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Pseudo likelihood estimation for the additive
hazards model with data subject to
left-truncation and right-censoring

Li-PANG CHEN

Analysis of left-truncated and right-censored (LTRC) sur-
vival data has received extensive interest. Many inference
methods have been developed for the various survival mod-
els, including the Cox proportional hazards model and the
transformation model. The additive hazards model is also
concerned in survival analysis, and several methods have
also been developed without left-truncation. However, little
work has been available in the literature for the additive haz-
ards model with left-truncation and right-censoring. In this
paper, we explore this important problem under the additive
hazards model. We develop the pseudo-likelihood inference
for the estimation of the survival model parameters, which
yields a more efficient estimator. Besides, we assess the per-
formance of our proposed methods using simulation studies.
Through the conducted simulations, the proposed estimator
is further found to outperform the existing competitors in
the literature.
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truncation, Misspecification, Prevalent sampling, Pseudo
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1. INTRODUCTION

In the study of a disease history, the time from the
onset of an initiating event to the focused disease event
(or failure) is usually the interest in the epidemiological
and biomedical researches. One of the most attractive
data comes from the prevalent sampling design, in which
individuals only experience the initiating event but not the
failure event before the recruiting time. Under this sampling
scheme, individuals might not be observed because they
experience the failure event before the recruiting time.
Such a phenomenon caused by the delayed entry is called
left-truncation and tends to produce a biased sample.
Meanwhile, individuals who are recruited in the study may
drop out or may not experience the failure event at the end
of the study. It is called right-censoring in the dataset. In
this study, we focus on investigating the statistical inference
procedures with left-truncated and right-censored (LTRC)
data. Here we give two specific examples.

Example 1: The Channing house data.

The Channing house is a retirement center in Palo Alto,
California. These data were collected between the opening
of the house in 1964 until July 1, 1975. Suppose that
individuals who survive to an age of 60 or higher are
allowed to enter the retirement center. Residents in the
population were born before 1916. In addition, let v and
v be the calendar time of birth and the calendar time of
death, respectively. Let £ be the calendar time of entry.
Therefore, we can define 7% = v — u as the length from
birth to death and denote A* = £ — u the length from
birth to the time of entry. It is obvious that an individual
becomes the element of a sample if and only if 7% > A*.
For those individuals in the house, their ages on entry and
also on leaving or death were recorded. Besides, in this
dataset, a large number of individuals were right-censored
because they left the house prior to July 1, 1975, or that
they were still alive and living in the center on that date.
Example 2: The Worcester Heart Attack Study
(WHAS500) data.
The main goal of this study is to determine the factors
associated with trends over time in the incidence and
survival rates following hospital admission for acute my-
ocardial infarction (MI). The data were collected over
thirteen 1-year periods beginning in 1975 and extending
through 2001 on all MI patients admitted to the hospitals
in Worcester, Massachusetts. There are 500 observations
and 22 variables in this dataset. Specifically, as discussed in
Hosmer, Lemeshow, and May [9], the beginning of survival
time was defined as the time the subject was admitted
to the hospital. The main interest is the survival time
of a patient who was discharged and still alive. Hence,
an inclusion criterion is that only those subjects who are
discharged and still alive are eligible to be included in the
analysis. That is, the minimum survival time would be
the length of the time a patient stayed in the hospital;
individuals whose observation times are shorter than the
minimum survival time are not included in this analysis.
Basically, the data are pertinent to three important
events in calendar time: time of hospital admission, time
of hospital discharge, and time of last follow-up (which is
either failure or censoring). The total length of follow-up is
defined as the length of time between hospital admission and
the last follow-up, and the length of hospital stay is defined
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as the time length between hospital admission and hospital
discharge. Data can only be collected for those individuals
whose total length of follow-up is longer than the length of
hospital stay, which is the so-called left-truncation (e.g., [17,
Section 1.3]; [19, Section 2.4]).

In the case of stable disease, however, the occurrence of
disease onset follows the stationary Poisson process. It im-
plies that the truncation time follows the uniform distribu-
tion, and the survival time in the prevalent cohort has a
length-biased sampling distribution since the probability of
the survival time is proportional to the length of survival
time (e.g., [32, 10, 11]). Hence, the length-biased sampling
can be regarded as a special case of LTRC data (e.g., [2, 25]).

In this article, we mainly focus on the model development
with covariates under LTRC data. Among all models in sur-
vival analysis, the Cox proportional hazards (PH) model has
highly attracted the most research attention. Briefly speak-
ing, given covariate Z, the Cox PH model is given by

A(t]z) = Mo(t) exp (872),

where A\g(-) is the unspecified baseline hazard function and
B is the unknown parameter.

For the Cox PH model, several estimation methods have
been developed based on LTRC data. For instance, sup-
pose that for sample i = 1,--- ,n, T;, A; and C; are the
failure time, the truncation time, and censoring time, re-
spectively. Denote Y; = min {7}, C;} the lifetime and define
0; = I (T; < C;) as an indicator of the failure time. Wang,
Brookmeyer, and Jewell [34] expressed the conditional like-
lihood as the following form:
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where S(t]z) = exp{—Ao(t)exp(8'z)}. Moreover,
Le(B8, Ao) can be decomposed as the product of the partial
likelihood (Kalbfleisch and Lawless [16])
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(2) Lp(B, o) x ﬁ - exp(B' )
=L 2 o8 z) a5 <y <)

and the residual likelihood Lg(8, A\g). Wang, Brookmeyer,
and Jewell [34] showed that Lr(8, \o) is ancillary and (2) is
fully efficient with respect to (1). In both LTRC data and
the length-biased sampling, however, directly maximizing
(2) with respect to S is expected to yield the inefficient es-
timator. Hence, in order to improve the efficiency, several
non-parametric or semi-parametric approaches have been
developed. Specifically, the past literature mainly focused
on the length-biased sampling and the Cox PH model. For
example, Tsai [29] proposed the pseudo-partial likelihood
method for the Cox PH model based on the length-biased
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sampling. Qin and Shen [25] proposed two different meth-
ods of the estimating equations to estimate 5. Huang, Foll-
man, and Qin [11] proposed the semiparametric likelihood
inference for the Cox PH model based on the length-biased
sampling. Su and Wang [28] developed the semi-parametric
approach for the joint modelling between the LTRC sur-
vival outcomes and the longitudinal covariates. In addition
to the Cox PH model, different types of model were also
concerned. For example, Cheng and Wang [5] discussed the
transformation model for causal inference. Chen and Shen
[3] developed the conditional maximum likelihood approach
in the transformation model.

Not only the models mentioned above, different type of
models are also discussed in the developments of survival
analysis based on specific purposes. For example, different
from the investigation of the hazard ratio based on the Cox
PH model, sometimes researchers may be more interested in
the risk difference attributed to the risk factors. Based on
this purpose, the additive hazards model is considered, and
the formulation is given by

3)

where A(t|z) is the conditional hazard function of the sur-
vival time given the covariates Z, A\o(t) is the unspecified
baseline hazard function and f is the p x 1 vector of param-
eters.

In the absence of the left truncation, many methods were
developed for the additive hazards model in the past litera-
ture. For example, Lin and Ying [22, 23] developed the esti-
mating equations approach to derive the estimator of 5 and
the cumulative baseline hazard function Ag(-). When the
left-truncation occurs, however, little work has been avail-
able in the developments of the additive hazards model. Sim-
ilar to the Cox model, the estimator would be inefficient if
we only considered the conditional part. To overcome this
problem and improve efficiency, Huang and Qin [12] pro-
posed the modified conditional estimating equations under
the martingale theory (e.g., [22]) and applied the pairwise
pseudo-marginal likelihood (e.g., [20]) to deal with the re-
maining part. Finally combining the two methods yields the
estimators, and the efficiency of the estimators is largely
improved. However, the model misspecification was not con-
cerned in the development of Huang and Qin [12]. That is,
the properties of the martingale theory only hold when the
model is true (e.g., [21]). Besides, the estimating equation
approach was frequently studied in the development of the
additive hazards model. To the best of our knowledge, how-
ever, there is no existing method to estimate 8 by the max-
imization of the likelihood function based on the additive
hazards model. Hence, in this article, the main goal is to
develop the pseudo-likelihood method to improve efficiency.

The rest of this article is organized as follows. We first in-
troduce the structure of LTRC data and the corresponding
likelihood functions in Section 2. We next review the existing

Atl2) = do(t) + 87 z,



estimation methods which were proposed by Huang and Qin
[12] in Section 3. After that, we present our methods in Sec-
tion 4. Basically, we first estimate the distribution function
of the truncation time, and then use the smoothing tech-
nique to estimate the baseline hazard function. In the last
step, we propose the pseudo-likelihood estimation to derive
the estimator of the main parameter. We give some model
settings to examine the numerical performances of the esti-
mator and compare with methods proposed by Huang and
Qin [12] in Section 5. Finally, the real data analysis is given
in Section 6.

2. LTRC DATA AND LIKELIHOOD
CONSTRUCTION

2.1 Data introduction

For an individual in the target disease population, let £ be
the calendar time of the recruitment (e.g., the recruitment
starts right at the hospital discharge) and let v and v de-
note the calendar time of the initiating event (e.g., hospital
admission) and the failure event (e.g., death), respectively,
where u < v and u < £ < v. Let T* = v — u be the lifetime
(e.g., the time length between the hospital admission and
the failure) and A* = £ —u be the truncation time (e.g., the
time length between the hospital admission and the hospital
discharge). Let Z* be the associated covariates of dimension
p x 1. Let h(a) be the unspeciﬁed probability density func-
tion of A*, and let H (a fo ¢)d¢ denote the distribution
function of A*. Let f ( ) and S(t) be the density function and
the survivor function of failure time 7™, respectively. Define

(AT Zr), if T > AF,

(AT, 2) = { 0, otherwise.
That is, A, T, and Z represent the truncation time, the sur-
vival time and the covariates for those subjects who are
recruited in the study, respectively. Hence, (A,T,Z) has
the same joint distribution as (A*,T*, Z*) given T* > A*.
In addition, we let C' denote the censoring time for a re-
cruited subject. Let Y = min{7T, A + C} be the observed
survival time and A = I(T < A + C) be the indicator of a
failure event. Figure 1 gives an illustration of the relation-
ship among those defined variables. However, if T* < A*,
as shown in Figure 2, the individual is not included in the
study so that the researcher cannot obtain any information
of such individual.

For the following development, we make standard as-
sumptions which are commonly considered for survival data
analysis and related frameworks (e.g., [11, 12]):

(A1) Conditional on Z*, T* are independent of A*;
(A2) Censoring time is non-informative.
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Figure 2. Schematic depiction of LTRC data. Truncation
occurs when T* < A*.

2.2 Construction of the likelihood function

Suppose that we have a sample of n subjects and that
fori = 1,---,n, (Y3, Ai, A;, Z;) has the same distribution
as (Y, A, A, Z) and (y;,a;,0;,2;) represents realizations of
(Y, A, A, Z).

Under assumption (A1), the joint density function of
(A,T) given Z is proportional to

ftlz)h(a) —  f(t2)
S(u|z)h(u)du  S(alz)

S(alz)h(a)

@) S(u|z)h(u)du’

X
Jo

is the density function of T" given A and Z, and

Jo
f(tlz)
where 5(al?)
S(alz)h(a)
IS S(ulz)h(u)du
tailed derivation of (4) is placed in Appendix A. In addition
to the failure event, right-censoring may occur for those re-
cruited subjects in the study. Under assumption (A2), we
can derive the full likelihood function based on the indepen-
dent and identically distributed data (Y7, 4;, A;, Z;), which
is proportional to

is the density function of A given Z. The de-

(5)

F(yilz:)% S (yilzi) ' 2 h(ai)
LFO(H [ S(u|zi)h(u)du

Specifically, we focus on the additive hazards model in this
article. Thus, under (5) and model (3), we can obtain

H {)\0 yl

where S(t|z;) = exp {—Ao(t) — 87 2t} is the survival func-
tion under model (3). Moreover, we can decompose (6) into
Lo x Ly, where

)+ 87z} S(yilz)h(a:)
[ S(u|zi)h(u)du ’

(6) Lr(B,Ao,h)

S(yilzi)

(7) 5; >\O

ﬁ (Mo(wi) + B z) i
Pl S(ailzi)
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is the likelihood of (Y, A) given A, Z; and

1 S(aglz)h(a:)
w8200 = 1 Foa i e

(8)
is the likelihood of A given Z.

One can easily observe that it is difficult to directly max-
imize (6) since it involves unspecified functions Ao(-) and
h(-), and we cannot imitate Wang, Brookmeyer, and Jew-
ell [34] to decompose (7) into the partial likelihood and the
residual likelihood based on the additive hazards model. The
existing methods, which were proposed by Huang and Qin
[12], to estimate S and A\(-) under model (3) are the con-
ditional estimating equations, the pairwise pseudo-marginal
likelihood and the combination of those two methods. The
spirit of those methods is to imitate the roles of likelihood
functions (7) and (8). We will review those existing methods
in the next section.

Remark 1. As described in Section 1, if the disease inci-
dence occurs over calendar time at a constant rate, then it
implies that the distribution of the truncation time follows
the uniform distribution (e.g., [18]). Based on this situation,
the likelihood function can be expressed as

o f (Wil zi)% S (yilzi) o
L=
H [ S(ulzi)du ’

which can be viewed as a special case of the likelihood func-
tion (5) (e.g., [25]). For the statistical inference, it becomes
simple since the density function of the truncation time h(a)
is no need to be estimated, and we only need to estimate
Ao(+) and 5.

9)

3. REVIEW OF EXISTING METHODS

3.1 The conditional estimating equation
(CEE)

As the absence of the left truncation, Lin and Ying [22]
proposed the estimating equations method to obtain the es-
timator of 8 and the cumulative baseline hazard function
Ao(t) based on the additive hazards model. If truncation
time occurs, Huang and Qin [12] modified the estimating
equations proposed by Lin and Ying [22] by the following
procedures. First of all, define N;(t) = A I(Y; < t) as the
counting process for the observed failure events, and the
modified at-risk process is denoted by R;(t) = I(A; <t <

Y;) for the adjustrnent of the truncation time.

Next, define M;(t) — [ Ri(u){dAo(u) + BT Z;du},
which can be Verlﬁed that 1t is a local square-integrable
martingale. Hence, we can estimate 8 and Ag(-) by solv-

ing the two estimating equations Y [ Z;dM;(u) = 0 and
=1
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= 0. From i [ dM;(u)

i=1

= 0, we can obtain

g:l J dM;(u)

¢ SN () — Ri()3 Ziu)
Ro(t: ) = / &

(10)

Substituting (10) into >~ [ Z;dM,

i=1

(u) = 0 yields the esti-

mating equation

(11) Z@'(ﬁ) =0
i=1
> ZiRi(t)

B) = [{Zi — Z(t)}dM;(t) and Z(t) = 555
Finally, the estimator of 3 is obtained by solving (11), and
the solution is denoted by

By = <Z / (Z; - Z(t)}®2Ri(t)dt>
< (X [tz - zwaviy).

where a®2 = aa ' for any vector a.
Moreover, it can be shown that \/ﬁ{Ao(t;,B) - Ao(t)}
converges weakly to a zero-mean Gaussian process by

where ¢;(

-1

(12)

the counting process theory and /n (@7 — Bg) converges

weakly to a zero-mean multivariate normal distribution,
where fj is the true parameter.

3.2 The pairwise pseudo likelihood method
(PPL)

Although the estimator of 8 is obtained by the condi-
tional estimating equation, it is expected that the estimator
from the estimating equation approach is not efficient since
the information of § in the marginal likelihood (8) is not
used in the estimating procedure. Hence, in order to ana-
lyze the marginal likelihood and improve the efficiency of
the estimator of g, the pairwise likelihood method was pro-
posed.

The idea is as follows. Under the additive hazards model,
the marginal density function of A given Z is

So(a) exp(—BT za)h(a)
[ S(ulz)h(uw)du

S(alz)h(a)
(13) [ S(ulz)h(u)du

where Sp(a) = exp {—Ap(a)}.

From (13), we observe that obtaining the estimator of 3
by maximizing the marginal likelihood is difficult since it
involves unspecified functions h(-) and So(-). Hence, to es-
timate the parameter § in (13) and eliminate the unknown

functions Sy(+) and h(-) simultaneously, the pairwise pseudo
likelihood (e.g., [15, 20]) is modified to handle (13). For




the observed unordered pair (A;, A;), the pairwise pseudo
marginal likelihood of (A;, A;) conditional on (Z;, Z;) with
i < j is given by
S(ailzi)h(a;) S(ajlzj)h(aj)
[ S(ulz;)h(u)du J S(ulzj)h(u)du

S(ajlzj)h(ay) T S(ailzj)h(a;)
J S(ulzj)h(u)du " [ S(u|z;)h(uw)du

S(a;|zi)h(a;)
[ S(ulz;)h(u)du

S(ajlzi)h(aj) 7’
J S(ulzi)h(u)du

which can also be re-written as
exp(—BTaizi — ﬁTajzj)
exp(—fBTaiz; — BTa;jz;) +exp(—BTaiz; — BT a;z)
1
14+ exp{8T(ai — a;)(z —

zj)}

Define p;; = (a; — a;)(z; — zj), and we can estimate 3 by
maximizing the log pairwise pseudo marginal likelihood

Z —log {1+ exp(BTpij)} )

1<i<j<n

It is equivalent to solve the estimating equation

(14) wm:ﬁ S (8) =0,
1<i<j<n

where
—Pij

Vi (B)

~ L+exp(—BTpy)

Here we denote Ed, the solution of (14). The asymptotic
result of 5y, can be found in Huang and Qin [12].

3.3 The method of Huang and Qin [12]

So far, the consistent estimator of g can be obtained from
both (11) and (14) separately. Hence, to obtain the estima-
tor of 8 from both parts and to improve the efficiency, Huang
and Qin [12] proposed to incorporate those two estimating
equations (11) and (14), and the estimator of 3 can be ob-
tained by solving the estimation equation

(15) n(B) = ¢(8) + ¢ (B) =0,

where ¢(8) =n~1 Y ¢:(B3). Let B\ denote the estimator sat-
i=1

isfying n(ﬁ) = 0. The asymptotic result of B is given in
Theorem 1 of Huang and Qin [12].

3.4 Additional remarks

We can observe that the goal of the two estimating equa-
tions (11) and (14) is to deal with two parts (7) and (8),
respectively. However, both methods are not equivalent to
the maximization of (7) and (8). Besides, the conditional
estimating equation in Section 3.1 is constructed under the
martingale theory. However, the properties of the martin-
gale method are only valid when the model is correct. It

implies that model misspecification may not be involved in
their method. As pointed out by Lin and Wei [21], if the
model is incorrect or misspecified, then the estimating equa-
tion method does not work. Therefore, instead of using the
estimating equation approach to derive the estimator (e.g.,
[1]), Lin and Wei [21] proposed the maximization of the like-
lihood function to derive the estimator based on the Cox PH
model. Furthermore, as the best of our knowledge, there is
no development for the additive hazard model based on the
likelihood method. Hence, in the next section, we propose a
new method to derive the estimator and our goal is to ob-
tain the more precise estimator and improve the efficiency
of the estimator.

4. PSEUDO LIKELIHOOD ESTIMATION

We now propose the pseudo likelihood method to esti-
mate [ for the additive hazards model under LTRC data
in this section. From (6), there exists a unknown parame-
ter § and two unspecified functions Ag(-) and h(-). First of
all, we estimate the distribution function of the truncation
time in (8). We then propose the smoothing technique to
estimate Ag(-) and replace Ag(-) by (10). Finally, replacing
Ao(+) and h(-) by their estimators in the likelihood function
(6) yields the pseudo likelihood function. The last step is to
obtain estimator of § by maximizing the pseudo likelihood
function.

4.1 Estimation of H(a)

From (6), we have a unknown parameter 8 and two un-
known functions A\g(-) and h(-). As discussed in Section 2.2,
we can decompose (6) into (7) and (8). Moreover, we ob-
serve that h(-) only appears in (8). So, in this section, we
mainly discuss the estimation procedure for h(-) in (8).

Since (8) contains unknown 3, Ag(+), and h(-), we first
replace Ag(+) by the consistent estimator (10). This approach
is valid even our method is not based on the martingale
method. The detailed derivation is available in Appendix B.
After that, we obtain the pseudo marginal likelihood

PLu (3, H) = ﬁ S(ailzi)h(ai)

(16) o :
=1 Jo S(ulz)dH (u)

where H(a) is the corresponding cumulative distribution
function of h(a), and §(t|zl) = exp{—xo(t)—ﬁTzit}.

Hence, we can estimate H(a) by

fI(a) = argmax PLy (6, H).
H

In (16), we observe that h(a) only appears at the trunca-
tion time A; in both the numerator and the denominator. In
addition, our goal is that the likelihood function can be as
large as possible, so value in numerator must be large, and
value in denominator has to be small. Hence, in the spirit of
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the empirical likelihood estimation, we can search the max-
imizer H € {H : h(t) = hyift =a;,l =1,...,n and h(t) =
0 otherwise }. As a result, we can discretize (16) and there-
fore the estimator of H(a) is given by

(17) ﬁ(a) =argmax PELy (8, H),
P
where ® ={h;: 0 < h;<1land > h; =1} and
[

(18) PELy(8,H) = [ M
i=1 Ej:l S(ajlzi)h;

Next, since h = (hy,...,h,) and 8 are unknown in (18),
so we have to estimate h and  directly from (18). First of
all, we take the partial derivative of log PEL (8, H) with
respect to h;, and solve aihllogPELM(B,H) =0 for [ =
1,...,n. By simple computations, we can obtain the iterated
form

" R _
(19) hy = (Z _ Sl )
i=1 Zj:l S(ailzi)h;

for I = 1,...,n. We can easily observe that (19) follows
the form of the fixed point, say « = g(z). Therefore, we can
discuss its convergence and find its convergent value. On the
other hand, we have to find the estimator of 5. However, a
crucial problem is that we cannot find the closed form for the
estimator of 5. In this case, we apply the numerical method
to find the estimator of § by maximizing (18). The following
is the algorithm to find the estimators of 8 and h:

Step 1 : Given initial value hl(-o) = % Vi =1,...,n, and

B = B.

Step 2 : Update h by formula (19). That is, hgkﬂ) =
g, i=1,... n.

Step 3 : Given the updated value h(**t1) in Step 2, update
B by maximizing PE Ly (8, H), which is given by

Blk+1) argmax Z {1og §(al|zz) + log hl(k+1)
B

i=1

—log Z §(aj |zi)h§k+1)

=1

Step 4 : Continue Steps 2 and 3 until h(*+1) converges and
denote it as h.

By (19) and the algorithm, we have the following proposition

~

of h. Tts proof is placed in Appendix C.

Proposition 4.1. Suppose that there is no tied in the trun-
cation time, i.e., a1 < ag < --- < ay, then the estimator h
18 convergent.
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Finally, we can obtain estimator of H(a), which is given
by

(20) H(a) =Y I(A; < a)hi,
i=1
where ﬁiJ =1,...,nis obtained from (19) in the algorithm.

Actually, Huang and Qin [12] also presented the estimator
of H(-), which is given by

> So H(Ai) exp(BT ZiAi)I(A; < a)
(21) H(a) = — = = )
> Sy (Ai)exp(BT ZiAi)

where §0(t) = exp {—Ko (t,B¢)
performances of (20) and (21) in the simulation study.

4.2 Estimation of A\q(t)

In addition to Ljs, the likelihood function Lec(Ag, )
also contains information of 3, so we have to incorporate
Lc(Mo, B) in the analysis. We can observe that there exists
not only Ag(:) and B, Ao(-) is also involved in the likeli-
hood function L (Ao, 8). Besides, different from the Cox PH
model, we can not derive (7) as the partial likelihood which
contains /3 only (e.g., [34, 11]), so the unknown baseline haz-
ard function Ag(-) can not be directly eliminated when we
estimate 8. These difficulties make challenges, and it seems
not possible to derive the estimator of 8 by maximizing the
conditional likelihood directly. Therefore, we need to deal
with the baseline hazard function Ag(:) before deriving the
estimator of .

In order to drive the estimator of Ag(-), we apply the
method of the smoothing estimation on Ao(-) [8, Section
6.2.4] and implement this estimator to the likelihood func-
tion (7). Let K(-) be the second order symmetric kernel
function and let o be the positive-value bandwidth. The
kernel estimator of Ag(-) is given by

S (y) = = /K <y _ C) dRo(C, By),

g a

}. We shall compare the

(22)

where /AXO(C , B¢) is the consistent estimator of the cumulative
baseline hazard (10). Moreover, it can be verified that (22)
is the consistent estimator and the asymptotic normality of

(no)/? {XU (y) — )\o(y)} can be established [8].

Specifically, we consider the kernel function K (z) = 2(1—
22)I(Jz| < 1) in our numerical studies, and we can estimate

Ao(y) by
%i%{l‘ (ygcj)Q}I(‘yacj Sl)

X {/A\o(Cjﬁw - KO(Cj—lyE(ﬁ)} .

Ao(y) =




4.3 Pseudo likelihood estimation for 3

So far, we have estimators Ko(-), 3\\0(-) and h derived in
previous subsections. Finally, plugging in consistent estima-
tors (10), (22), and the convergent value h to the full like-
lihood (6) yields the pseudo likelihood function of 8, which
is given by

0i ~ ~
)w%) S(yilzi)hs

g 1 S(aj|zi)ﬁj

iy

i=1

(23)

Furthermore, in the estimator (22), one of crucial issues is
the bandwidth selection. Our approach to select bandwidth
is the leave one subject out cross-validation. By deleting-one
subject in KO(-), we have

iy A t];{de(u)_Rj(u)ﬂqujdu}
(24)  ASO(t, By) = /O ~

J#i

From (22) and (24),
smoothing estimator

Xf,“(y)—l/K(y C)dM (¢, Ba).

g

we have the deleted-one-subject

(25)
Plugging in (25) to (23) yields

~( 0i ~, . ~
(R0 +872) " 5D (il
Zy 1§(7i)

(26)

-1l

The estimator & is derived by maximizing (26) for any fixed

B.

(ajl20)h;

Finally, replacing o in (23) by &, we can derive the es-
timator of 8 by maximizing (23), and denote the estimator
by

(27) Br = argénax PL;(B).

5. SIMULATION

Several simulation scenarios are conducted to investigate
the performance of the pseudo likelihood estimation un-
der designed additive hazards models and different censor-
ing rates (c.r.). Further, some existing methods described
in Section 3, including the conditional estimating equations
(CEE) approach, the pairwise pseudo likelihood estimation
(PPL) approach and the combined estimating equation ap-
proach proposed by Huang and Qin [12], are conducted in
this section. In the numerical experiments, each simulation
settings are repeatedly generated 1000 times with sample
sizes n = 200, 300 and 400.

5.1 Model settings

Four model formulations for (A*, T*) are considered in
this simulation study as follows:

Model 1. A(t|z) = 0.5v/t + 2, A* ~ U(0,100).
Model 2. A(t|z) = 0.5Vt + 2, A* ~ exp(10).
Model 3. A(t|z) = 1.5v/t + 0.5z, A* ~ exp(10).
Model 4. A(t|z) = 5Vt + z, A* ~ exp(10).

It is noted that Models 1 to 2 are the same with the set-
tings in Huang and Qin [12]. Apparently, the survival times
are generated from the additive hazards model of the form
A(t]z) = Ao(t) + Bz. In addition, Z* is generated from the
uniform distribution U(0, 1). As mentioned in Section 2, the
collected data of the form {(A4;,T;,7Z;) : i = 1,...,n} are
obtained from (A}, T}, Z}) given T* > A*. Independent of
(AF,Tr,ZF), the censoring time C; is generated from the
uniform distribution U(0, 7.) with 7. being specified to pro-
duce the expected censoring rates of about 0%, 25%, and
50%, respectively.

5.2 Simulation results

Tables 1 to 4 summarize the empirical mean, the empiri-
cal standard deviation (S.E.), the mean squared error (MSE)
and the coverage probability (CP) under Models 1 to 4 with
the different censoring rates and sample sizes. In our four
model settings, we observe that the variation increases as the
censoring rate increases and variations in the small sample
are obviously larger than variations in the larger sample for
all estimators. For comparisons, the biases of the proposed
method are comparable with other methods for Models 1
and 2, and the biases do not have significant differences un-
der Models 3 and 4. For S.E., we first observe that both
By and By produce noticeable S.E., which verifies that the
estimator would be inefficient if either (7) or (8) is ignored.
Second, both B and 5 r are estimators obtained by the com-
binations of (7) and (8), so we can see that the efficiency of
the estimator is improved. Finally, from the comparisons of
S.E. between 5 and 5F7 we can see that the proposed esti-
mator ﬁp has the smaller S.E. than estimator 8 proposed
by Huang and Qin [12]. Besides, MSE of 8p is the smallest
among all estimators. From simulation studies, the numeri-
cal results indeed show that the proposed method improves
the efficiency of the estimator and the performance is better
than others. In addition, we can further observe that the
coverage probability based on the CEE approach or PPL
method are relatively large. The main reason is that both
CEE and PPL methods produce the larger S.E., which yields
the wider interval and therefore the coverage probability is
over-estimated. On the contrary, the coverage probability of
our proposed method is close to 95%, which means that our
proposed method gives the more precise estimator.

5.3 Investigation of the distribution of
truncation time

Huang and Qin [12] discussed the performance of the es-
timator when different distributions of the truncation time
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Table 1. Simulation result for Model 1

n c.r CEE(8s) PPL(By) HuangQin () Proposed(8r)
bias SE  MSE CP bias SE MSE CP bias SE  MSE CP bias SE MSE CP
200 0% 0.00 0.27 0.07 97  0.04 0.32 0.11 97 0.01 021 0.05 94 0.00 0.20 0.04 95
25% -0.01 0.31 0.10 96 0.03 032 0.11 96 0.00 0.23 0.05 95 0.00 0.21 0.04 95
50% -0.04 0.36 0.13 97 0.02 034 0.12 93 -0.01 0.26 0.07 94 -0.01 0.24 0.06 95
300 0% -0.02 0.23 0.05 98 0.03 0.28 0.08 97 0.00 0.18 0.03 97 0.00 0.16 0.03 96
25% 0.00 0.25 0.06 96 0.04 0.27 0.08 94 0.01 0.19 0.04 95 0.01 0.18 0.03 95
50% -0.01 0.30 0.09 94 0.04 0.27 0.08 93 0.02 0.21 0.04 96 0.01 0.19 0.04 95
400 0% 0.00 0.17 0.03 99 -0.01 0.23 0.05 97 -0.01 0.15 0.02 90 0.00 0.13 0.01 95
25% -0.06 0.38 0.15 82 0.01 0.22 047 97 -0.01 0.19 0.04 97 -0.02 0.17 0.03 94
50% -0.01 0.22 0.05 94 0.01 0.22 0.05 98 0.00 0.16 0.03 96 0.00 0.14 0.02 96
Note:
c.r.: Censoring rate.
bias: Difference between the empirical mean and the true value.
SE: Standard error. Square root of the empirical variance.
MSE: Mean square error.
CP: Coverage of probability (%).
CEE: The Conditional Estimation Equation in Section 3.1.
PPL: The Pairwise Pseudo Likelihood Method in Section 3.2.
HuangQin: The Method proposed by Huang and Qin [12] in Section 3.3.
Proposed: The Proposed method in Section 4.
Table 2. Simulation result for Model 2
n c.r CEE(Bg) PPL(8y) HuangQin(S) Proposed(S8r)
bias SE  MSE CP bias SE MSE CP bias SE MSE CP Dbias SE MSE CP
200 0% -0.02 0.28 0.08 93 0.02 035 0.12 97 -0.01 0.23 0.05 96 0.00 0.20 0.04 95
25% -0.01 0.31 0.10 96 0.04 035 0.13 98 0.01 024 0.06 95 -0.01 0.22 0.05 95
50% -0.04 0.36 0.13 96 0.04 036 0.13 97 0.00 0.27 0.07 95 -0.01 0.24 0.06 95
300 0% -0.01 0.22 0.05 93 0.03 0.30 0.09 97 0.00 0.19 0.04 95 0.00 0.17 0.03 95
25% -0.01 0.25 0.06 93 0.03 0.29 0.08 96 0.00 0.20 0.04 95 0.00 0.18 0.03 95
50% -0.01 0.29  0.08 94 0.03 0.29 0.08 96 0.00 0.21 0.04 95 -0.01 0.19 0.04 95
400 0% -0.02 0.17 0.03 97 0.02 0.25 0.06 96 -0.01  0.15 0.02 94 0.00 0.14 0.02 95
25% -0.03 0.35 0.12 94 0.05 0.26 0.07 98 0.03 021 0.05 95 0.01 0.19 0.04 95
50% -0.03 0.30  0.09 94 0.06 0.25 0.07 96 0.02 0.21 0.04 95 0.01 0.19 0.03 95
Table 3. Simulation result for Model 3
n c.r CEE(8) PPL(By) HuangQin(S) Proposed(8r)
bias SE MSE CP  bias SE MSE CP  bias SE MSE CP bias SE MSE CP
200 0% -0.02 042 0.18 98 0.02 0.53 0.28 98 -0.01 0.33 0.11 95 0.00 0.28 0.08 95
25% -0.02 0.46 0.21 97 0.02 0.53 0.28 98 -0.01 0.35 0.12 96 0.01 0.31 0.09 95
50% -0.02 0.51 0.27 97 0.01 0.53 0.28 98 -0.01 0.37 0.14 96 0.01 0.34 0.12 95
300 0% -0.01 035 0.12 92 -0.01 046 0.21 92 -0.01 0.28 0.08 94 0.00 0.24 0.06 95
25% -0.01 0.36 0.13 94 0.01 0.42 0.18 91 -0.01  0.27 0.07 95 0.02 0.24 0.06 96
50% 0.00 0.42 0.18 93 0.01 043 0.19 89 0.00 0.31 0.09 95 0.01 0.27 0.07 95
400 0% 0.05 0.29 0.08 93 0.05 035 0.13 94 0.04 0.22 0.05 93 0.02 0.20 0.05 95
25% -0.09 0.46 0.22 90 0.05 0.36 0.13 91 0.00 0.28 0.08 95 0.00 0.26 0.07 95
50% -0.09 0.41 0.18 91 0.05 035 0.13 94 -0.01 0.27 0.07 95 0.00 0.26 0.07 96
Table 4. Simulation result for Model 4
n c.I. CEE(Bg) PPL(8y) HuangQin(5) Proposed(8r)
bias SE MSE CP bias SE MSE CP bias SE MSE CP bias SE MSE CP
200 0% -0.01 043 0.19 97 0.02 0.52 0.27 98 0.01 0.34 0.12 95 0.00 0.30 0.10 95
25% -0.04 0.48 0.24 96 0.03 0.51 0.27 96 -0.01 0.36 0.13 94 0.01 033 0.11 94
50% -0.06 0.54 0.29 94 0.03 0.51 0.26 96 -0.01  0.39 0.15 95 0.01 0.35 0.13 95
300 0% -0.01 036 0.13 97 0.01 043 0.19 98 -0.01 0.28 0.08 96 0.01 0.25 0.07 95
25% -0.02 0.40 0.16 96 0.01 043 0.19 97 -0.01 0.30 0.09 95 0.02 0.27 0.08 94
50% -0.02 0.46 0.21 97 0.00 0.43 0.19 96 -0.01 0.32 0.10 96 0.00 0.28 0.08 94
400 0% -0.03 0.32 0.10 95 -0.03 0.35 0.12 98 -0.03 0.22 0.05 95 0.02 0.20 0.04 95
25% -0.06 0.51 0.26 95 -0.01 0.39 0.15 90 -0.02 0.32 0.10 95 0.02 0.29 0.09 95
50% 0.07 0.41 0.17 93 0.06 0.40 0.16 92 0.06 0.28 0.08 94 0.04 0.27 0.08 96
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Table 5. Different distributions of the truncation time and

the corresponding truncation rates

Distribution Truncation rate
U(0,1) 0.33
U(0,10) 0.89

U(0,100) 0.99
4FExp(0.1) 0.22
Exp(10) 0.89

Bin(2,0.75) 0.68

Bin(4,0.75) 0.90

Note:

U(0,100) and Exp(10) are simulation designs in Section 5.1; the
others are additional designs to compare the truncation rate.

are concerned. In this article, we also investigate the per-
formance of the estimator under different distributions of
the truncation time and compare two different estimators of
H(-) as described in (20) and (21).

We first introduce the truncation rate. The truncation
rate is defined as P(T* < A*), and it means the propor-
tion that individuals who are not recruited in the collected
dataset. Be more specific, in the simulation, we can repeat-
edly generate data for subjects, but we only recruit subject
who satisfies T* > A*. Similar to the description in Sec-
tion 5.1, the repetition of data generation procedure stops
when the assigned sample size n is achieved. Here we let tr
denote the total number of the repetition in generating data.
Therefore, the truncation rate is determined by 1—n/tr. The
detailed data generation is deferred in Appendix D.

We now take the uniform distribution, the exponential
distribution, and the binomial distribution with different
rates as examples to examine the estimators in the simu-
lation study. We first summarize their truncation rates in
Table 5. Here we take the uniform distribution as an ex-
ample to explain the effect of the truncation rate. If the
truncation time follows U(0,1), then it may be no need
to generate much data to achieve the desired sample size
n. Thus the truncation rate is lower since tr is small. On
the other hand, if the truncation time follows U (0, 10), then
P (T* > A*) is lower. It means that those individuals have a
higher probability not to be recruited in the study, and this
case may yield a large truncation rate. For the estimation of
H (), it is expected that the estimator performs well if the
truncation rate is low. The reason is that if the truncation
rate is low, then most of the truncation times A* satisfy-
ing T* > A* are in the dataset, and therefore the estimator
can perform well. On the contrary, if the truncation rate is
high, then the truncation time A* which satisfies T* > A* in
the dataset is totally different from those in the population.
Hence, the performance of the estimator would be worse in
this situation. To see this phenomenon, we compare the two
estimators (20) and (21) with the true curve, and plot them
in Figures 3 to 6. Figures 3 and 4 are U(0,1) with sample
sizes n = 200 and n = 300, respectively, we can see that the
two estimators are close to the true curve.
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Figure 3. Distribution function of truncation time with
n = 200. Solid line is estimated curve H(a), dot line is
estimated curve H(a), and dash line is the true curve

H(a) = a.
n=300
o -
i o
o
-
o//
o | /./
o e
P
© //
o T V.3
T _/"f
< _| 'g//
o ’,’
//)
P
o~ s
o 7 //
~
o _| ///
o
T T T T T T
00 02 04 06 08 10

time

Figure 4. Distribution function of truncation time with
n = 300. Solid line is estimated curve H(a), dot line is

estimated curve H (a), and dash line is the true curve
H(a) = a.
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Figure 5. Distribution function of truncation time with
n = 200. Solid line is estimated curve H(a), dot line is
estimated curve H(a), and dash line is the true curve

H(a) = 5.

LTRC survival analysis with the additive hazards model 143



Table 6. Summary statistics for the estimated regression parameter under different truncation distributions. The censoring
rate is set to 0%

n dist. CEE(Bs) PPL(By) HuangQin(5) Proposed(8r)

bias SE MSE bias SE MSE bias SE MSE bias SE MSE
200 U(0,1) -0.01 0.25 0.06 -0.03 0.79 0.63 -0.01 0.24 0.06 -0.01 0.22 0.05
U(0,10) -0.03 0.27 0.08 0.02 0.34 0.12 -0.01 0.22 0.05 0.00 0.20 0.04
4FExp(0.1) -0.01 0.25 0.06 -0.02 0.75 0.56 -0.02 0.25 0.06 -0.01 0.20 0.04
Bin(4,0.75) -0.09 0.32 0.11 0.01 0.32 0.10 -0.03 0.23 0.06 -0.02 0.23 0.05
Bin(2,0.75) -0.03 0.29 0.09 0.00 0.39 0.15 -0.03 0.24 0.06 -0.02 0.21 0.05
300 U(0,1) -0.02 0.20 0.04 -0.06 0.69 0.48 -0.02 0.20 0.04 -0.03 0.18 0.03
U(0,10) 0.01 0.22 0.05 0.00 0.26 0.07 0.00 0.18 0.03 0.00 0.16 0.03
4FExzp(0.1) 0.00 0.20 0.04 -0.02 0.66 0.43 0.00 0.18 0.03 0.00 0.16 0.03
Bin(4,0.75) -0.06 0.27 0.07 0.01 0.25 0.06 -0.03 0.19 0.04 -0.01 0.18 0.03
Bin(2,0.75) -0.01 0.24 0.06 0.02 0.32 0.10 0.00 0.19 0.04 -0.01 0.18 0.03

Note:

dist. - Distribution of truncation time;
U(0,a) - Uniform distribution with support [0, al;
Exp(u) - Exponential distribution with mean pu;

Bin(n,0.75) - Binomial distribution with size n and success probability 0.75.
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Figure 6. Distribution function of truncation time with
n = 300. Solid line is estimated curve H(a), dot line is

estimated curve H (a), and dash line is the true curve
H(a)
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On the other hand, Figures 5 and 6 are U(0,10) with
sample sizes n = 200 and n = 300, respectively, and they
show that the both estimators (20) and (21) have larger
pointwise biases. For the comparisons between (20) and (21),
as shown in Figures 3 and 4, if the truncation rate is low,
then both estimated curves have the similar performances.
On the contrary, if the truncation rate is high, then Figures 5
and 6 illustrate that our proposed curves are much closer to
the true curves. It implies that the estimated curves of our
proposed method have the smaller pointwise bias.

Finally, we study the performance of the estimator of
B. Here we consider the additive hazards model A(t|z) =
0.5v/t + 2z with Z ~ U(0,1). Different distributions of the
truncation time, including the exponential distribution, the
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binomial distribution, and the uniform distribution, are ex-
amined. The censoring rate is set to be 0%. We again calcu-
late the estimators with sample sizes n = 200 and 300. We
summarize the mean, S.E., and MSE in Table 6. The numeri-
cal results show that the proposed method has no significant
difference when the truncation rates change. Besides, we can
see that the biases, S.E., and MSE of the proposed method
are smaller than the other three estimators. It indicates that
the performances of our method are always better and more
robust than others regardless of the change of the distribu-
tions of the truncation time and the truncation rates.

6. ANALYSIS OF WORCESTER HEART
ATTACK STUDY DATA

In this section, we apply our proposed methods to ana-
lyze the data arising from the Worcester Heart Attack Study
(WHAS500), which is described in Section 1. Specifically, as
discussed by Hosmer, Lemeshow, and May [9], the beginning
of a survival time was defined as the time that subject was
admitted to a hospital. The main interest is in the survival
times of patients who were discharged alive from hospitals.
Hence, a selection criterion was imposed that only those sub-
jects who were discharged alive were eligible to be included
in the analysis. That is, their minimum survival time would
be the length of their hospital stay; individuals whose fail-
ure times did not exceed the minimum survival time were
not enrolled in this analysis, and hence the left-truncation
happens. With such a criterion, a sample of size 461 was se-
lected and the truncation rate was approximately 7.8%. Be
more specifically, total length of follow-up (lenfol) is the last
event time (i.e., ¥; = min{T;, 4; + C;}), length of hospital
stay (los) is the truncation time (i.e., A;), and vital status
at last follow-up (fstat) is d;. These 461 patients contribute
the measurements which satisfy the constraint 7; > A;. In



this dataset, the censoring rate is 61.8%. To be consistent
with the simulation settings and to emphasize the estima-
tion methods, here we employ the body mass index (BMI)
as the only covariate and denote it as Z.

To investigate the risk difference attributed to the risk
factors, here we use the additive hazards model to fit this
data. We use the proposed method to obtain the estimator,
Br = 0.0112, which means that for the given time ¢t = ),
the risk difference, A(to|z + 1) — A(fo|2), is approximately
0.0112. In order to do the inference and the hypothesis test,
we need to construct the 95% confidence interval. Here we
adopt the non-parametric bootstrap method by sampling
461 subjects with replacement from the dataset with 2000
times repetition.

From the bootstrap method, the 95% confidence interval
is (0.0006,0.0217) and the p-value is roughly 0.037. Since
the p-value is smaller than the significant level o = 0.05,
then we conclude that BMI may be significant in the risk
difference. For the comparisons, we also illustrate the esti-
mators discussed in Section 3. For those estimators, we have
By = 0.0217, By = 0.0435 and B = 0.0147 with the 95%
confidence intervals (0.0108,0.0542), (0.0020,0.08898) and
(0 0098, 0.0392), respectively. Moreover, the p-values of E(z,,
ﬂw and ﬂ are 0.059, 0.0163, 0.047, respectively. Therefore,
we conclude that two methods in Sections 3.2 and 3.3 give
the similar results with our proposed method, while the esti-
mator based on the condition estimating equation approach
illustrates that BMI is not significant on the risk difference.

7. CONCLUSION

Analysis of left-truncated and right-censored data is an
important problem and a challenging topic in survival anal-
ysis. Different from the usual data structure, biased and
incomplete data is involved. In the past literature, the infer-
ences of the Cox PH model and the transformation model
have been developed. On the contrary, little work has been
available on the analysis of the additive hazards model with
survival data subject to left-truncation and right-censoring.
The existing method to deal with the additive hazards
model is the estimating equations approach. In order to im-
prove the efficiency of the estimator, we develop the pseudo-
likelihood method in this article.

There are some key strengths in this article. First of all,
the model misspecification is considered. As mentioned pre-
viously, the martingale approach meets its properties, such
as zero expectation, only when the assumed model is cor-
rect. However, we never know what the true model is in
the practical situations. Instead, our proposed method has
a valid and robust performance without the model assump-
tion. Secondly, different from the existing methods, the pro-
posed method implements the consistent estimators to the
likelihood function (6), and the estimator of /3 is derived
from the likelihood approach. Hence, it is expected that
the proposed method can yield the consistent and efficient

estimator. Moreover, the simulation results show that the
proposed method outperforms other existing methods with
relative robustness and easiness of handling different types
of dataset when fitting the additive hazards model. Even
though the theoretical properties are not fully developed, we
can also conclude that the proposed method is doable and
the efficiency is improved from the comprehensively numer-
ical studies. The theoretical development will be our future
investigation.

Although we only present the results for the time-
independent covariates, the proposed method is also ex-
pected to handle the time-dependent covariates. In the fu-
ture research, we will develop the rigorous method for the
case of the time-dependent covariate in the future.

APPENDIX A. DERIVATION OF
EQUATION (4)

Since the joint distribution of (T, A) is equivalent to
(T*, A*)|T* > A*, then

P(T<tA<a) = P(T" <t A" <a|T* > A")
P(T* <t A* <a,T*> A*)
P(T* > A¥)

P(T* <t)P(A* <a)
P(T* > A*) ’

(A1)

where the last identity is due to the assumption (Al). On
the other hand, let F(-) be the cumulative density function
(CDF) of T*, then

P(T*>A") = /0 / f(t)h(a)dtda
= / (t)h(a) da
= /000 {1-F(a)}h(a)da

(A.2)

Awsmmmm¢

where the last identity is due to the definition of the sur-
vivor function. Therefore, together with (A.1) and (A.2) and
conditional on the covariate Z, the joint probability density
function of (T, A) is

( |2)h(a
fo alz)h(a)da
which is the left hand side of equation (4). Furthermore, we

decompose (A.3) by multiplying/dividing S(a|z), so that we
have

(A.3)

S(a|z)h(a) .
15 S(ulz)h(u)du

Therefore, we complete the derivation. O

£(t)2)
Salz)
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APPENDIX B. THE ESTIMATOR OF Aq(+)
BASED ON LIKELIHOOD
APPROACH

In this section, we discuss the derivation for the estimator
of Ag(+) based on likelihood function approach.

In the conditional likelihood function (7), we let the
baseline hazard function Ag(-) jump only at y;. That is,
Aj = Ao(y;) for j = 1,---,n, and zero otherwise. There-
fore, the cumulative baseline function can be expressed as

Ao(t) = > I(y; < t)A;. Taking log on likelihood function
i=1
(7) yields

0= {oilog (Xi+8"z)

i=1

o Z)‘]I(az <y; < Yi) — 51—2,(]/1 —a;)

Jj=1

(B.1)

Given k with k = 1,- - | n, taking partial derivative on (B.1)
with respective to \; gives

ov Ok

b DUCRS TR

i=1

by =

Solving ¢, = 0 yields

Sk — BTz X Iai <y < i)
=1

e = _
> I(ai < yr < yi)
i=1

Hence, consistent with notation in Section 3.1, the estimator
of Ag(+) is

n

D Iy < £\

k=1

Ao(t) =

NE

Iy < t)

—N

Sk — BTz > I(ai <y < yz)}

k=1 =1

> I(ai < yk < yi)
i=1
) —

t :z:l{sz‘(U Ri(u)ﬂTZidu}

) /0 i Ri(u)

We can observe that Ag(t) is exactly same as (10) based
on the martingale approach. Therefore, we can directly im-
plement (10) in our proposed method. O

APPENDIX C. THE PROOF OF

PROPOSITION 4.1

Lemma C.1. Let g : R — R be a differentiable function.
If 2* = g(2*) and |¢'(x*)] < 1, then the iterative scheme is
locally convergent.
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Proof of Lemma C.1. If x* is a fixed point, then for the error
at the kth iteration, we have

(C.1) ert1 = Tpy1 — 2" = g(ax) — g(x")

By the Mean Value Theorem, there is a point 6 between
zr and z*, such that

(C.2) glzr) —g(z*) = ¢'(0k) (g — ™)

From (C.2), we can obtain

(C.3)

ex+1 =g (Ox)ek

We do not know the value of 8, but if |¢'(z*)] < 1, then by
starting the iterations close enough to x*, we can be assured
that there is a constant C such that |¢'(0;)] < C < 1, for
k=0,1,.... Thus, by (2), we have

lext1] < Cle| < - < C¥leg

Since C < 1 implies C* — 0, so |e| — 0 and the sequence
is converge. O

After stating Lemma C.1, then we now prove Proposi-
tion 4.1.

Proof of Proposition 4.1. Without loss of generality, we
consider iterated form h in arbitrary [, say

-1

s Sk |y,
=t 2 Slaglzi)h
J:

h; =

One can observe that it is the form of fixed point, say h =
g(h), where

-1

To show hf“ is convergent, by Lemma C.1, it is sufficient to

prove ‘g—}i‘ <lforalll=1,...,n. Define b; = Ma
> S(ajlzi)h;
j=1
3 v
and a simple algebraic computation yields ‘g—}-‘i = =L

(£%)
n n - 2
Since b; > 0 for alli = 1,2,...,n,s0 Y. b7 < <E bi) al-
i=1 i=1

, > b
ways holds. Hence, we obtain ’g—,fl’ = ﬁ < 1 for all
> bi)
=1
l=1,...,n. Toshow the strictly inequality, we suppose that
there is no tied in the truncation times, which means that



a1 < ag < -+ ,an. It is well-known that the survivor func-
tion is the decreasing function. Therefore, given z;, we have
S(ailz;) > S(az|zi) > -+ > S(an|z). From the expression
by b;, we also have 1 > by > by > --- > b, > 0. Thus, we

(5 bz.)z. o

APPENDIX D. DATA GENERATION AND
CALCULATION OF
TRUNCATION RATE

n
derive that Y b? <
i=1

library (rootSolve)
s=1
n=200
tr = 0
data0 = NULL
while (s<=n)
{
Z <—runif(1,0,1)
A <—4xrexp(1,10)
U <—runif(1,0,1)
failure=function (T) {
(1/3) =« T°(3/2) +Z = T
+ log(1-U, base=exp (1)) }
T=uniroot. all (failure ,c(0,100))

if (T>A)

{
data0=rbind (data0,c(Z,T,A))
s=s+1
}

tr = tr+1

}

1 — n/tr # truncation rate.

APPENDIX E. CODE FOR FITTING THE
MODELS

#————Conditional Part
phi = function(b) {

R=outer(data[,3] ,data[,1],"<=")
xouter (data[,1],data[,1],”>=)

riskset=colSums (R)

riskset [riskset==0}<—10"10

k=colSums (matrix(data[,4] ,n,n,F)*R)

zbar=k/riskset

Lambday = Y1 — bxY2
lambday = Lambday — c(0,Lambday[1:n—1])

N = outer(data[,1],data[,1],"<=")
smatrix (data[,2] ,n,n,F)

dN = N — cbind(rep(0,n),N[,1:n—1])
dt = data[,1] — c(0,data[l:n—1,1])
dM = dN — Rxmatrix(lambday ,n,n,T)
— bxRxmatrix (data[,4] ,n,n,F)
smatrix(dt,n,n,T)

ansl = rowSums(matrix(data|,4] ,n,n,F)*dM)
ans2 = rowSums(matrix(zbar ,n,n,T)xdM)
result = sum(ansl — ans2)
return(result)
}

testl = NULL

for(i in 1:200) {
testl = rbind(testl ,c(time[i],
} abs(phi(time[i]))))

betac = testl [which(testl[,2]
—min(testl[,2])),1]

Beta_colll = c(Beta_colll ,betac)
# ——— Marginal Part
rho = outer(data[,4],data[,4],”-")
xouter (data[,3] ,data[,3],7-")
shi = function(b) {
ans = —sum(rho/(1+e

return(ans)

}

test2 = NULL

for(i in 1:200) {

test2 = rbind(test2 ,c(time[i]
abs(shi (time[i

}

betam = test2 [which(test2[,2]
—min(test2[,2])),1]
Beta_coll2 = c¢(Beta_coll2 ,betam)
# ———  Composite Part

1))

test3 = NULL

for(i in 1:200) {

test3 = rbind(test3 ,c(time[i],

} abs(phi(time[i])/nt+shi(time[i]))))

betaH = test3 [which(test3[,2]
=—min(test3[,2])),1]

Beta_coll3 = c(Beta_coll3 ,betaH)

LTRC survival analysis with the additive hazards model 147
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