et at., 2013(a)). There are multiple ways
of describing the interconnections among variables, and in
regression models, network has become a common choice
(Huang et al., 2011; Liu et al., 2013(a); Shi et al., 2013).
However, network-based analysis has not been well pursued
in LDA.

This study develops the iLDA method which can incor-
porate the network structure to accommodate the intercon-
nections among variables. It is related to but differs from
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the previous ones in the following aspects. First, it belongs
to the same integrative analysis paradigm as some previ-
ous studies (Liu et al., 2014; Zhao et al., 2015), with the
aim of improving estimation and variable selection perfor-
mance by pooling raw data from multiple studies. However,
significantly different from the previous integrative analysis
studies, the current study is the first to investigate inte-
grative analysis under LDA, which is a very important and
commonly applied classification method. Second, the aim of
this study is not to develop a new LDA method. Rather, it
is to significantly extend the traditional LDA to the inte-
grative analysis paradigm. Third, this study is the first to
incorporate a network structure for LDA under the integra-
tive analysis paradigm to accommodate the interconnections
among variables.

The rest of this study is organized as follows. In Section
2, the model framework and computation are described. In
Section 3, simulation is conducted under various homogene-
ity and heterogeneity models. In Section 4, the analysis of
three breast cancer datasets is conducted. In Section 5, brief
discussions are provided.

2. INTEGRATIVE ANALYSIS FOR LDA

In this study, we conduct iLDA with M independent
datasets with the goal of improving the performance of dis-
criminative variable selection and estimation. It is noted
that some similarity across these datasets is the basis of
integrative analysis (in our study, similarity in the sets of
discriminative variables), otherwise information borrowing
across datasets may be unlikely. Hence, a proper selection
of datasets is important. Some selection techniques such as
analyzing meta-data have been discussed in the literature
(Guerra and Goldstein, 2009; Tseng et al., 2015), and we
do not reiterate here. It is also noted that, in our simulation
study, under an extreme heterogeneity scenario where differ-
ent datasets have completely different sets of discriminative
variables, integrative analysis still presents satisfactory per-
formance. For the simplicity of notation, we assume that the
same set of variables is observed in all datasets. Missingness
may occur in real data analysis, and different datasets may
have overlapping but different variable sets. Following the
studies in Tseng et al. (2015), our iLDA method can easily
accommodate these scenarios.

2.1 Data and model settings

We use the superscript “m” to denote the mth dataset.
In dataset m (m = 1, · · · ,M), there are nm iid observations,

and the total sample size is n =
∑M

m=1 n
m. Let Y m = 1, 2

be the class label, Xm be the length-p vector of variables,
and nm

1 and nm
2 be the sample size of class 1 and 2, re-

spectively. Under LDA, we denote the prior probabilities
as pr(Y m = 1) = πm

1 , pr(Y m = 2) = πm
2 , and assume

that a data point xm ∈ Rp has the conditional distribution

xm|Y m = g ∼ N(μm
g ,Σm). Then, the Bayes rule for the

mth dataset classifies xm to class 2 if and only if

{xm − (μm
1 + μm

2 ) /2}T (Σm)−1 (μm
2 − μm

1 )(1)

+ log (πm
2 /πm

1 ) > 0.

If the class labels Y m = 1, 2 are coded as −nm/nm
1 and

nm/nm
2 , then the above classical LDA can be reconstructed

via least squares (see Chapter 4 of Hastie et al., 2009 for
detailed discussions). The following regression problem can
be formulated:
(2)(

β̂
m

ols, β̂
m
0,ols

)
= arg min

βm,βm
0

nm∑
i=1

(
ymi − βm

0 − (xm
i )Tβm

)2
,

where xm
i ∈ Rp is the ith (i = 1, · · · , nm) observation,

ymi ∈ {−nm/nm
1 , nm/nm

2 } is the ith relabelled response,
βm = (βm

1 , · · · , βm
p )T is the length-p vector of regression co-

efficients, and βm
0 is the intercept. Based on the least squares

estimation, we can deduce that β̂
m

ols = c(
∑̂m

)−1(μ̂m
2 − μ̂m

1 )
for a positive constant c. In other words, the usual LDA di-
rection (

∑m
)−1(μ̂m

2 − μ̂m
1 ) of (1) can be exactly derived by

the least squares estimation from (2).

Denote β0 =
(
β1
0 , · · · , βM

0

)T
and β =

(
β1T, · · · ,

βMT
)T

. To conduct integrative analysis, we
consider the overall loss function L(β0,β) =∑M

m=1

(∑nm

i=1

(
ymi − βm

0 − (xm
i )Tβm

)2)
. With this loss

function, larger datasets have more contributions, which is
intuitively reasonable.

2.2 Penalized variable selection

With high-dimensional data, the connection between
LDA and linear regression may be lost, and the LDA di-
rection is not well defined (Mai and Zou, 2012). In addition,
among all of the candidate variables, some may be noises,
and only a small subset is expected to contribute to classifi-
cation. Thus, variable selection is needed. For this purpose,
we consider penalization, which has been the choice of sev-
eral related studies (Wu et al., 2009; Mai and Zou, 2012).
Consider the penalized least squares problem

(3) min
β0,β

{L(β0,β)/2n+ P (β;λ1)} .

For penalty function P (·), we adopt the 1-norm group
minimum concave penalty (gMCP, Huang et al., 2012(a)),
which has been discussed in Liu et al., (2014) under an in-
tegrative regression analysis. Specifically,

(4) P (β;λ1) =

p∑
j=1

ρ
(
||βj ||1;λ1, γ

)
,

where ρ (·) is MCP (Zhang, 2010) with the form of

ρ (t;λ, γ) = λ
∫ |t|
0

(
1− x

λγ

)
+
dx, λ1 is the data-dependent
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tuning parameter, γ is the positive regularization parameter
controlling the concavity of ρ (·), βj is the effect vector of the

jth variable across M datasets, and ||βj ||1 =
∑M

m=1 |β
(m)
j |.

The sparsity structure of β can be described using the
homogeneity and heterogeneity models. Under the homo-
geneity model, I

(
β1
j = 0

)
= · · · = I

(
βM
j = 0

)
for any

j (= 1, · · · , p). That is, all M datasets have the same spar-
sity structure. However, this model may be too restricted be-
cause heterogeneity inevitably exists across datasets (Knud-
sen, 2006). Under the heterogeneity model, a variable is al-
lowed to be associated with the responses in some datasets,
but not others. That is, for a variable Xj , j = 1, · · · , p, there
may exist two datasets (denoted as m1 and m2) in which
I
(
βm1
j = 0

)
�= I

(
βm2
j = 0

)
. Under this model, we first need

to determine whether a variable contributes to classification
in any dataset at all. In addition, for a selected variable,
we need to identify the datasets in which it contributes to
classification. That is, a bi-level of selection is needed. Mo-
tivated by these considerations, we adopt the above 1-norm
gMCP which is a composite of the outer MCP and inner
Lasso. The overall penalty is the sum of p individual penal-
ties, with one for each variable. For a specific variable, the
first level of selection is achieved using the outer MCP. In
addition, for a selected variable, the second level of selection
is accomplished with the inner Lasso penalty.

In (4), the Lasso penalty is adopted mainly because of
its computational simplicity, and MCP is employed owing
to its satisfactory performance (for example, more accurate
selection) in single-dataset analysis. Note that the choice
of penalty can vary. Some alternative composite and sparse
group penalties, such as the composite MCP (Liu et al.,
2014) and 1-norm group Bridge (Shi et al., 2013), are ex-
pected to present competitive results.

2.3 Accommodating the network structure

In practical data analysis, variables are complexly in-
terconnected. This can be partly seen from our analyzed
datasets where some genes present high correlations. How-
ever, the existing LDA studies have not sufficiently consid-
ered the interconnections. In the framework of regression, a
series of studies have shown that taking the interconnections
into consideration in integrative analysis can improve selec-
tion and estimation (Liu et al., 2013(a); Shi et al., 2013).
Therefore, it is natural to incorporate the interconnections
among variables in iLDA.

We adopt a network structure to describe the intercon-
nections among variables. To construct a network, first we
define a similarity measure between two variables. For con-
tinuous variables, we adopt the absolute value of the Pear-
son correlation coefficient. For ordinal variables, the Spear-
man’s correlation may be adopted. Here denote r̂jk as the
Pearson’s correlation coefficient between variables j and k
computed using the M datasets. Second, the adjacency ma-
trix A = [ajk]p×p can be computed. Specifically, we consider

a dense and a sparse adjacency: (N.1) ajk = |r̂jk|α, where

α > 0 can be determined by the scale-free topology criterion
(Zhang and Horvath, 2005); (N.2) ajk = |r̂jk|I (|r̂jk| > r),
where r is the cut-off calculated from the Fisher transfor-
mation (Huang et al., 2011). N.2 may be sparse in that some
entries are zero. It is noted that many other adjacencies ex-
ist, we refer to Liu et al. (2013(a)) and Huang et al. (2011)
for more discussions.

To incorporate the network structure, we add a Laplacian
penalty to (3). Consider the iLDA estimate
(5)(
β̂0, β̂

)
= argmin

β0,β
{L(β0,β)/2n+ P (β;λ1) + PN (β;λ2)} ,

where

(6) PN (β;λ2) =
1

2
λ2

∑
1≤j<k≤p

ajk
(
||βj ||1 − ||βk||1

)2
,

β̂ =
(
β̂
1T

, · · · , β̂MT
)T

, and β̂0 =
(
β̂1
0 , · · · , β̂M

0

)T

. Denote

θ = (θ1, · · · , θp)T =
(
||β1||1, · · · , ||βp||1

)T
, we can express

the non-negative quadratic form in PN (β;λ2) using a posi-
tive semi-definite matrix L, which satisfies

(7) θTLθ =
∑

1≤j<k≤p

ajk (θj − θk)
2
, ∀θ ∈ Rp.

Let G = diag (g1, · · · , gp) with gj =
∑p

k=1 ajk. Then,
L = G − A. This matrix is associated with a labelled
weighted graph G = (V, E , ω) with the vertex set V =
(1, · · · , p) and edge set E = {(j, k) : (j, k) ∈ V × V }. Here
ajk is the weight of edge (j, k), gj is the degree of vertex j,
and L is called the Laplacian of G and A (Chung, 1996).
For tightly connected nodes with a large ajk, the Laplacian
penalty encourages their groups of coefficients to be similar.
Here it is noted that L is not normalized, meaning that gi is
not standardized to 1. In problems where variables should be
treated without preference with respect to connectivity, we
normalize the Laplacian such that L∗ = Ip−G−1/2AG−1/2,

and then use the penalty PN (β;λ2) = 1
2λ2θ

TL∗θ. In this
study, we consider formulation (6). This is motivated by ex-
isting studies (Huang et at., 2011; Liu et al., 2013(a)) which
suggest that it is prudent to provide more protection for
variables with higher connectivity.

2.4 Computation

The classification rule for the mth dataset is to assign an
observation x to class 2 if

(8) xTβ̂
m
+ β̂m

0opt > 0.

Note that β̂m
0opt in (8) is different from β̂m

0 in (5). Con-
sider the ordinary least squares (OLS) estimate and the

usual LDA. Write β̂
m

ols = cβ̂
m

LDAfor some constant c, where

β̂
m

LDA = (
∑̂m

)−1(μ̂m
2 − μ̂m

1 ). Therefore we should use

β̂m
0opt = cβ̂m

0LDA in (8), where β̂m
0LDA = log (nm

2 /nm
1 ) −
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{(μ̂m
1 + μ̂m

2 ) /2}T β̂
m

LDA, such that the OLS classification
and LDA rule yield identical classification.

According to Proposition 2 in Mai et al. (2012), under the

classification rule (8), if (μm
2 − μm

1 )
T
β̂
m

> 0, the optimal

estimate β̂m
0opt is

(9)

β̂m
0opt =− (μ̂m

1 + μ̂m
2 )

T
β̂
m
/2+

β̂
mT

Σ̂
m
β̂
m
{
(μ̂m

2 − μ̂m
1 )

T
β̂
m
}−1

log (nm
2 /nm

1 ) .

If nm
1 = nm

2 , then we can take β̂m
0opt = −(μ̂m

1 +μ̂m
2 )Tβ̂

m
/2.

If the linear classifier actually yields (μm
2 − μm

1 )
T
β̂
m

<

0, then we can always use β̂
m

new = −β̂
m
, which obeys

(μm
2 − μm

1 )
T
β̂
m

new > 0.
When solving the minimization problem (5), the 1-norm

gMCP does not have a convenient form for updating indi-
vidual parameters. Thus we adopt the local linear approx-
imation (LLA) technique. By taking the first-order Taylor

expansion at the current estimate β̂j , 1-norm gMCP as a
function of |βm

j | is approximately proportional to

(10) λ̃j = ρ
′ (||βj ||1;λ1, γ

)
= λ1

(
1−

||βj ||1
λ1γ

)
+

.

Denote y =
(
y1T, · · · ,yMT

)T
, ym = (ym1 , · · · , ymnm)

T

(m = 1, · · · ,M), X = diag(X1, · · · ,XM ), Xj as the com-
ponent of X that corresponds to βj , X

m
j as the mth column

of Xj , and β̂
−m

j as the current estimate β̂j with its mth el-

ement β̂m
j = 0. For the estimation of βm

j , only the terms
involving it in the objective function (5) matter, and take
the form
(11)

R
(
βm
j

)
=

1

2n
||y −

p∑
j=1

Xjβj ||22 +
K1j

2
·
(
βm
j

)2
+Km

2j |βm
j |,

where

K1j = λ2

∑
k �=j

ajk,

Km
2j = λ̃j + λ2

⎧⎨
⎩
∑
k �=j

ajk

[
||β̂−m

j ||1 − ||β̂k||1
]⎫⎬
⎭ .

With the above LLA, we adopt the coordinate descent
algorithm for parameter estimation. This algorithm is iter-
ative and optimizes over one parameter at a time. For the
update with each βm

j , we have an univariate Lasso penalized
estimation

(12) β̂m
j =

1
nm

n +K1j
S

(
1

n
XmT

j r +
nm

n
β̂m
j ,Km

2j

)
,

where r = y−
∑p

j=1 Xjβ̂j , and S (z, c) = sign (z) (|z| − c)+
is the soft-thresholding operator.

With fixed γ, λ1and λ2, the coordinate descent algorithm
proceeds as follows:

1. Let the superscript s be the number of iterations. Set

s = 0, β̂
(0)

=
(
β̂
(0)T

1 , · · · , β̂(0)T

p

)T

, and r = y−Xβ̂
(0)

.

2. For j = 1, · · · , p, m = 1, · · · ,M ,

(a) Calculate K1j and Km
2j ;

(b) Update β̂
m,(s+1)
j using expression (12);

(c) Update r ← r −XmT
j

(
β̂
m,(s+1)
j − β̂

m,(s)
j

)
.

3. Update s ← s+ 1.
4. Repeat Step 2 and 3 until convergence.

Convergence of this algorithm follows from Tseng (2001).
It is achieved in all simulations and real data analysis. The
objective function can be expressed as f (β) = f0 (β) +
P (β;λ1), where f0 (β) = L(β0,β)/2n + PN (β;λ2) is reg-
ular and continuously differentiable in the sense of Tseng
(2001) and P (β;λ1) =

∑p
j=1 ρ

(
||βj ||1;λ1, γ

)
is separable.

As such, results in Tseng (2001) are directly applicable.
iLDA involves three tuning parameters: γ, λ1, and λ2.

For γ in MCP, the existing studies (Zhang, 2010; Liu et
at., 2013(a); Liu et al., 2014) suggest examining a few
different values or fixing its value. In this study, we set
γ = 6 as suggested in published studies. For λ1 and λ2,
we apply a two-dimensional search and select the opti-
mal value using cross validation. R code is available at
https://github.com/shuanggema/. The algorithm is compu-
tationally affordable. For example, in a simulation study
with p = 300 and M = 4, one simulation replicate takes
no more than 100 seconds using a regular laptop.

3. SIMULATION

Simulation is conducted to gauge performance of the pro-
posed approach and compare with alternatives. Although
the proposed approach is designed for the heterogeneity
model, we also consider the homogeneity model (a spe-
cial case of heterogeneity model). Under the homogeneity
model (Simulation 1), we consider two scenarios: Homo.A
is a general scenario, where each dataset has different coef-
ficients; Homo.B is a simplified case, where three datasets
have the same coefficients. In Simulation 2, we consider the
heterogeneity model where the datasets have overlapping
but different discriminative variables. Here three scenar-
ios are considered. Under scenario Hetero.A, four datasets
share seven common discriminative variables. In addition,
datasets 3 and 4 have three more common discriminative
variables. Under scenario Hetero.B, three datasets share
four common discriminative variables, and have four, six,
and eight dataset-specific ones, respectively. Under scenario
Hetero.C, each dataset has ten unique discriminative vari-
ables. These three simulated scenarios cover the whole spec-
trum of high, low, to no overlapping discriminative variables.
Here the coefficients in all three scenarios are dominantly
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set as positive. In Simulation 3, we consider a heterogene-
ity model with both negative and positive coefficients ran-
domly blended for all three datasets. Across these datasets,
a moderate overlapping among discriminative variables is
presented. Under the above models, we mainly focus on the
differences/similarities among datasets in terms of sparsity
structures. Under the sensitivity model (Simulation 4), we
consider a scenario where there exists a high degree of dif-
ference among the coefficients of a specific variable. In Sim-
ulation 5, we consider five scenarios where the normality
assumption on covariates is violated. Under scenario Non-
norm.A, there are two variables following non-normal dis-
tributions and both of them are with non-zero coefficients.
Under scenario Nonnorm.B, among all the important vari-
ables, 50% are generated from non-normal distributions. Un-
der scenario Nonnorm.C, 80% of the important variables are
from non-normal distributions. Under scenarios Nonnorm.D
and Nonnorm.E, all non-normal variables are with zero co-
efficients, and account for 50% and 80% of all variables,
respectively. In Simulation 6, a scenario with sample sizes
similar to those in the real data is analyzed.

For each subject, the class label is randomly generated
from a Bernoulli distribution with probability 0.5. In Sim-
ulation 1–4 and 6, in each dataset, covariates are gener-
ated to have a multivariate normal distribution with co-
variance matrix Σ = (ρjk)p×p. Here two correlation struc-

tures are considered. The first is the auto-regressive (AR)
correlation, where ρjk = ρ|j−k| with ρ = 0.1, 0.5, and
0.8, corresponding to weak, moderate, and strong correla-
tions, respectively. The second is the banded correlation
(BC). Here two cases are considered: (BC(i)) ρjk = 0.33,
if |j − k| = 1 and 0 otherwise; (BC(ii)) ρjk = 0.6, if
|j − k| = 1, 0.33 if |j − k| = 2, and 0 otherwise. Further,
based on the covariance matrix, we set the mean vectors
μm
1 = 0 and μm

2 = Σβm for the mth dataset. In Sim-
ulation 5, some variables follow non-normal distributions,
including asymmetric (χ2 (5, a), t (5, a), t (30, a), and Log-
normal(a, 1)), symmetric (Uniform(a− 1, a+ 1)), and mul-
timodal (normal mixture 0.5N (0, 1)+ 0.5N (a, 1)) distribu-
tions. Here, a is the non-centrality parameter for skewed
χ2− and t−distributions. To make these variables discrim-
inative for classification, we set a differently in subgroups
y = 1 and y = 2. For example, under scenario Nonnorm.A,
X5 is an important variable and set to follow a non-normal
distribution. Its observations in the mth dataset can be gen-
erated from standard t(5) and t(5, βm

5 ) for y = 1 and y = 2,
respectively. The settings of sample size, variable dimension,
and β for each model are as follows.

• Simulation 1:

– Homo.A, n1 = n2 = n3 = 300 and p = 800. There
are 21 nonzero coefficients with the true values of(
β1
1 , · · · , β1

7

)
= (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3),(

β2
1 , · · · , β2

7

)
= (0.2, 0.35, 0.5, 0.65, 0.8, 0.95, 1.1),(

β3
1 , · · · , β3

7

)
= (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8).

– Homo.B, n1 = · · · = n4 = 200 and p = 600.
All datasets have the same coefficients, where the
nonzero elements for the mth dataset are βm

1∼10 =
(0.5, 0.55, 0.6, 0.65, 0.75, 0.8, 0.75, 0.7, 0.65, 0.6).

• Simulation 2:

– Hetero.A, n1 = n3 = 100, n2 = n4 = 200 and p =
300. There are a total of 34 nonzero coefficients
across the four datasets:(
β1
1 , · · · , β1

7

)
= (0.6, 0.65, 0.5, 0.55, 0.6, 0.4, 0.3),(

β2
1 , · · · , β2

7

)
= (0.65, 0.7, 0.75, 0.85, 0.5, 0.75, 0.7),(

β3
1 , · · · , β3

10

)
=(0.3, 0.35, 0.4, 0.45, 0.75,

0.8, 0.75, 0.7, 0.65, 0.6),(
β4
1 , · · · , β4

10

)
=(1, 0.85, 0.8, 0.75, 0.7,

0.65, 0.6, 0.5, 0.7, 0.75).

– Hetero.B, n1 = n2 = n3 = 100 and p = 600.
There are a total of 30 true positives across all
three datasets. The nonzero coefficients are ran-
domly generated from Uniform(0.4, 1.0).

– Hetero.C, n1 = n2 = n3 = 200 and p = 600.
There are 30 nonzero coefficients across all three
datasets, specifically(
β1
1 , · · · , β1

10

)
=(0.3, 0.333, 0.367, 0.4, 0.433, 0.467,

0.5, 0.533, 0.567, 0.6),(
β2
11, · · · , β2

20

)
=(0.35, 0.4, 0.45, 0.5, 0.55, 0.6,

0.65, 0.7, 0.75, 0.8),(
β3
21, · · · , β3

30

)
=(0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,

0.65, 0.7, 0.75).

• Simulation 3: n1 = n2 = n3 = 200 and p = 600.
The nonzero coefficients are generated as follows: the
absolute values of β1

1∼8 are randomly generated from
Uniform(0.4, 0.8), and their signs (positive or nega-
tive) are generated using a Bernoulli distribution with
probability 0.5. Similar data generation mechanism is
adopted for β2

3∼10 and β3
5∼12.

• Simulation 4: all three datasets have sample size 100
and p = 400. Connected variables have opposite contri-
butions to classification in different datasets. The fol-
lowing nonzero coefficients are set according to a single
dataset study [19].(
β1
1 , · · · , β1

10

)
=0.556×
(3, 1.5, 0, 0, 2, 1.8, 1.78, 1.74, 1.72, 1.68) ,(

β2
1 , · · · , β2

8

)
=0.582×
(3, 2.5,−2.8, 1.6, 1.5, 1.4, 1.3,−2) ,(

β3
1 , · · · , β3

4

)
= 0.556 × (0, 0, 2, 2.2), and

(
β3
5 , · · · , β3

10

)
are generated from Uniform(0.556× 1.5, 0.556× 2.5).
Here both β1 and β2 have large differences among their
values in different datasets.
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Table 1. Simulation 1: the first row is the number of true positives (standard deviation), the second row is the number of the
false positives (standard deviation), and the third row is the mean prediction error (standard deviation).

Correlation Bayes
iLDA

NSC l1PLD DSDA
N.1 N.2

Homo.A

AR(0.1)
21(0) 21(0.31) 20(0.89) 20(0.71) 18(1.09)
3(3.85) 0(1.05) 57(53.67) 93.5(49.12) 5(7.85)

17.44(0.01) 18.33(0.01) 17.72(0.02) 19.11(0.02) 17.89(0.02) 18.50(0.01)

AR(0.5)
21(0.57) 21(1.60) 20(1.09) 21(0.18) 18(1.08)
1(1.68) 0(0.18) 22.5(131.72) 6(149.39) 0(2.04)

9.33(0.01) 9.39(0.01) 9.44(0.01) 9.37(0.01) 8.90(0.01) 9.83(0.01)

AR(0.8)
20(1.07) 20(1.03) 19(1.57) 21(0) 17(1.56)
2(1.20) 2(1.02) 4(7.85) 20.5(135.01) 0(1.58)

3.67(0.01) 3.78(0.01) 3.72(0.01) 3.89(0.01) 4.11(0.01) 3.78(0.01)

BC(i)
21(0.18) 21(0.25) 20(0.76) 21(0.35) 18(1.11)
0(1.00) 0(1.05) 57.5(73.25) 10(31.10) 0(3.08)

14.33(0.01) 13.89(0.01) 13.72(0.01) 14.61(0.01) 13.94(0.01) 14.78(0.01)

BC(ii)
21(3.13) 21(0.48) 19.5(1.36) 21(0.25) 17(1.09)
0(0.43) 0(0) 11(129.69) 4(114.07) 0(1.07)

9.33(0.01) 8.56(0.01) 9.11(0.01) 9.28(0.01) 8.83(0.01) 9.50(0.01)

Homo.B

AR(0.1)
40(0.73) 40(0.73) 40(0.68) 40(0) 38(1.55)
1(5.27) 0(0.63) 110.5(64.57) 356.5(138.75) 21.5(13.85)

13.94(0.01) 14.13(0.01) 13.88(0.01) 15.94(0.01) 14.69(0.02) 15.63(0.02)

AR(0.5)
40(1.22) 40(1.38) 40(0.78) 40(0) 38(1.42)
0(1.22) 0(4.74) 113(169.43) 84(101.64) 3(4.03)

6.50(0.01) 6.31(0.01) 6.63(0.01) 6.38(0.01) 6.13(0.01) 6.63(0.01)

AR(0.8)
40(1.51) 40(1.70) 40(0.77) 40(0) 39(1.07)
0(1.02) 0(1.22) 110(281.10) 15(70.68) 0(5.48)

2.88(0.01) 2.88(0.01) 2.50(0.01) 2.81(0.01) 2.50(0.01) 2.75(0.01)

BC(i)
40(1.22) 40(1.63) 40(0.94) 40(0) 37(1.31)
0(0.76) 0(0.25) 82(58.97) 82.5(75.44) 8(12.59)

9.94(0.01) 10.06(0.01) 9.81(0.01) 10.56(0.01) 9.31(0.01) 10.81(0.01)

BC(ii)
40(1.99) 40(2.49) 39(1.41) 40(0.25) 36(1.69)
0(4.36) 0(2.15) 86.5(206.80) 72(104.07) 2.5(4.35)

5.25(0.01) 5.00(0.01) 4.69(0.01) 5.00(0.01) 4.69(0.01) 5.13(0.01)

• Simulation 5: we set the sample sizes and coefficients as
Homo.A and Hetero.B. The variables with normal dis-
tribution are generated to have an AR(0.5) correlation
structure.

• Simulation 6: n1 = 86, n2 = 30, n3 = 29, and p =
600. There are 12, 8, and 10 important variables for the
three datasets, respectively. The nonzero coefficients are
randomly generated from Uniform (0.3,1).

In our simulation, we mainly focus on the accuracy of
variable identification, which can be measured using the
number of true positives and number of false positives. In
addition, prediction performance is also of interest. For this
purpose, for each simulation replicate, M independent test-
ing datasets under the same settings as the training datasets
are randomly generated. By adopting cross validation, we
select tuning parameters using training data and conduct
estimation, and then make prediction for subjects in the

testing data and compute the mean prediction error. For
comparison, we adopt three single-dataset sparse classifica-
tion methods, including NSC [23], l1PLD [27] and DSDA
[19], and then combine analysis results across datasets (i.e.,
a meta-analysis strategy). Here existing R packages are used,
including pamr for NSC, penalizedLDA for l1PLD, and glm-
net for DSDA. We also compute classification errors with
the Bayes rule using the true discriminative variable set.
This is the oracle benchmark. Summary statistics based on
100 replicates are shown in Table 1–6 and Table 9–12 (in
Appendix).

The result in Table 1 shows that for the homogeneity
models, iLDA can identify all of the true positives except
for scenario Homo.A with AR(0.8). DSDA may have infe-
rior performance in terms of true positives, especially it has
trouble accommodating high correlations. When looking at
false positives, compared to NSA and l1PLD, iLDA presents
overwhelming superiority with almost zero false positives. In
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Table 2. Simulation 2: the first row is the number of true positives (standard deviation), the second row is the number of the
false positives (standard deviation), and the third row is the mean prediction error (standard deviation).

Correlation Bayes
iLDA

NSC l1PLD DSDA
N.1 N.2

Hetero.A

AR(0.1)
34(1.26) 34(1.14) 31.5(2.38) 33.5(0.67) 29(2.24)
31.5(9.78) 11(6.38) 89.5(79.84) 85.5(84.00) 20.5(11.70)

17.88(0.02) 17.75(0.02) 18.56(0.02) 21.06(0.02) 18.75(0.02) 20.31(0.02)

AR(0.5)
34(0.75) 34(1.17) 33(1.95) 34(0.77) 31(1.22)
16(6.66) 6(8.68) 79(70.31) 62(56.24) 8(11.18)

10.75(0.01) 10.63(0.01) 10.63(0.01) 11.00(0.01) 10.13(0.01) 12.06(0.01)

AR(0.8)
34(0.48) 32.5(1.93) 32(2.03) 34(0.75) 32(1.03)
6(7.14) 5.5(4.72) 41.5(119.63) 38(47.79) 3.5(3.30)

5.88(0.01) 6.06(0.01) 5.69(0.01) 6.00(0.01) 5.56(0.01) 6.44(0.01)

BC(i)
32(1.75) 32(2.27) 33(1.47) 34(0.00) 27(1.98)
4(4.20) 3.5(2.14) 64.5(48.67) 78.5(73.09) 7.5(10.42)

14.19(0.01) 14.25(0.01) 13.69(0.02) 14.88(0.01) 13.69(0.01) 16.81(0.02)

BC(ii)
32(3.13) 32(2.38) 32(2.29) 34(0.25) 25(1.72)
4(3.23) 4(4.23) 16(56.05) 40(101.15) 1(4.79)

8.31(0.01) 8.12(0.01) 8.12(0.01) 8.44(0.01) 7.94(0.01) 9.25(0.01)

Hetero.B

AR(0.1)
26(1.56) 28(1.79) 29(1.05) 30(0.00) 26.5(1.50)
6(3.45) 9.5(4.61) 64(74.89) 170.5(246.72) 9(10.08)

15.67(0.01) 17.44(0.02) 17.06(0.01) 18.50(0.02) 16.78(0.02) 18.61(0.02)

AR(0.5)
27.5(1.68) 28(2.56) 29(0.92) 29(0.45) 25(1.80)
7(2.76) 9(11.16) 110.5(139.83) 23.5(157.13) 2(2.67)

9.17(0.01) 9.5(0.01) 8.67(0.01) 9.44(0.01) 9.00(0.01) 9.88(0.01)

AR(0.8)
27.5(1.30) 27(2.67) 24(3.31) 29(0.57) 19(1.85)
8(1.98) 8.5(2.50) 29(181.84) 212(196.99) 1(18.73)

7.11(0.01) 7.06(0.01) 6.83(0.01) 8.61(0.01) 7.94(0.01) 7.89(0.01)

BC(i)
25(3.12) 23(2.09) 28(1.68) 30(0.31) 21.5(2.40)
4.3(3.27) 1.5(3.50) 55.5(101.96) 150.5(56.63) 6.5(12.79)

10.78(0.02) 12.18(0.02) 12.28(0.01) 12.22(0.02) 11.22(0.02) 13.89(0.02)

BC(ii)
27((2.38) 27(3.47) 29(1.49) 30(0.00) 21(1.59)
4.5(2.86) 3(2.48) 72(130.92) 19.5(219.89) 3(6.64)

4.56(0.01) 4.02(0.01) 3.98(0.01) 4.22(0.01) 3.61(0.01) 4.83(0.01)

Hetero.C

AR(0.1)
26(2.03) 27(2.26) 27(1.80) 30(0.41) 22(2.71)
44.5(19.46) 26.5(30.39) 68(130.09) 268.5(277.53) 11.5(18.11)

19.44(0.01) 20.61(0.01) 19.94(0.02) 23.05(0.02) 22.17(0.03) 22.67(0.02)

AR(0.5)
29(1.17) 28(1.05) 29(1.21) 30(0.00) 23.5(1.70)
2(1.05) 1(0.75) 33.5(103.44) 19(191.10) 0.5(2.88)

10.22(0.01) 9.89(0.01) 9.67(0.01) 9.89(0.01) 9.83(0.01) 10.72(0.01)

AR(0.8)
30(0.45) 27(1.36) 26(3.64) 30(0.00) 20(1.82)
7.5(2.06) 3.5(2.19) 8(207.87) 93.5(193.59) 0(1.86)

3.33(0.01) 2.83(0.01) 3.11(0.01) 3.28(0.01) 3.28(0.01) 3.17(0.01)

BC(i)
29(1.14) 29(1.59) 29(1.38) 30(0.25) 24(1.92)
13(15.06) 3(4.41) 81(129.13) 132.5(126.20) 5(8.89)

15.78(0.01) 15.17(0.01) 15.33(0.01) 17.44(0.01) 15.83(0.02) 17.67(0.02)

BC(ii)
29(1.12) 29(0.79) 29(0.85) 30(0.00) 22(2.19)
6.5(5.19) 5.5(3.73) 125.5(129.87) 16(201.28) 0(5.74)

10.11(0.01) 9.22(0.01) 9.28(0.01) 9.78(0.01) 9.67(0.01) 10.94(0.01)

terms of classification error, iLDA is close to the Bayes rule.
For the heterogeneity models, both Table 2 and 3 suggest
that, iLDA can effectively identify the majority of true pos-
itives and has a small number of false positives. Under some

scenarios (for example, Hetero.A under case BC(i)), NSC
and l1PLD, which can conduct the classification of high-
dimensional single datasets, may identify a few more true
positives, however, at the price of a large number of false
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Table 3. Simulation 3: the first row is the number of true positives (standard deviation), the second row is the false positives
(standard deviation), and the third row is prediction mean classification error (standard deviation).

Correlation Bayes
iLDA

NSC l1PLD DSDA
N.1 N.2

AR(0.1)
20.5(1.78) 21(1.65) 21(1.92) 24(0.38) 19(1.93)
6.5(4.65) 7(2.64) 63(98.94) 347(138.61) 14(15.95)

19.50(0.01) 20.22(0.02) 19.94(0.02) 27.39(0.03) 26.44(0.02) 23.22(0.02)

AR(0.5)
21(2.45) 22(1.51) 17(1.79) 20(1.87) 14(1.45)
7.5(3.80) 9(3.91) 39.5(69.74) 172(104.76) 3(7.66)

20.11(0.01) 20.83(0.01) 20.56(0.01) 26.16(0.02) 25.75(0.02) 26.22(0.02)

AR(0.8)
21.5(3.23) 20(1.99) 15(2.81) 22(1.79) 9(1.22)
16(9.23) 12.5(4.73) 10(49.76) 166.5(119.12) 3.5(5.92)

21.83(0.01) 21.88(0.01) 22.17(0.01) 27.89(0.02) 28.00(0.02) 26.12(0.02)

BC(i)
20(2.86) 22(2.52) 19(1.51) 22(1.67) 15(2.14)
6.5(6.62) 10(3.32) 83(91.55) 223(124.22) 5(14.28)

20.72(0.01) 22.39(0.01) 21.33(0.01) 24.89(0.02) 24.11(0.02) 24.33(0.01)

BC(ii)
20(2.89) 22(2.32) 13.5(2.45) 20(2.05) 9(2.09)
8(9.36) 11.5(4.21) 62(91.56) 231(154.34) 5.5(10.98)

20.57(0.01) 20.89(0.01) 20.61(0.01) 30.22(0.02) 29.44(0.02) 30.11(0.02)

Table 4. Simulation 4: the first row is the number of true positives (standard deviation), the second row is the number of the
false positives (standard deviation), and the third row is the mean prediction error (standard deviation).

Correlation Bayes
iLDA

NSC l1PLD DSDA
N.1 N.2

AR(0.1)
24(1.93) 24(1.40) 24(0.48) 24(0) 21(0.71)
11(3.29) 6(3.12) 45(36.84) 39.5(55.60) 28(18.64)

5.50(0.02) 5.67(0.02) 5.33(0.01) 5.83(0.02) 5.17(0.02) 5.67(0.02)

AR(0.5)
18.5(3.04) 19.5(3.59) 19.5(2.76) 23(0.67) 18(0.95)
8(8.31) 6(3.13) 1(47.30) 84(98.37) 1(7.34)

3.00(0.01) 3.67(0.01) 3.00(0.01) 4.00(0.01) 3.50(0.00) 3.67(0.01)

AR(0.8)
13.5(3.30) 15.5(3.06) 13(2.05) 24(0) 15(1.63)
3.5(2.06) 3.5(3.28) 5(40.01) 94(93.45) 2(7.47)

1.67(0.01) 1.67(0.01) 1.33(0.01) 2.33(0.01) 2.00(0.01) 2.00(0.01)

BC(i)
22(1.66) 23(2.02) 23(1.66) 24(0) 23(0.94)
8.5(4.72) 6(2.91) 10(58.04) 32.5(91.05) 20(9.97)

4.33(0.01) 3.17(0.01) 4.00(0.01) 5.00(0.01) 4.17(0.01) 4.33(0.01)

BC(ii)
19.5(1.80) 18.5(3.22) 20(1.68) 24(0.31) 22(0.91)
7.5(3.16) 4(2.61) 35.5(151.22) 209.5(160.25) 11(10.01)

3.17(0.01) 3.83(0.01) 3.00(0.01) 4.33(0.01) 3.83(0.01) 3.67(0.01)

positives. Under the sensitivity model, as shown in Table 4,
iLDA misses some true positives, but is comparable to the
benchmarks under some cases (for example, AR(0.1) and
BC(i)). We also observe that the differences between iLDA
with N.1 and N.2 are not big. Under the non-normal model,
Table 5 shows that under scenario Nonnorm.A, iLDA still
outperforms DSDA and is superior to NSC and l1PLD in
terms of both classification error and FP. Similar results can
be observed under the other four scenarios from Table 9–12
in Appendix. Moreover, as Table 5, 9, and 10 show, the pro-
portion of non-normal important variables may have little
impact on iLDA in terms of TP except for the case where
some variables follow a mixture distribution. An increased
proportion of non-normal variables may result in an increase

in FP. When the sample sizes are set similar as those in
the real data, as shown in Table 6, under most cases iLDA
still presents superiority in terms of FP and classification
error, although an increased FP is observed compared to
other simulations. This is reasonable with smaller sample
sizes.

We have also compared the computational efficiency of
different methods. It is observed that iLDA has a significant
advantage over NSC, but is a little less efficient than l1PLD
and DSDA. For example, in Simulation 3, given the tun-
ings λ1 and λ2, iLDA takes 3.2 and 3.7 seconds to complete
overall estimation under network N.1 and N.2, respectively,
compared to 10.9 (NSC), 0.9 (l1PLD), and 1.9 (DSDA). In
terms of CPU time, iLDA costs 0.3 and 0.4 seconds un-
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Table 5. Simulation 5 under Nonnorm.A: the first row is the number of true positives (standard deviation), the second row is
the false positives (standard deviation), and the third row is prediction mean classification error (standard deviation).

Scenario Bayes
iLDA

NSC l1PLD DSDA
N.1 N.2

χ2 (5)

Homo.A
18(1.49) 18(1.50) 15(1.83) 18(2.55) 13(0.85)
10(0.16) 7(5.23) 39.5(94.78) 1(14.90) 1(4.47)

10.88(0.01) 11.56(0.01) 11.28(0.01) 11.78(0.01) 14.83(0.03) 11.33(0.01)

Hetero.B
24(2.67) 27(2.67) 25(1.50) 29.5(2.47) 21(1.62)
8(15.05) 11(2.45) 36.5(146.72) 5(99.66) 1.5(3.55)

4.67(0.01) 6.33(0.01) 6.05(0.01) 4.89(0.01) 16.39(0.03) 6.61(0.01)

Log-normal

Homo.A
21(0.94) 21(1.00) 19(1.53) 16(0.58) 13(1.07)
8.5(3.47) 7(2.38) 8(139.38) 0(0.35) 1(4.95)

9.72(0.01) 11.56(0.01) 11.22(0.01) 10.50(0.01) 16.67(0.02) 11.67(0.01)

Hetero.B
24(2.99) 26(2.59) 28(1.99) 16(0.78) 20.5(1.48)
6(3.70) 8(4.54) 39(173.70) 0(0.53) 1(12.59)

5.25(0.01) 5.67(0.01) 5.44(0.01) 6.44(0.01) 16.44(0.01) 6.22(0.01)

Two-component normal mixture

Homo.A
17(1.32) 17(1.40) 14(0.92) 20(0.79) 12(1.08)
8.5(3.73) 7(3.20) 19.5(23.11) 4.5(4.42) 1(9.29)

11.39(0.01) 11.73(0.01) 11.44(0.01) 12.00(0.01) 20.50(0.02) 11.40(0.01)

Hetero.B
22(3.35) 24(2.49) 24(1.33) 30(1.46) 21(1.22)
4(3.01) 3(4.32) 27.5(83.32) 19(41.83) 3(1.92)

5.33(0.01) 5.44(0.07) 5.56(0.01) 5.50(0.01) 15.33(0.02) 6.00(0.01)

Uniform

Homo.A
21(0.57) 20(0.56) 20(1.10) 21(0.41) 17(1.56)
1(3.11) 2(1.01) 56.5(88.12) 36(54.62) 0(3.53)

6.72(0.01) 11.67(0.01) 10.44(0.01) 9.28(0.01) 9.83(0.01) 14.11(0.01)

Hetero.B
25(1.68) 27.5(0.92) 29(1.25) 30(0.48) 25.5(1.56)
21.5(7.32) 15(6.98) 28.5(153.57) 67.5(134.48) 2(7.02)

3.5(0.01) 7.17(0.01) 6.00(0.01) 5.06(0.01) 5.05(0.01) 9.22(0.01)

t (5)

Homo.A
21(0.75) 21(0.46) 20(1.87) 21(0) 15(1.69)
7(6.21) 5(4.23) 57(113.51) 23.5(60.02) 1.5(5.32)

8.83(0.01) 10.33(0.01) 10.00(0.01) 10.28(0.01) 9.11(0.01) 11.06(0.01)

Hetero.B
25(2.66) 29(1.73) 28(1.96) 30(0.48) 24(1.83)
7(13.50) 10(15.43) 25(129.22) 51(78.25) 2(4.26)

4.5(0.01) 5.39(0.01) 5.06(0.01) 4.68(0.01) 4.94(0.01) 6.00(0.01)

t (30)

Homo.A
21(0.18) 21(0.35) 19(1.59) 21(0.55) 16(1.66)
6(2.71) 5(3.74) 36(50.64) 35(87.76) 1.5(6.05)

9.56(0.01) 9.72(0.01) 9.33(0.01) 11.17(0.01) 10.39(0.01) 10.44(0.01)

Hetero.B
27(2.73) 29(1.74) 27(2.45) 30(1.06) 26(1.89)
9(13.38) 8(9.12) 61.5(192.57) 89(193.72) 3(4.69)

4.72(0.01) 5.98(0.01) 5.57(0.01) 5.28(0.01) 5.78(0.01) 6.22(0.01)

der N.1 and N.2, respectively, compared to 3.3 (NSC), 0.1
(l1PLD), and 0.1 (DSDA).

4. BREAST CANCER DATA ANALYSIS

Breast cancer is the second leading cause of cancer
deaths. Many gene profiling studies have been conducted.
Here three gene expression datasets (referred to D1–D3) are
integrated, which are collected from three different studies.

Although the same platform was used in all three datasets,
researchers are not able to directly merge them because of
differences in regional, environmental, clinical, and other
factors. The first study reported the breast cancer gene ex-
pression profiles of 86 Malaysian women (Pau et al., 2010),
among whom 43 are case samples and 43 are control sam-
ples. The second study was organized by Boston Univer-
sity School of Medicine. There are 30 laser capture micro-
dissected breast tissue samples, among which 15 are case
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Table 6. Simulation 6: the first row is the number of true positives (standard deviation), the second row is the false positives
(standard deviation), and the third row is prediction mean classification error (standard deviation).

Correlation Bayes
iLDA

NSC l1PLD DSDA
N.1 N.2

AR(0.1)
16(4.11) 16(5.41) 23(3.25) 29(4.24) 8(2.51)
24(40.87) 29(15.26) 172(201.45) 245(172.42) 3(2.84)

17.24(0.04) 20.69(0.03) 20.34(0.03) 27.39(0.04) 32.78(0.03) 27.14(0.03)

AR(0.5)
22(2.57) 24(2.64) 24(3.80) 30(0) 15(2.92)
14(18.45) 6(12.35) 66(100.56) 163(103.23) 2(5.63)

3.52(0.02) 4.82(0.01) 3.79(0.01) 6.55(0.02) 6.98(0.03) 8.64(0.03)

AR(0.8)
24(3.95) 26(2.71) 20(4.84) 30(0) 15(1.81)
44(36.85) 38(25.29) 56(59.39) 56(17.93) 2(2.67)

1.39(0.01) 2.04(0.01) 2.18(0.01) 2.56(0.02) 2.56(0.01) 2.79(0.01)

BC(i)
23(3.31) 26(2.63) 26(2.93) 30(2.48) 10(3.27)
45(46.19) 50(22.17) 103(154.49) 291(141.20) 4(8.39)

13.79(0.02) 15.51(0.03) 14.13(0.03) 14.13(0.04) 20.00(0.04) 17.24(0.03)

BC(ii)
22(3.62) 25(3.60) 28(1.95) 30(0) 14(2.38)
30(38.41) 26(14.25) 35(105.24) 225(124.30) 4(4.22)

6.55(0.02) 6.55(0.03) 6.89(0.03) 7.24(0.03) 8.28(0.03) 8.28(0.02)

samples and the remaining are control samples (Graham et
al., 2011). In the third study, 14 of the 29 samples were
from the epitheliums adjacent to breast tumours, and 15
samples were obtained from patients undergoing reduction
mammoplasty without apparent breast cancer (Tripathi et
al., 2008). A total of 22,283 probe sets are profiled in all three
datasets. It is expected that a large number of the genes are
noises, and they may create problems such as false selection
and high computational cost. Hence, we conduct an unsu-
pervised screening and rank the genes using their variations
and select the top 800 for analysis.

In previous studies, it has been shown that there ex-
ist strong correlations among genes (Liu et al., 2013(a)).
The frequency of the absolute values of Pearson correla-
tions among all genes across all the datasets is presented in
the left panel of Figure 1, and that of one randomly selected
gene (HLA-DRB1) is presented in the right panel. Moderate
to high correlations are observed, suggesting the sensibility
of adopting the network structure.

For each dataset, each gene expression is normalized to
zero mean and unit variance. Genes identified by iLDA with
network N.1 and N.2 are listed in Table 7. We see that the
two iLDA models present considerable similarity. They iden-
tify the same 20 genes across the three datasets. Among
these datasets, as expected, considerable overlaps are pre-
sented. For example, D1 and D2 share 19 and 24 identified
genes under iLDA with N.1 and N.2, respectively. In ad-
dition, datasets have dataset-specific genes. For instance,
under network N.2, MMP7 is specific for D1. For compar-
ison, three single-dataset classification methods including
NSC, l1PLD, and DSDA are applied, and meta-analysis is
conducted. We summary the numbers of genes and their
overlaps identified by different methods. To better compre-
hend their similarity/difference, we also compute the mod-

Figure 1. Data analysis: absolute values of Pearson
Correlations (the left panel is for all genes; the right one is for

a randomly selected gene (HLA-DRB1)).

ified RV-coefficients (Smilde et al., 2009) between the iden-
tified gene sets of two approaches. This coefficient measures
the common information of two matrices (observation ma-
trices of genes identified by two different approaches in our
study), with a larger value indicating higher similarity. The
summary comparison results are presented in Table 8. We
observe that the numbers of genes identified by NSC and
l1PLD are far greater than that of iLDA. This is consistent
with the finding in simulation. We also see that moderate to
high modified RV-coefficients exist between iLDA and alter-
natives. This indicates that, our method, with just over 20
discriminative genes, can cover most of the data information
that is contained in the alternatives with hundreds of genes.

We also present the network structures of selected genes
under N.1 and N.2 in Figures 2 and 3, respectively. The
eigenvector centrality of a gene is indicated by the size of
its node, and gene communities are colorized differently.
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Table 7. Breast cancer studies: gene identification and parameter estimation.

Gene
N.1 N.2
D1 D2 D3 D1 D2 D3

LOC101928826 -0.519 -0.473 -0.028
RPL13A -0.114 -0.136 -0.087 -0.027 -0.525
RPS3 0.394 0.433 0.270 0.144 -0.119
IGH -0.246 -0.057 -0.135
CD24(216379 x at) 0.252 -0.753 0.354 -0.513
RPL23A 0.505 -0.909 0.621 -0.885 -0.253
CD24(209771 x at) -0.650 -0.112 -0.034 -0.341
EEF1G 0.632 0.100 0.657 0.020
UBB -0.500 0.184 -0.583 0.306
RPL27A 0.093 -0.675 0.447 -1.277
HMGN1 0.171 0.309 0.291 0.036 0.077
IER2 0.131 -0.925 0.250 -0.001 -1.244
LOC100508408 -0.391 -0.142 0.593
PTN 0.386 0.090 0.101 0.319 0.555 -0.187
CSN1S1 -0.344 -0.056 -0.092 -0.243 0.388 0.617
PIK3R1 0.032 0.502 0.022 0.226 0.560
RPS16 -0.470 -0.099 -0.494 -0.068 -0.476
ZNF721 0.196 -0.106 0.630
AKR1C2 -0.548 0.204 -0.697 0.185 -0.066
LPL -0.463 0.209 0.194 -0.396 0.191 -0.396
JUN -0.372 0.117 -0.042 -0.323 0.191
MMP7 0.017
HNRNPD 0.294 0.365 0.219 0.445 0.339 0.735
RGS1 0.441 -0.003 -0.104 0.365 -0.369 0.146
HAUS2 0.285 0.410 0.303 0.271 0.462 0.210
ACTN1 0.231 -0.697 0.258 -0.769 0.036
CAT 0.238 -0.708 0.715
IGK -0.140 -0.467 0.116
EEF2 -0.260 -0.020 -0.125
MYL12B 0.219 0.039 0.430
RBP4 0.060 -0.281 -0.433

Table 8. Numbers of genes, overlaps, and the modified RV-coefficients between different approaches.

Overlap Modified RV-coefficient
N.1 N.2 NSC l1PLD DSDA N.2 NSC l1PLD DSDA

N.1 25 20 12 11 10 0.96 0.65 0.72 0.75
N.2 27 11 10 9 0.63 0.70 0.73
NSC 111 105 19 0.93 0.83
l1PLD 207 15 0.79
DSDA 19

We see that these two network structures share a consid-
erable number of important nodes, including ACTN1, HN-
RNPD, RPS3, RPS16, UBB, RPS16, EEF1G, RPL27A, and
RPL13A. In addition, we can obtain some information on
genes’ interconnections from the community detection re-
sult. For instance, RPL27A, RPL13A, UBB, EEF1G, and
RPS16 are clustered into the same community under both
N.1 and N.2. It is of interest to note that these genes have
similar groups of coefficients in the sense of 1-norm. For ex-
ample, for genes clustered into the purple (black in printed
version) community in Figure 2, most of their coefficients’

1-norms range from 0.5 to 0.7, while for most green (dark
grey in printed version) genes, the norms are between 0.7 to
0.9. Similar results can be obtained under N.2.

To evaluate prediction performance, we adopt a random
splitting approach. Each dataset is randomly split into a
training set and a testing set with sizes 3:1. To avoid an
extreme split, this process is repeated 100 times. Three cri-
teria, namely sensitivity, specificity, and prediction error,
are calculated to measure prediction performance. Sensitiv-
ity and specificity measure the prediction accuracy of case
and control samples, respectively. It is shown that, iLDA
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Figure 2. Network structure for genes identified by iLDA
under N.1: each gene community (cluster) is colorized
uniquely, and the eigenvector centrality of a gene is

represented by the size of its node.

has smaller prediction errors (0.143 under both networks)
than benchmarks (0.200 for all three benchmarks). iLDA
also shows higher sensitivity, with 0.89 and 0.90 under N.1
and N.2, respectively, while the results for NSC, l1PLD, and
DSDA are 0.87, 0.79, and 0.83, respectively. Specificities
are calculated as 0.82 (N.1), 0.84 (N.2), 0.79 (NSC), 0.82
(l1PLD), and 0.78 (DSDA).

5. DISCUSSION

In high-dimensional classification, single dataset analy-
sis may be unsatisfactory owing to the small sample size.
Integrative analysis pools and analyses raw data from mul-
tiple datasets, and can effectively increase sample size and
improve estimation and selection result. However, the ex-
isting integrative analysis studies are focused on regression.
In this study we have developed the iLDA method for the
integrative analysis of LDA. Advancing from the published
studies on classification, we have considered the intercon-
nections among variables by constructing a network struc-
ture. To achieve variable selection and simultaneous esti-
mation, we have adopted the 1-norm group MCP method
in which the effect of one covariate across all datasets is
represented by a group of coefficients. In addition, a Lapla-
cian penalty has been adopted to incorporate the network
information. For computation, a local linear approximation
has been conducted, and based on this approximation, we
have further adopted the coordinate descent algorithm to
estimate parameters. Simulation study has been conducted
under different models. Compared with several alternatives,

Figure 3. Network structure for genes identified by iLDA
under N.2: each gene community (cluster) is colorized
uniquely, and the eigenvector centrality of a gene is

represented by the size of its node.

iLDA demonstrates superior performance in terms of true
positives, false positives, and prediction accuracy. In an ap-
plication with three breast cancer datasets, iLDA shows sat-
isfactory prediction results, and the interconnections among
genes are properly accommodated.

In practical data analysis, the proposed approach can pro-
vide a competitive solution to multi-dataset classification.
This is supported by our extensive simulations and data
analysis. The three alternatives compared in our numeri-
cal study are originally designed for single-dataset analy-
sis. Their relative advantages (and disadvantages) have been
discussed in Mai et al. (2012) and other published studies
and will not be reiterated here. Developing their integrative
analysis counterparts (and comparing with iLDA) is beyond
the scope of this article. It is also noted that it is possible
to “reduce” the proposed iLDA to single-dataset analysis.
This would lead to a LDA approach that accommodates the
network structure of covariates. With the iLDA numerical
results presented in this article and single-dataset regression
studies that accommodate the covariate network structures
in the published literature, it may be reasonable to conjec-
ture that such a LDA approach would have competitive per-
formance. However, a detailed examination of this approach
is also beyond our scope.

This study can be potentially extended in multiple direc-
tions. Besides LDA, integrative analysis can be conducted
based on other classification methods. For variable selec-
tion and estimation, 1-norm gMCP penalization is adopted.
Other penalties are also expected to be applicable, such
as the group Bridge, 1-norm group SCAD, adaptive group
Lasso, and composite group MCP. We postpone such re-
search to the future.
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APPENDIX

Table 9. Simulation 5 under Nonnorm.B: the first row is the number of true positives (standard deviation), the second row is
the false positives (standard deviation), and the third row is prediction mean classification error (standard deviation).

Scenario Bayes
iLDA

NSC l1PLD DSDA
N.1 N.2

χ2 (5)

Homo.A
17(1.75) 17(1.83) 13(2.32) 17(2.44) 10(0.72)
20(9.69) 16(5.46) 10.5(88.94) 0(0.69) 0.5(1.76)

17.61(0.02) 17.67(0.02) 17.00(0.02) 15.00(0.02) 20.00(0.02) 15.01(0.02)

Hetero.B
20(3.14) 22.5(2.48) 19(2.94) 26.5(2.91) 14(1.28)
12(13.24) 11(10.49) 68.5(86.29) 1(1.19) 4(5.04)

4.67(0.01) 8.00(0.01) 7.44(0.01) 10.78(0.01) 15.39(0.02) 8.33(0.01)

Log-normal

Homo.A
20(0.91) 20(0.81) 27(2.58) 30(0) 11(1.64)
19.5(5.64) 14(4.89) 141(188.92) 14(18.92) 1.5(4.29)

13.11(0.01) 15.33(0.01) 14.56(0.01) 7.83(0.01) 19.33(0.02) 14.73(0.01)

Hetero.B
25(2.54) 28(2.02) 29.5(2.59) 30(0) 15(1.71)
11.5(13.52) 6(3.42) 50(95.06) 10(5.82) 4(5.22)

6.56(0.01) 7.39(0.01) 6.89(0.01) 7.83(0.01) 19.55(0.02) 8.67(0.01)

Two-component normal mixture

Homo.A
15(1.78) 15.5(1.53) 12(1.29) 12(0.92) 10.5(0.53)
24.5(4.56) 17.5(3.29) 11(12.38) 15(20.91) 0.5(4.42)

14.33(0.01) 15.89(0.02) 15.33(0.02) 14.39(0.01) 15.28(0.01) 14.39(0.01)

Hetero.B
15(1.65) 16(1.97) 17(2.04) 30(0.32) 14(0.74)
27(2.47) 25(2.45) 18(32.40) 8(64.20) 4(2.98)

9.17(0.02) 9.11(0.01) 8.56(0.01) 8.22(0.01) 28.33(0.03) 8.89(0.01)

Uniform

Homo.A
21(0.65) 21(0.61) 18(1.46) 21(1.51) 17(1.50)
0(2.94) 0(1.23) 39.5(73.49) 58.5(51.23) 1(4.87)

7.72(0.01) 7.33(0.01) 7.44(0.01) 10.56(0.02) 11.50(0.01) 8.57(0.01)

Hetero.B
25(2.58) 26(0.47) 28(1.57) 29(1.36) 22(1.78)
13(14.17) 12(1.67) 101(64.53) 101(87.20) 10(7.59)

11.72(0.01) 11.44(0.01) 10.61(0.01) 13.17(0.01) 13.00(0.01) 12.00(0.01)

t (5)

Homo.A
21(0.85) 21(0.85) 18(2.11) 19(1.14) 15(1.38)
12(5.16) 7(1.29) 34.5(66.63) 33(58.20) 4(12.87)

11.78(0.01) 12.89(0.02) 12.33(0.01) 12.44(0.01) 12.27(0.01) 12.83(0.02)

Hetero.B
26(3.31) 29(1.41) 29(2.87) 30(0.95) 22(3.03)
26(16.83) 17(5.29) 149.5(115.40) 107(97.04) 8(12.10)

6.22(0.01) 6.44(0.01) 6.22(0.01) 8.11(0.01) 6.78(0.01) 7.56(0.01)

t (30)

Homo.A
21(0.91) 21(0.94) 18(1.91) 18(1.46) 15(1.28)
9.5(5.31) 7(5.24) 37(62.39) 40(91.29) 1(5.56)

10.89(0.01) 12.22(0.02) 11.39(0.02) 12.78(0.02) 12.22(0.02) 12.33(0.01)

Hetero.B
26(2.70) 30(0.86) 30(1.58) 30(1.26) 26(2.51)
25(21.64) 23.5(8.59) 89(90.39) 107(87.20) 12.5(10.58)

11.28(0.01) 11.78(0.01) 11.56(0.01) 8.22(0.01) 7.61(0.01) 13.33(0.01)
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Table 10. Simulation 5 under Nonnorm.C: the first row is the number of true positives (standard deviation), the second row is
the false positives (standard deviation), and the third row is prediction mean classification error (standard deviation).

Scenario Bayes
iLDA

NSC l1PLD DSDA
N.1 N.2

χ2 (5)

Homo.A
16(1.76) 16(1.95) 8.5(2.26) 19(2.32) 12(1.05)
47.5(9.71) 39.5(14.35) 30.5(43.29) 0(1.10) 1(10.79)

24.67(0.03) 28.56(0.03) 28.11(0.03) 27.67(0.03) 35.39(0.02) 30.29(0.04)

Hetero.B
20.5(3.51) 21.5(3.79) 14.5(3.88) 27(1.70) 16(0.86)
11.5(9.37) 8.5(5.49) 39.5(59.52) 0(0.31) 6(5.98)

11.77(0.01) 12.72(0.01) 12.67(0.01) 13.39(0.01) 37.78(0.02) 13.72(0.01)

Log-normal

Homo.A
20(0.97) 20(1.22) 20(3.24) 21(0) 16(1.89)
32.5(7.82) 25.5(9.91) 47(56.49) 5(19.50) 13(6.05)

19.22(0.01) 24.28(0.02) 23.39(0.02) 19.61(0.01) 26.78(0.02) 23.44(0.02)

Hetero.B
26(1.77) 27(1.71) 29.5(0.72) 30(0.37) 19(2.06)
8(15.12) 17(7.43) 71.5(100.89) 6.5(2.45) 5(5.41)

10.09(0.01) 10.33(0.01) 10.17(0.01) 11.11(0.01) 20.11(0.01) 13.33(0.01)

Two-component normal mixture

Homo.A
12(2.46) 11(2.63) 6(1.90) 21(2.21) 4(0.31)
48(50.29) 39(20.41) 31.5(81.29) 5(32.44) 0(6.78)

23.11(0.02) 28.61(0.02) 27.72(0.02) 28.27(0.02) 42.81(0.02) 23.77(0.02)

Hetero.B
13(1.65) 14(2.11) 10(3.42) 30(0) 7(1.03)
23(10.91) 18(5.92) 13(23.40) 5(5.60) 6(3.29)

15.17(0.01) 14.01(0.02) 13.50(0.02) 14.17(0.01) 36.50(0.02) 13.94(0.02)

Uniform

Homo.A
21(0.18) 21(0.18) 21(1.10) 21(0) 21(0.49)
0(3.12) 0(0.98) 46(43.25) 41(39.10) 5(7.87)

7.83(0.01) 7.55(0.01) 7.61(0.01) 12.83(0.02) 13.28(0.01) 8.78(0.01)

Hetero.B
28(2.01) 29(1.17) 30(0) 30(0) 30(0.50)
28(9.76) 33(10.29) 93(90.23) 63(81.23) 5(6.40)

2.61(0.01) 2.89(0.01) 2.78(0.01) 5.28(0.01) 7.22(0.01) 2.94(0.01)

t (5)

Homo.A
20(1.41) 21(0.89) 10.5(2.05) 19(0.93) 19(0.95)
31(12.92) 25.5(8.93) 17.5(28.98) 29(82.54) 23(5.25)

22.50(0.02) 25.11(0.02) 24.72(0.02) 20.56(0.02) 41.22(0.02) 27.89(0.02)

Hetero.B
26(2.05) 29(1.42) 30(0.94) 30(0.18) 23(2.92)
18(13.61) 17(8.14) 80.5(57.17) 55(56.48) 12(10.72)

8.00(0.01) 8.56(0.01) 7.61(0.01) 10.89(0.01) 9.33(0.01) 10.56(0.01)

t (30)

Homo.A
21(1.14) 21(0.67) 10(1.09) 18(0) 10(0.56)
32.5(46.82) 26.5(30.22) 15.5(45.48) 26.5(85.34) 5.5(8.37)

23.01(0.05) 26.22(0.04) 26.17(0.05) 24.39(0.04) 40.44(0.02) 26.11(0.02)

Hetero.B
25(2.52) 30(0.91) 30(1.15) 30(0) 25(2.79)
21(20.31) 16(5.92) 89(80.08) 104(47.92) 13(10.78)

7.67(0.01) 8.11(0.01) 6.89(0.01) 9.22(0.01) 8.17(0.01) 9.11(0.01)
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Table 11. Simulation 5 under Nonnorm.D: the first row is the number of true positives (standard deviation), the second row is
the false positives (standard deviation), and the third row is prediction mean classification error (standard deviation).

Scenario Bayes
iLDA

NSC l1PLD DSDA
N.1 N.2

χ2 (5)

Homo.A
19(1.31) 19(0.97) 19(0.97) 19(1.23) 17(0.90)
15(14.30) 14(14.30) 14.5(28.90) 45(51.39) 2(2.74)

8.94(0.01) 9.00(0.01) 9.11(0.01) 10.64(0.02) 14.17(0.01) 9.67(0.01)

Hetero.B
23(3.52) 23(1.49) 30(0) 0(0) 25(1.67)
11(32.13) 9(24.42) 21(18.14) 150(89.82) 1(4.23)

4.11(0.01) 4.56(0.01) 4.33(0.01) 5.83(0.01) 45.28(0.02) 4.22(0.01)

Log-normal

Homo.A
21(2.02) 21(1.66) 20(0.82) 0(2.02) 17(1.19)
21(19.83) 18(13.16) 26(48.07) 131(283.23) 0(2.04)

9.44(0.01) 9.39(0.01) 8.72(0.01) 10.56(0.01) 49.78(0.02) 9.89(0.01)

Hetero.B
24(3.19) 28(2.43) 29(0.92) 8(6.13) 26(1.40)
30(39.69) 26(21.32) 26(121.63) 100(132.19) 0(2.87)

4.44(0.01) 4.50(0.01) 4.22(0.01) 6.44(0.01) 50.33(0.02) 4.72(0.01)

Two-component normal mixture

Homo.A
21(0) 21(0.32) 20(1.05) 0(0) 17.5(0.67)
110(67.70) 112(87.19) 19.5(37.28) 149(189.02) 1(3.12)

9.38(0.01) 11.39(0.01) 11.29(0.01) 10.33(0.01) 50.5(0.02) 10.00(0.01)

Hetero.B
19(2.28) 23(2.05) 30(0.98) 2(3.29) 26.5(1.64)
91.5(66.25) 90(62.29) 44(88.93) 280(230.21) 1(1.33)

4.89(0.01) 6.89(0.01) 6.44(0.01) 5.61(0.01) 39.93(0.02) 5.11(0.01)

Uniform

Homo.A
21(1.76) 20(1.49) 20(1.13) 21(0.31) 17(1.39)
0(1.43) 1(2.47) 69(150.96) 37(82.22) 1(3.99)

9.28(0.01) 9.22(0.01) 8.94(0.01) 9.56(0.01) 8.94(0.01) 9.89(0.01)

Hetero.B
25(2.16) 27(3.23) 30(0.84) 30(0) 26(1.72)
18(8.70) 6(11.12) 5(63.47) 60(50.38) 1(2.44)

4.39(0.01) 4.56(0.01) 4.22(0.01) 4.00(0.01) 4.00(0.01) 4.72(0.01)

t (5)

Homo.A
21(0.31) 21(0.43) 19(1.35) 21(0.48) 17(1.39)
16(4.66) 16(4.63) 2(32.38) 33(80.59) 1(3.10)

9.50(0.01) 10.39(0.01) 10.00(0.01) 10.44(0.01) 9.78(0.01) 9.83(0.01)

Hetero.B
25(2.74) 28(2.01) 29(0.52) 30(0) 26(1.79)
9(16.60) 2(14.87) 46(213.65) 33(122.19) 1(4.89)

4.17(0.01) 4.33(0.01) 4.00(0.01) 5.06(0.01) 4.78(0.01) 4.44(0.01)

t (30)

Homo.A
21(0.31) 21(0.73) 20(1.41) 21(0.38) 17(1.04)
7(4.62) 6(4.28) 6(131.06) 47(87.08) 0(1.78)

9.33(0.01) 10.00(0.01) 9.78(0.01) 9.33(0.01) 9.11(0.01) 9.78(0.01)

Hetero.B
27(2.32) 29(2.65) 29(1.16) 30(0) 26(1.57)
3(10.58) 5(12.94) 29(113.50) 56(80.97) 0(12.96)

4.28(0.01) 4.28(0.01) 4.06(0.01) 4.39(0.01) 4.11(0.01) 4.78(0.01)
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Table 12. Simulation 5 under Nonnorm.E: the first row is the number of true positives (standard deviation), the second row is
the false positives (standard deviation), and the third row is prediction mean classification error (standard deviation)

Scenario Bayes
iLDA

NSC l1PLD DSDA
N.1 N.2

χ2 (5)

Homo.A
18(2.76) 18(2.75) 20(0.97) 18(0.83) 17(1.09)
16(18.35) 16(5.92) 35.5(34.91) 75.38(65.39) 0(3.39)

9.44(0.01) 9.67(0.01) 9.72(0.01) 13.00(0.03) 15.49(0.01) 10.39(0.01)

Hetero.B
26(3.21) 24.5(2.69) 30(0.43) 0(0) 26(1.59)
29(47.73) 23(4.29) 22(28.53) 280(158.29) 0(4.04)

4.62(0.01) 5.67(0.01) 5.28(0.01) 5.78(0.01) 49.39(0.02) 4.89(0.01)

Log-normal

Homo.A
21(0.98) 20(1.25) 19(1.29) 3(1.99) 17(1.23)
21(19.47) 20(9.90) 17(42.51) 180(292.39) 0(2.92)

8.94(0.01) 8.72(0.01) 8.61(0.01) 9.81(0.01) 50.17(0.02) 9.56(0.01)

Hetero.B
25(3.60) 28(1.74) 29(1.26) 0(4.48) 27(1.89)
36(37.89) 34(29.31) 16.5(77.92) 210(165.23) 1(1.03)

5.00(0.01) 5.50(0.01) 5.11(0.01) 3.67(0.01) 49.44(0.02) 5.33(0.01)

Two-component normal mixture

Homo.A
21(0) 21(0.42) 21(1.10) 0(1.75) 18(0.99)
92(6.89) 91(6.97) 23(41.26) 298(144.24) 1(0.69)

10.33(0.01) 11.33(0.01) 11.44(0.01) 10.50(0.01) 50.89(0.02) 10.67(0.01)

Hetero.B
21(1.67) 23(1.10) 30(0.71) 0(3.86) 25(2.00)
78(9.91) 70(9.82) 47(120.54) 300(346.41) 2(1.98)

4.78(0.01) 6.28(0.01) 5.72(0.01) 5.17(0.01) 5.01(0.02) 5.11(0.01)

Uniform

Homo.A
21(0.86) 20(1.29) 20(1.57) 21(0.18) 17(1.59)
0(2.71) 0.5(2.31) 33(52.30) 13(45.49) 0(3.59)

8.83(0.01) 9.33(0.01) 9.33(0.01) 9.33(0.01) 9.11(0.01) 10.22(0.01)

Hetero.B
28(2.01) 29(1.17) 30(0.85) 30(0) 30(0.50)
28(9.75) 33(11.87) 18(90.23) 23(30.52) 6(6.52)

2.61(0.01) 2.89(0.01) 2.78(0.01) 4.50(0.01) 4.44(0.01) 2.94(0.01)

t (5)

Homo.A
12(0.84) 12(1.20) 11(0.52) 11(0.52) 10(0.71)
21(5.93) 16(4.39) 7(29.18) 22(28.32) 1(3.16)

14.72(0.01) 16.89(0.01) 15.89(0.01) 14.89(0.01) 14.22(0.01) 16.50(0.01)

Hetero.B
26(3.13) 28(1.51) 30(0.42) 30(0) 27(1.51)
14(10.38) 3(0.52) 80(99.68) 117(138.73) 2(1.58)

4.44(0.01) 4.50(0.01) 4.44(0.01) 4.06(0.01) 4.44(0.01) 4.56(0.01)

t (30)

Homo.A
12(0.45) 12(0.78) 11(0.88) 11(0.53) 10(0.63)
20(5.58) 15.5(5.17) 10(66.49) 19(43.20) 0(3.29)

14.78(0.01) 16.27(0.02) 15.89(0.02) 15.44(0.02) 14.72(0.01) 14.89(0.02)

Hetero.B
26(3.12) 29(1.89) 29(1.19) 30(0.19) 26(1.70)
6(8.85) 6(11.95) 94(179.39) 43.5(78.21) 1(4.96)

5.44(0.01) 5.78(0.01) 5.44(0.01) 5.50(0.01) 5.67(0.01) 6.00(0.01)
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