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Spectral clustering-based network community

detection with node attributes®

FENGQIN TANG', YUANYUAN WANG, JINXIA SU, AND CHUNNING WANG

Identifying communities is an important problem in net-
work analysis. Various approaches have been proposed in
the literature, but most of them either rely on the topolog-
ical structure of the network or the node attributes, with
few integrating both aspects. Here we propose a commu-
nity detection approach based on spectral clustering com-
bining information on both the network structure and node
attributes (SpcSA). Some of the attributes may not describe
the communities we are trying to detect correctly. These ir-
relevant attributes can add noise and lower the overall accu-
racy of community detection. To determine how much each
attribute contributes to community detection, our method
introduces a mechanism by which attribute weights can ad-
just themselves. We demonstrate the effectiveness of the
proposed method through numerical simulation and with
real-world data.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62-07; sec-
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1. INTRODUCTION

Network analysis has become increasingly popular in
many fields, including social sciences, physics, computer sci-
ence, statistics and so on. A vital problem in network anal-
ysis is community detection which aims to cluster nodes
into distinct groups based on observed edges or node at-
tributes. Community detection can uncover interactional re-
lationships or similar properties between nodes in the net-
work. Many methods have been proposed with different em-
phases on statistical models and criteria for measuring the
strength of community detection. Relevant statistical mod-
els include latent position cluster model ([1]), the stochastic
block model (SBM, [2]) and its extensions, such as valued
edges ([3]), overlapping clusters ([4, 5, 6]) and degree hetero-
geneity ([7]). Examples of criteria include normalized cuts

*The project was sponsored by National Natural Science Foundation
of China (11301236), Natural Science Foundation of the AnHui Higher
Education Institutions of China (KJ2017A377, KJ2017A376) and An-
hui Provincial Natural Science Foundation (1608085QG169).
fCorresponding author.

([8]), modularity ([9, 10]), among many others. Most of the
methods only focus on the structural information and the
partitions achieve a cohesive internal structure. To learn
more, readers can refer to [11, 12, 13], and the references
therein.

Real-world data sets are usually obtained from multiple
sources. Here we refer to two forms of data in real applica-
tions. One is an adjacency matrix A describing the struc-
ture of the network. If two nodes are structurally related,
the corresponding entry in the matrix is nonzero. The other
is a multidimensional vector X describing attributes. A
structural-based network is often described by a graph con-
sisting of objects as nodes and connections between nodes
as edges. Throughout this paper, we consider a simple graph
that does not contain self-loops or multiple edges, thus the
adjacency matrix is symmetric and unweighted. Structural
information describes the pairwise similarity between ob-
jects while their latent characteristics are called attributes.
These two sources of information can be combined to un-
cover latent communities in a network. Therefore, an ideal
approach would be to generate clusters that have a cohesive
intra-cluster structure with homogeneous attributes.

Several works combine the two sources of information
for community detection. [14] introduces an integrated
K-means-Laplacian clustering method combining K-means
clustering on data attributes and spectral clustering on pair-
wise relations. The contribution of the two sources of in-
formation in the clustering process is balanced by a trade-
off parameter. [15] proposes covariate-assisted spectral clus-
tering (CASC) where a covariate function is added to the
regularized graph Laplacian weighted by a tuning param-
eter. [16] presents communities from the edge structure
and node attributes, based on a generative model for net-
works with node attributes. They further assume that the
network structure and the attributes are dependent and
the attributes have binary values. [17] proposes a method
called SA-Cluster which measures both structural and at-
tribute similarities using a unified distance measure. SA-
Cluster can automatically learn the degree to which struc-
tural and individual attributes contribute to network detec-
tion with the assumption that the attributes have binary
values. [18] introduces a joint criterion for community de-
tection (JCDC) with node attributes under the assumption
that the structure is assortative, which could be seen as a co-
variate reweighted Newman-Girvan with a convex objective
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function. A model is defined to be assortative if the within
cluster probability of linkage is larger than the probabil-
ity of linking between clusters. Other related works include
[19, 20, 21, 22, 23, 24, 25, 26], among many others.

The above literature has made various assumptions about
the nature of the communities or attributes. For example,
they assume that communities are always assortative or that
the attributes have binary values ([18, 16]). A crucial prob-
lem in detecting communities based on both structural and
attribute similarities is how to balance these two sources of
information, since they may be independent, or even con-
flicting. A possible solution is to balance the two sources of
information with tuning parameters ([14, 15]), but setting
those parameters is difficult. Other recent efforts have been
devoted to learning the contributions of node attributes to
identifying communities from data, rather than using all
available attributes in the same way, [16, 17, 18] are ex-
amples of efforts along this line.

Inspired by the existing works, we seek to integrate
structural and attribute similarities by altering the edge
weights based on the similarity of the corresponding node
attributes and simultaneously learn the impact of differ-
ent attributes. [18] offers an approach that is perhaps the
closest to ours. They propose a joint community detection
criterion by redefining the similarity between nodes i, j as
Ajj(w, — e X Piath) where A;; = 1 if there is a struc-
tural edge between nodes 7, j and 0; otherwise, D;j; is the
distance between nodes i, j along the [-th attribute and §;
is the weight of the [-th attribute. The parameter w, con-
trols the influence of attributes. Thus, the method requires
users to infer the relative importance of the two sources of
information in advance and to determine a proper value of
wy, for improving clustering quality. The method might not
work well if an improper value is chosen. To solve this prob-
lem, we define similarity in (2) below and use the normalized
cut as the objective function.

Due to its computational ease and competitive perfor-
mance, spectral clustering has recently gained popularity in
numerous fields ([27]). We propose a community detection
approach based on spectral clustering with both structural
information and node attributes (SpcSA). The proposed al-
gorithm contains an additional parameter in the Gaussian
kernel function which can be estimated by a simple method.
The proposed method can also handle categorical attribute
data and numerical attribute data. Because some attributes
may be irrelevant and hence mask the underlying cluster-
ing structure, to improve clustering quality we embed in the
spectral clustering a mechanism by which attribute weights
can adjust themselves. The self-adjustment mechanism can
automatically learn the degree of contribution of each node
attribute. Our algorithm assigns higher values to the at-
tributes having smaller variance within a cluster and to the
attributes having larger variance between clusters. Experi-
mental results show that our method is still effective in cases
where one of the information sources is weak.
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2. METHODOLOGY

2.1 Preliminaries

Let network (or graph) G = (V, E) have vertices V =
{1,2,--- ,n} and edges E C V x V. Let A be the adjacency
matrix with A;; = 0 if there is no structural relation between
nodes 7 and j and A;; = 1 otherwise. Assume that the num-
ber of clusters (or groups, or communities) K is known, and
let nj be the cluster size of the k-th group. We aim to par-
tition n nodes into K groups with Zle ni = n excluding
the overlap case. Let E1, Es, ..., Ex be the estimated com-
munities corresponding to labels € = {ej,ea,...,e,}, ie.
Ey = {i : e; = k}. Given the adjacency matrix A of the
graph G, the goal of the normalized cut (Ncut) is to find a
partition of the overall graph that minimizes the following
function

K ZE 2 Ay
Ncut(A):Z%.
k=1 > > Ay

i€EEy j=1

(1)

Our goal is to use the criterion (1) by adding node at-
tributes to improve the efficiency of community detection.
The edges representing structural relations between nodes
are weighted according to the attribute similarities between
their end nodes, thus reducing the original unweighted graph
to a weighted graph. One cannot expect all attributes to be
useful for detecting the communities we are interested in.
Some attributes play significant roles in specifying groups
while others do not. Therefore, we can improve the quality of
community detection by giving more weight to relevant at-
tributes and giving less weight to irrelevant attributes in the
process of identifying communities. The larger the weight of
an attribute is, the greater its contribution to the clustering
process.

2.2 Methods

We reconstruct the adjacency matrix by considering at-
tributes information as W = (w;;), wij = f(Aij, Xi, X;),
where f(-) is a nonnegative function and X; € R™ is the
attribute vector of node i. Specifically, we set

s BiDiji }
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(2) w;; = A;jexp {

where 3 = {B1,...,Bm} is a vector that defines the weights
of different attributes, D;;; is the distance between nodes 4
and ] along the {-th attribute, Dij = (Dijla Dijg, ey Dijm)7
and o is a parameter in the Gaussian similarity function con-
trolling the width of the neighborhoods. The degree matrix
T is defined as the diagonal matrix with the (i, 7)-th element



Algorithm 1 SpcSA Algorithm

Input: Adjacency matrix A, node attributes X, a parameter o
of Gaussian function, cluster number K.

Qutput: K clusters E1, ..., Fx and the attribute weights

8= (51,...,5m)-

Algorithm:

1: Initialize 5@) to compute W,
fort=1,2,...;

2: Compute the normalized Laplacian matrix Lo =
(T—1/2)(t—1)W(t—1)( —1/2)(t=1),

3: Compute K eigenvectors u( ) 7ug? of L® corresponding
to the K eigenvalues of L® that are largest in absolute value.
Put them in a matrix U = [u{”,.. ., u&?] € R"*K,

4: Normalize each row of U to 1 and put the normalized version
in an n x K matrix ﬁ;

5: Determine E(*) = [E{t), cey

the rows of U ;

: Optimize B’“) using equations (5), (6), (7) based on E®,

: Repeat steps 3-6 until (3) converges.

Ef,;)} by performing K-means on

N O

= > wik, 1 <i<n. We rewrite (1) as

KOO 2. Wij

Loz i€Ex j#Ex
(3) Neut(s, §) = S 1EEIEE
k=1 Do > wij
i€E, j=1

Our goal is to minimize (3) over both cluster labels €

and attribute weights E Here we use the Gaussian sim-
ilarity function to describe the attribute similarities and
w;; has a multiplicative form. Other similarity functions,
such as the logit exponential function, perform similarly
in the simulations. Meanwhile, some other forms for inte-
grating structural and attribute information, such as w;; =
A;j+ag(X;, X;), where g(-) is the attribute similarity func-
tion and « is a tuning parameter, will be discussed in a
future study.

2.3 Algorithm

The following subproblem optimizes objective function
(3) over cluster labels € and attribute weights -

e Problem F: assign fixed weights 5 to optimize the re-

duced problem Neut(é, A);
e Problem B assign fixed clu§ter labels € to optimize the
reduced problem Ncut(e, ).

Once the weights are fixed, the weighted matrix W =
(w;;) is computed from (2) immediately. We then apply
standard spectral clustering to W and the details are il-
lustrated in Algorithm 1. Notice that Ncut(e, S) is a non-
convex function of {5 }. In order to obtain the desired result,
we need either to search for an alternative surrogate crite-
rion to (3) or assign a sequence of good initial values of {4}.
Unfortunately, both strategies are difficult to implement.

The goal of cluster analysis is to partition n data objects
into subgroups such that those objects in the same group are
more similar to each other than they are to objects in other
groups. However, it is unrealistic to require all attributes
to simultaneously achieve minimum distance within clus-
ters and maximum distance between clusters. In addition,
certain attributes are more relevant than others to cluster-
ing. Inspired by this, we adopt an adaptive weight-adjusting
method to measure the relative importance of attributes.

K

)IRDIEDY
k=1i€E) jEE),
tween the connected nodes within a cluster with respect to

K

> 2 > DinAij
k=14i€Ey, j¢E)

the total distance between the connected nodes in differ-
ent clusters along the [-th attribute. Thus, the goal of the

subproblem 5 is to maximize the following function

Denote by w; = D;j;1Aij the total distance be-

the [-th attribute and denote by b, =

> Biby
(4) N(B) = 5——
> Biw
=1
subject to
Y B=1
=1
6, >0 forl=1,....m

As is pointed out by [28], the maximization for (4) is
Blzllfb’> - for any ¢ # [,1 < 4,1 < m and 0 other-
wise. The 5olut10n shows that the clustering quality is im-
proved only by the most important attribute, even though
other attributes may be informative. For example, in an on-
line social network, each user is characterized by his/her
age, gender, ethnic background and so on. Some of these
attributes are correlated with the communities we are inter-
ested in. Thus, naturally we would set {5} unequal values
to further define the relative influence of various attributes.
[28] introduces an adaptive weight-adjusting approach, that

is, ﬁl(tﬂ) depends on ﬂl(t)
where Bl(s)

that 3. g\ =
=1

and an adjustment margin fﬂgt),

is the weight value at the s-th iteration. Recall

1 Bl(t) > 0,t > 1. Simple calculations yield

(5) D = (ff“>+A6(“>
where

(t)
©) 8 =

S ABY
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With respect to the contribution of the I-th attribute, the
adjustment margin Aﬁl(t) is estimated from

(®)
W _ b
Ag = s

w;

(7)

By (5), if A" > Y. then gV > Y e, gD

tends to be larger than Bl(t) as A_ﬂl(t) increases. It can be
seen from (6) and (7) that a large discrepancy between
the between-cluster distance and the within_—c&lster distance
along the [-th attribute indicates a large AB; *. The objec-
tive function is iteratively improved by applying this weight-
adjustment method and spectral clustering. Since the rele-
vance of attributes is not known in advance, we initialize all
attributes with equal weights, i.e., Bl(o) =1 1<1<m Ex-
periments show that the results of the proposed algorithm
are insensitive to the values of 61(0), 1 <1 < m. The pseudo-
code of the SpcSA algorithm is illustrated in Algorithm 1.

2.4 Selection of the parameter o

We apply the Gaussian function to compute the attribute
similarity between nodes in the network. The Gaussian sim-
ilarity function models local neighborhoods by adjusting the
values of . An appropriate ¢ must be chosen. Most of the
data points should have large weights connecting their local
neighborhoods while positive but negligible weights connect-
ing the nodes far away. Unfortunately, it is unknown how ap-
propriate values of o may be found. [29] shows several rules
of thumb which are frequently used to choose . One of these
is to equate o to the length of the longest edge in a mini-
mal spanning tree of the fully connected graph constructed
by node attributes X. We use the minimal spanning tree
heuristic to determine ¢ in the experiments on both simu-
lated networks and real-world networks. Note that there are
other rules of thumb for choosing ¢ but we find the proposed
method effective.

Let us illustrate the performance of SpcSA against dif-
ferent values of o via the following experiment. We gener-
ate a degree-corrected stochastic block model with two clus-
ters, where one cluster has 100 nodes and the other has 50
nodes. The probability of an edge lying between nodes i and
J within the same cluster is 6;0;p and that of an edge lying
between node ¢ in one cluster and node j in another cluster
is 6;60,up, 0 < v < 1. We set 95% of the nodes in each cluster
with the degree-corrected parameter 6; = 1 and 5% of the
nodes with #; = 10. We generate four attributes for each
node. The first two are generated from a multivariate nor-
mal distribution N(#,I) for one cluster and from N(—,1I)
for the other cluster, where @ = (u,u+0.5) and I is an iden-
tity matrix. The remaining attributes are generated from
the uniform distribution. We set u € [0.2,0.8], p = 0.1 and
v = 0.5.

We measure the performance of our method by normal-
ized mutual information (NMI) as o varies. NMI considers
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Figure 1. Estimation accuracy measured by NMI as a
function of d,d = 202. The seven graph lines show the
average NMI values of SpcSA for networks with
ul =0.2,u2 =0.3,u3 =0.4,u4 = 0.5, ub = 0.6, ub =
0.7,u7 = 0.8 (bottom to top). The dashed line corresponds
to SPC, which does not depend on d or wi(i =1,...,7). The
seven dotted lines correspond to K-means. Their colors match
those of the graph lines. The values of ¢ correspond to the d
values obtained using the minimal spanning tree method.

information-theoretic concepts and is based on the fact that
if two clusters are similar to each other, then only a small
amount of additional information is needed to infer one clus-
tering assignment from the other. NMI is defined as

[C1] |Cx| Mo
—2 Z Z Mij IOg(I\/Ii;]\;I]:j)
NMI = L
[C1| M. |Ca| M.
) M;; log(==) + '21 M. ;log(=2)
i= ji=

where n is the number of nodes and |C4],|Cs| represent
the size of the ground-truth clusters and the number of es-
timated clusters respectively. M;; indicates the number of
nodes belonging to community 4 that are estimated to be
in community j, M;, denotes the number of nodes in the
ground-truth community ¢ and M,; indicates the number of
nodes in the estimated community j. The larger the NMI
value is, the higher the clustering quality of an algorithm.
When the NMI measure takes its maximum value of one, the
estimated results are identical to the ground truth. When
NMI = 0, the results completely disagree with the ground
truth. Note that the NMI measure can also be applied to
compare two sets of estimated clustering results and not
necessarily a comparison with ground truth data. [30] and
[31] present related work.

Denote d = 202. For each configuration, the results are
averaged over 50 replications presented in Figure 1. Since
SPC uses only the network information, the performance of
SPC does not rely on u or d, i.e., the corresponding average
NMI values are constant. The performance of K-means uses
node attributes and depends on u but not d, thus there are



seven dotted lines of different colors representing different u-
corresponding NMI values. For simplicity, denote by d* the
corresponding d value obtained by the minimal spanning
tree method. From the plot, we can see that for most wi(i =
1,...,7), the NMI values returned by SpcSA at d*(¢ in the
plot) are the highest. In the cases of u3 = 0.4 and u7 = 0.8,
the highest NMI values of SpcSA corresponding to d values
are in neighborhood of d*, not far from d*. In general, SpcSA
performs well as o is chosen using the minimal spanning tree
heuristic described above. In the future, we will theoretically
justify the approaches to choosing the parameter.

2.5 Consistency analysis

We develop an iterative algorithm to solve the subprob-
lems F and 5 The attribute weights adjust themselves in
such a way that reduces the objective function (3). We
briefly illustrate this property as follows: Given nodes i, j, k,
assume A;; = A, = 1 and that each node has two at-

tributes. In the (¢t — 1)-th iteration, if wl( DS w(t D , l.e.,

(t-1) |
D :eXp{ - T( TV (D1 — Diga)+
w

ét_l)(Diﬂ - DikQ))} > 1,
then,

—1 1
8) BV (Dij1 — Dia) + B8 (Dija — Diga) < 0.
If the first attribute simultaneously possesses large
between-cluster distance and low within-cluster distance in
the ¢-th iteration, its weight will be increased, i.e., §t) >

B%t_l). Since in an iteration the weights satisfy Zﬂl(t) =1,
1

some of the attribute weights are increased while others de-
crease. Therefore, ﬂét) < ,Bét_l). In general, the distribution
of the small-weighted attribute is somewhat similar to the
uniform distribution. The difference between D;;1 and Djxy
is more pronounced compared to the difference between D; ;o
and Djio. It is more reasonable to assume D;;1 — Dy <0

rather than D;;; —Dji1 > 0, because the latter conflicts with
t-V(p.  _p.
(8). It follows from (8) that D;jo—Djxe < 7%.
Then
(t)/w(t

1 1
—GXP{—F« Y)— it ))

(Diji — D) + (B8 — BV (Dijo — DikQ))}

(t)
6?21) §til)) }

1 ¢
> eXp{ - ﬁ(Dijl - Dikl)(ﬁ{ )

> 1.

objective function
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(a) World trade network (b) Lawyer friendship network

Figure 2. Cluster Convergence.

Equation (9) implies that, compared with the (¢ — 1)-th
iteration, nodes i, j are more likely to be grouped together
than nodes 7, k in the t-th iteration. In summary, we can con-
clude that the objective function (3) converges when weights
self-adjust.

The convergence properties of spectral clustering have
been studied by many including [27, 32, 33]. The consis-
tency of our proposed method follows from [27]. We apply
the proposed algorithm on two real-world data sets to illus-
trate the consistency issue. Figures 2(a) and 2(b) show the
clustering convergence of the objective function in the world
trade network and the lawyer friendship network, respec-
tively. Both plots show that the clustering objective function
keeps decreasing when the proposed algorithm alternatively
optimizes over the cluster labels and the attribute weights.
The objective function converges very quickly, usually in six
to ten iterations. The implementation of comparable clus-
tering algorithms on these two data sets will be illustrated
in the next section.

3. EMPIRICAL STUDIES

3.1 Numerical simulation

Here we evaluate the performance of the SpcSA algorithm
compared with four other algorithms CASC, JCDC, spectral
clustering (SPC) and K-means—using both synthetic data
sets and real-life data sets. SpcSA, JCDC and CASC all use
both structural and node attribute information. SPC and
K-means either depends on the structural adjacency matrix
or node attributes.

3.1.1 Simulation 1

The first simulation investigates the sensitivity of all
methods to attribute information, given structural informa-
tion of the network. We generate the node attributes and
a degree-corrected stochastic block model in the same set-
ting as that in Section 2.4 with v = 0.5,p = 0.1. Each node
has four attributes where the first two attributes are gener-
ated from a multivariate normal distribution N(@,I) in one
cluster and N(—,I) in the other cluster, and the remain-
ing two attributes obey uniform distribution for all nodes.
Here, @ = (u,u + 0.5) and u € [0.2,0.8], and the diagonal
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Table 1. Notation in simulations 1-3

Simulation 1 Simulation 2 Simulation 3

cluster number 2 2 2
cluster sizes (100, 50) (100, 50) (100, 100)

attribute number 4 4 2

U [0.2,0.8] 1 /

v 0.5 [0.25,0.75] /

P 0.1 0.1 /

NMI

0.8
1

NMI

0.4

0.3 0.4 0.5

\

0.6 0.7

(b) NMI vs. structural information

Figure 3. (a) NMI values of different methods as u grows,
where dashed lines represent the corresponding confidence
bands. (b) NMI values of different methods as v grows, where
dashed lines represent the corresponding confidence bands.

covariance matrix I is an identity matrix. The smaller the
value of u is, the smaller the contribution of an attribute
to identifying groups. We summarize the notation used in
3.1.1-3.1.3 in Table 1.

We plot the average NMI values for all methods from 50
random runs against an increasing u in Figure 3(a) as well
as the 95% confidence intervals. The average NMI value of
SPC is constant because the algorithm only relies on the
adjacency matrix. As u increases from 0.2 to 0.8, the contri-
butions of the two relevant attributes increase as well in the
clustering process. Since K-means uses only the attributes,
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(a) Node attribute distribution (b) Node attribute distribution
with v = 0.3 with u = 0.8

Figure 4. (a) Node attribute distribution with w = 0.3, where
red indicates the first cluster and green indicates the second
cluster; the symbols represent different node attributes: “/\"
%" is the

“won

is the first attribute, ‘o” is the second attribute, "*
third attribute and “o” is the fourth attribute. (b) Data
distribution with u = 0.8, where colors and shapes match

those in (a).

Table 2. Clustering performance of different methods with
u=0.3

Methods NMI Attribute weights
SpcSA 0.63 (0.25,0.50,0.13,0.12)
JCDC 0.45 E1:(0.002,0.004,0,0)

E»:(0, 0.09, 0, 0)
CASC 0.2 w = 0.005
K-means 0.25 (0.25, 0.25, 0.25, 0.25)
SPC 0.38 /

the average NMI values of K-means increase obviously as u
grows.

We further observe that the attributes play different roles
in clustering for the different normal distributions from
which they are generated. To illustrate this, given v = 0.3
and u = 0.8, the data distribution of the four attributes
are shown in Figures 4(a) and 4(b). Furthermore, for each
fixed u, we record the average attribute weights of differ-
ent methods. To conserve space, we only show the results of
two instances where v = 0.3 and u = 0.8 in Tables 2 and 3,
respectively.

By Figure 4, we can see that no matter what value u
takes, the third and fourth node attributes do not provide
judgment information for identifying communities. The at-
tribute weights estimated by SpcSA reflect this fact, as
shown in Tables 2 and 3 (i.e., (0.13, 0.12) in Table 2 and
(0.10, 0.10) in Table 3). It should be pointed out that our
algorithm cannot handle sparse cases, and because the sum
of weights is 1, the irrelevant attribute weights are generally
greater than zero. As shown in Figures 4(a) and 4(b), both
the first attribute and the second attribute contain useful in-
formation for identifying communities, but the first relevant
attribute does not contribute as much as the second rele-
vant attribute does. This is consistent with the estimated



Table 3. Clustering performance of different methods with
u=0.8

Methods NMI Attribute weights
SpcSA 0.85 (0.28,0.52,0.10,0.10)
JCDC 0.65 E1:(0.08, 0.59, 0, 0)

E»:(0, 0.07, 0, 0)
CASC 0.6 w = 0.001
K-means 0.51 (0.25, 0.25, 0.25, 0.25)
SPC 0.38 /

attribute weights returned by SpcSA in Tables 2 and 3 (i.e.,
(0.25, 0.50) in Table 2 and (0.28, 0.52) in Table 3).

Note that JCDC optimizes over the weights of attributes
by the gradient ascent method and assigns relatively small
weights to all attributes as the attribute information is not
strong enough (Table 2 with v = 0.3). CASC balances the
structural information and the node attributes by a tuning
parameter w and treats the degree of contributions of the at-
tributes equally. Thus, due to the two irrelevant attributes,
the results of CASC are unsatisfactory as the attribute in-
formation is weak. Overall, the confidence bands imply that
SpcSA is stable as u varies and the average NMI values im-
ply that SpcSA outperforms other methods even in cases
where one of the data sources is uninformative or both of
them are uninformative.

3.1.2 Simulation 2

The second simulation investigates the performance of
five methods as measured by the strength of structural infor-
mation, given fixed node attributes. A two-cluster network
structure is generated similar to the first simulation with
u = 1,p = 0.1 and v € [0.25,0.75]. The smaller the value
of v is, the stronger the structural information becomes. We
use NMI to measure the effectiveness of these algorithms as
well. We plot the average NMI values for all methods from
50 random runs against an increasing v in Figure 3(b) as
well as the 95% confidence intervals.

Since K-means only relies on attributes, its average NMI
values are constant as v varies. Spectral clustering depends
on the adjacency matrix, thus its average NMI values vary
dramatically. CASC improves spectral clustering by using
attribute information, the performance of CASC is not bad
when the structural information is weak. On the other hand,
since CASC cannot detect the degree of contribution of each
attribute, due to the two irrelevant attributes, the perfor-
mance of CASC is not prominent when the structural infor-
mation is strong. JCDC assigns different weights to node at-
tributes in different clusters. The algorithm standardizes all
similarity measures along each attribute and truncates the
weights of all attributes to their positive half. JCDC might
not be able to highlight relevant attributes via attribute
weights as shown in Tables 2 and 3. Figure 3(b) indicates
that SpcSA gives a higher average NMI than other cluster-
ing algorithms and performs stably as v varies in terms of
the confidence bands.

ratio
2.0
-
o
o

T
20 40 60 80 100 20 40 60 80 100

Figure 5. (a) Performance of different methods as r varies.
The black, red and green lines show the average NMI values
of SpcSA, JCDC and CASC respectively as r grows, whereas
the horizontal line shows the average NMI value of SPC. The
dotted lines represent the corresponding confidence bands.
(b) Ratio of the weight of the relevant attribute to the weight
of the irrelevant attribute returned by SpcSA against
increasing r values.

3.1.3 Simulation 3

The first two simulations, which use synthetic data sets,
assume that the network structure and the node attributes
share common community labels. In this part, we analyze
the performance of three different methods (SpcSA, JCDC
and CASC) under the assumption that the community la-
bels for the network structure are not completely the same
as the labels generating the node attributes. We create the
network using the standard stochastic block model with 200
nodes. Assume that the network has two clusters of equal
size, and the within-group and between-group edges occur
with probabilities of 0.1 and 0.05 respectively. For each node,
we generate two attributes, where one is a relevant attribute
and the other is an irrelevant attribute whose distribution is
the same for all nodes. For the relevant attribute, the node
attributes follow N(1,1) in the first community, and r node
attributes follow N(—1,1) and 100—r node attributes follow
the uniform distribution in the second community. We vary
r from 20 to 100 and investigate the performance of three
different methods (SpcSA, JCDC and CASC). Small values
of r imply that the relevant attribute is weakly correlated
with the desired division. For each configuration, we repeat
the simulation 50 times and report the results in Figure 5(a).

When the connection between the relevant attribute and
communities is stronger, i.e., the attributes contain useful
information for clustering, the performance of SpcSA is en-
hanced by using the attributes. Since the community struc-
ture of the network is not very informative, even though the
attributes and the community structure strongly agree with
each other, the clustering quality of JCDC does not improve
by much, and CASC performs similarly.

Figure 5(b) shows the ratio of the weight of the
relevant attribute to the weight of the irrelevant at-

tribute returned by SpcSA as r grows, i.e., ratio =

the weight of the relevant attribute . .
the weight of the irrelevant attribute’ When r takes a small
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Table 4. NMI (cluster number) values returned by comparing
the detected partition of SPC to three attributes, respectively

Attributes Position in 1994 Position in 1980 Continent

NMI

0.07(3) 0.17(4) 0.47(5)

value, the relevant attribute is useless for detecting com-
munities, thus its weight is close to the irrelevant one. As
r approaches 100, the relevant attribute plays a more im-
portant role in the clustering process than the irrelevant at-
tribute does, thus the ratio increases. In short, our method
automatically combines the available information from the
network structure and node attributes to detect communi-
ties more efficiently than any algorithm based on either the
network structure or node attributes alone, as well as than
certain detection methods combining both sources of infor-
mation.

3.2 Real-life data sets

We use two real network data sets for evaluation in the
following experiments. For most real networks, the ground-
truth communities are typically unknown. This allows the
networks to be divided in more ways than one ([23]). In
practice, it is common to use some of the observed node at-
tributes as ground-truth communities. In the following, we
demonstrate that the SpcSA algorithm can use the repre-
sentative attributes effectively to steer the analysis toward
a desired direction. Simultaneously, the proposed algorithm
can reveal which attributes are relevant and which attributes
are irrelevant. We also perform a comparison with JCDC,
CASC, SPC and K-means.

3.2.1 The world trade network

The data set comes from [34] and describes the world
trade network among 80 countries. Each country represents
a node in the network, and there is an edge between two
countries if and only if the absolute amount of imports sat-
isfies some mild conditions. Each node has several attributes,
including the continent (Africa, Asia, Europe, North Amer-
ica, South America, and Oceania), the world-system posi-
tion of the countries in 1980 (core, strong semi-periphery,
weak semi-periphery, and periphery) and 1994 (core, semi-
periphery, and periphery). Since the true labels of the clus-
ters are unknown, we apply SPC to the network adjacency
matrix and choose the continents, position in 1980 and po-
sition in 1994 as reference points, respectively. The corre-
sponding cluster numbers of spectral clustering are K = 5,4
and 3. Note that the three Oceania countries are omitted be-
cause of the masked structural information. The estimated
results are shown in Table 4.

From Table 4, partitions by continent show an apparent
community structure, thus we choose the continents as ref-
erence labels for comparisons. To illustrate this more clearly,
we apply SpcSA to detect communities of the network that
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(b) Position in 1980 as attribute (c) Position in 1994 as attribute
Figure 6. (a)The partition of the world trade network using
continent as attribute, where different vertex shapes indicate

detected partition and different colors indicate continent
partition, where red is Asia, purple is Europe, yellow is North
America, green is Africa and blue is South America. (b)-(c)

The partitions of the world trade network using position in

1980 and position in 1994 as attributes, respectively, different
colors indicate attribute partitions and different vertex shapes

indicate detected partitions.

uses the three node attributes as auxiliary attributes, respec-
tively. Figure 6 shows the result of applying SpcSA to the
network three times. Each time, we use a single attribute
(m = 1) and set 8; = 1 in the SpcSA algorithm. In Fig-
ure 6(a), we use the continent as attribute and set K = 5.
The plot shows a nearly perfect partition of the continents
except the Europe group. Figure 6(b) shows the result from
a four-way partition (K = 4) of the network using SpcSA
with position in 1980 as attribute. The result indicates that
the position in 1980 labels are mixed across the inferred com-
munities. Finally, we use the position in 1994 as attribute
and set K = 3. As shown in Figure 6(c), the three groups
estimated by the proposed algorithm do not correlate well
with the attribute. In conclusion, there is a strong correla-
tion between the community structure of the network and
the continents. Thus, it makes sense to compare partitions
found by different community detection algorithms to the
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Figure 7. (a) Network colored by continent, where red is
Asia, purple is Europe, yellow is North America, green is
Africa and blue is South America. (b)-(f) Results on the

world trade network estimated using different methods. Colors

match those in (a) in the best way possible.

continents. The position in 1994 and that in 1980 are treated
as two auxiliary attributes.

We compare the partitions found by different methods
to continent in Figure 7. From Figure 7, we can see that
all methods except SpcSA fail to estimate the disassortative
nature of African trade ([18]). In the proposed method, we
suggest selecting the eigenvectors of the Laplacian matrix
corresponding to the largest absolute eigenvalues to reveal
the clusters. [27]
the negative eigenvalues having large absolute values can
discover disassortative clusters. The NMI values indicate
that SpcSA outperforms the other algorithms. Further, the
weights returned by SpcSA of the two attributes (position in
1994 and position in 1980) are 0.35 and 0.65. This is similar
to the estimated results as shown in Table 4.

points out that the eigenvectors related to

Table 5. NMI (cluster number) values returned by comparing
the detected partition of SPC to seven attributes, respectively

Attributes Status Gender Practice School
NMI 0.44(2) 0.05(2) 0.087(2) 0.12(3)
Attributes Office Age Year
NMI 0.12(2)  0.20(2) 0.25(2)

Table 6. Attribute weights returned by SpcSA in the lawyers
friendship network

School
0.11

Office
0.10

Attributes Practice Year

NMI

Gender
0.11

Age
0.15

0.03 0.5

3.2.2 The lawyers friendship network

This data set represents the friendship among 71 lawyers
in a Northeastern US corporate ([35]). Nodes denote lawyers
and edges denote their friendship. Each lawyer has seven at-
tributes: formal status (partner, associate), office (Boston,
Hartford, Providence), gender, practice (litigation, corpo-
rate), law school (Harvard, Yale, others), age and number
of years with the firm. True cluster labels of the lawyers
are unknown and we adopt a similar method to the one in
analyzing the world trade network. Along with the idea of
analyzing Figure 7, we apply SpcSA to detect communities
of the lawyer friendship network that uses the seven node
attributes as auxiliary attributes, respectively. We find that
the status correlates well with the community structure. To
conserve space, the details are omitted here.

A comparison between the NMI values of spectral clus-
tering on the network is shown in Table 5, with the seven
attributes as reference points. The number of clusters in
spectral clustering is equal to the levels of the category at-
tributes, except for the office attribute because its smallest
partition only contains two nodes after data preprocessing.
We set K = 2 for the office case and the two numeric at-
tributes (age and the number of years with the firm), al-
though other values of K may be feasibility. From Table 5,
we see that choosing the status partition as a reference point
is meaningful. The other attributes are taken into account
in the clustering process.

NMI values of the communities estimated using different
methods are shown in Figure 8. SpcSA gives the highest
NMI value among the methods mentioned above. The esti-
mated weights of different attributes are shown in Table 6.
The relative importance of each attribute as shown in Table
6 is similar to that in Table 5

4. DISCUSSION

In many cases, structural and attribute information are
related and combining them can improve the accuracy of
community detection in a network. We propose an in-
tegrated clustering that combines the topological struc-
ture and node attributes based on spectral clustering. This
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Figure 8. (a) Network colored by status, where green is
partner and red is associate. (b)-(f) Results on the lawyers
friendship network estimated using different methods. Colors
match those in (a) in the best way possible.

method can detect the weights of different attributes, and
the weights are estimated according to the importance of
each attribute to the clustering quality. To overcome the
challenge of the non-convexity of the objective function
which can be treated as an extension of the normalized
cut in spectral clustering, we propose an adaptive weight-
adjustment method to iteratively improve the objective
function. Taking into account of the structural informa-
tion, the adjustment margin of an attribute weight is con-
trolled by the separations between clusters and the separa-
tions within the same cluster. At each iteration, the weights
are updated by adding an adjustment margin. The exper-
imental results for both numerical and real data sets show
that our method outperforms other methods mentioned in
the paper. Note that our method does not truly result in
sparse clustering, since all variables have non-zero weights.
This issue may be further tackled in future studies.
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