STATISTICS AND ITS INTERFACE Volume 12 (2019) 107-122

Fine-Gray proportional subdistribution hazards
model for competing risks data under

length-biased sampling

FEIPENG ZHANG, HENG PENG*, AND YONG ZHOU

In this paper, we study the Fine-Gray proportional sub-
distribution hazards model for the competing risks data un-
der length-biased sampling. To exploit the special structure
of length-biased sampling, we propose an unbiased estimat-
ing equation estimator, which can handle both covariate-
independent censoring and the covariate-dependent censor-
ing. The large sample properties of the proposed estimator
are derived, model-checking techniques for the model ade-
quacy are developed, and the pointwise confidence intervals
and the simultaneous confidence bands for the predicted cu-
mulative incidence functions are also constructed. Simula-
tion studies are conducted to assess the finite sample per-
formance of the proposed estimator. An application to the
employment data illustrates the method and theory.
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1. INTRODUCTION

In biomedical studies, medical statistics, economics, en-
gineering, social sciences and many other areas, researchers
often encounter multiple events data. In such datasets, the
problem of competing risk occurs, as an individual may
fail from different causes. For example, in the employment
data used in Kadane and Woodworth (2004), employees
may leave the company involuntarily (firing) or voluntarily
for other reasons (retiring, early death, moving house, etc.).
Here, voluntary and involuntary terminations are compet-
ing risks. The data include the days of termination from the
start date of the study. The observed data are subject to
right censoring because subjects may still be employed with
the firm at the end of the study. In addition, some individu-
als are subject to left truncation, as they are hired after the
study began. The investigators noted that employees who
have longer periods of unemployment tend to work longer
in the companies. That is, the sampled data are subject
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to length bias. In the literature, length-biased data are de-
fined for left truncated data under the uniform distributed
assumption of the truncation time. As a result, the proba-
bility of a survival time being observed is proportional to its
length.

In the competing risks setting, it is of great interest to
predict the cumulative incidence function, i.e., the probabil-
ity of failure of a specific type in the presence of all of the
competing risks. There are mainly two methods to incor-
porate covariate effects for the cumulative incidence func-
tions (CIF) of competing risks data. One common method
is by modeling the cause-specific hazard functions of differ-
ent failure types. Prentice et al. (1978) was the first to use
a proportional cause-specific hazards model when analyzing
competing risks data. Benichou and Gail (1990) provided
inference procedures for the cumulative incidence function,
assuming that the cause-specific hazard function of interest
follows a proportional hazards with an unknown constant
or piecewise constant nuisance hazard function, and also
assuming that the other competing risks are independent
of the covariates. To relax these restrictive assumptions,
Cheng et al. (1998) studied the predicted cumulative inci-
dence function by constructing pointwise and simultaneous
confidence intervals under the proportional cause-specific
hazards model (Cox, 1972). As an alternative to the pro-
portional hazards model, Shen and Cheng (1999) provided
confidence bands for the cumulative incidence function un-
der the additive risks model. Moreover, Scheike and Zhang
(2003) extended this important inference to a flexible Cox-
Aalen model for cause-specific hazards. For left-truncated
competing risks data, the approach to analyzing cause-
specific hazards functions can be generalized to the left-
truncated version by adjusting the risk set (Andersen et al.,
1993). Recently, for the competing risks data under length-
biased sampling, Zhang et al. (2016) proposed a composite
partial likelihood estimation for proportional cause-specific
hazards model.

However, there is no simple one-to-one correspondence
between the cause-specific hazard and the corresponding
cumulative incidence function, because the cumulative inci-
dence function depends on the rate of occurrence of all of the
risks. Consequently, modeling the covariate effects on each
cause-specific hazard yields a complex nonlinear relationship
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for the cumulative incidence function. To address this issue,
another popular model is the Fine-Gray proportional sub-
distribution hazards model (Fine and Gray, 1999), which
directly links the regression coefficients with the cumula-
tive incidence function for right-censored competing risks
data. Sun et al. (2006) proposed a Cox-Aalen subdistribu-
tion hazards model for right-censored competing risks data.
Scheike et al. (2008) proposed a binomial regression method
for the cumulative incidence curve. For the left-truncated
and right-censored competing risks data, Zhang et al. (2011)
proposed two truncation-censoring probability weights for
the proportional subdistribution hazards model, and Geskus
(2011) proposed an alternative estimate procedure based on
martingale theory. Nevertheless, to the best of our knowl-
edge, it is unknown how to fit Fine-Gray proportional
subdistribution hazards model for length-biased competing
risks data.

The primary goal of the present paper is to propose
an estimating equation for Fine-Gray proportional sub-
distribution hazards model for competing risks data un-
der length-biased sampling. The major challenge for es-
timating the covariate effects on the subdistribution haz-
ard rates under length-biased sampling is the informative
censoring induced by both length-biased sampling and the
presence of competing risks. There may be strong poten-
tial dependence between the failure time and the right-
censoring time due to length-biased sampling. Furthermore,
the model structure assumed for the target population is
often different from that for the observed length-biased
data. Specially, for the classic survival analysis with a sin-
gle type of event, many authors have proposed semipara-
metric methods for the Cox model under the length-biased
sampling, Wang et al. (1993), Wang (1996), Ghosh (2008),
Tsai (2009), Qin and Shen (2010), Qin et al. (2011), and
Huang et al. (2012), Zhang et al. (2014), and among oth-
ers. However, these approaches do not provide a straight-
forward way to analyze competing risks data under length-
biased sampling. Moreover, the developed methods for left-
truncated and right-censored competing risks data, for ex-
ample, Shen (2011), Zhang et al. (2011), and Geskus (2011),
do not seem to have straightforward extensions to the com-
peting risks data under length-biased sampling. Thus, some
further novel method development is required to explore the
length-biased data structure.

The remainder of the paper is organized as follows. In
Section 2, an estimating equation estimator is derived and
its large sample properties are presented. In Section 3, we
also propose graphical and numerical methods for assessing
the adequacy of Fine-Gray model for length-biased compet-
ing risks data, based on the cumulative residual processes. In
Section 4, the prediction of the cumulative incidence func-
tion, along with its pointwise confidence intervals and simul-
taneous confidence bands, are presented. Substantial simu-
lation studies and an application of the employment data
are analyzed in Section 5 to evaluate the performance of the
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proposed method. All of the technical details are presented
in the Appendix.

2. ESTIMATION PROCEDURES

2.1 Data and notations

Let W9 be the calendar time of the initial event incidence
onset, T° be the time from the initial event incidence to the
failure event, and let € € {1,..., K} be the cause of fail-
ure. The sampling time £ is assumed to be independent of
(WO, TY). In a prevalent population, an individual would be
sampled at time & only if 70 > ¢ — W0 > 0. Denote (W, T
as the random variables from the prevalent population. We
drop the superscript ° to emphasize that the failure time T
in the prevalent population must exceed A = £ — W, which
is a left truncation time. Due to the end of the study or
loss of follow-up, the observation of failure time T'= A+ V
in the prevalent cohort is subject to right censoring. The
residual censoring time C, measured from recruitment to
censoring, is usually assumed to be independent of (T, 4, ¢),
conditional on a covariate vector z. However, it is worth
noting that the total censoring time A + C' and the sur-
vival time T" are dependent, as they share the same A. Let
X = min(T, A + C) be the follow-up time until failure or
censoring. Let § = I(T < A + C) be the indicator of cen-
soring, where I(-) is the indicator function. Let € = Je be
the observed cause of failure. Note that the true cause e
of failure can only be observed for those individuals with-
out censoring. The observed data consist of n replicates of
(A, X,¢), denoted by (4;, X;,€), fori=1,...,n.

To formulate the length-biased sampling, we let f(¢) and
S(t) be the density function and survival function of the la-
tent failure time 7, respectively. As in Huang et al. (2012),
the following two assumptions are imposed throughout the

paper.
Assumption 1. The variable 70 is independent of W?°.

Assumption 2. WY has a constant density function, which
implies that the initial event incidence occurs over calendar
time at a constant rate.

Lancaster (1992) showed the joint density function of
(A, T) evaluated at (a,t) is

f|z)I(t > a>0)
1(z)

(T,A)|Z =z~ ,
where fi(z) = E [T°|Z = z]. Then, conditional on Z = z,
the survival time 7 has a length-biased density function
fr(tlz) = tf(tz)/p(z).

To proceed, let Fy(tlz) = P(T° < t,e = k|z) be the
cumulative incidence function (CIF) of cause k given z, and

dlog{1 — Fi(t]z)}
dt

Ak (t|z) =



be the subdistribution hazard function. Different from
the cause-specific hazard function, the subdistribution
hazard function could model the cumulative incidence
function directly in the relationship Fi(tjz) = 1 —

fo Ak (s ds}7 see more details in Fine and Gray

(1999). The Fine-Gray proportional subdistribution hazards
model is given by

(1) Ak (t]2)

where Aoi(+) is an unknown nonnegative function in ¢, and
Bok is a p x 1 regression parameter. Under model (1), the
cumulative incidence function is given by

¢
Fr(t|Z) =1 —exp {eﬁgkz/ )\Ok(s)ds} .
0

2.2 Unbiased estimating equation

exp {

= Aok (t)ePon,

To better understand the structure of length-biased data
with competing risks, we start with the observation for
A and T. It is easy to show that the joint subdensity of
(A, T,e=k) is

fr(t)
11(z)

where fy(t1Z) = LF(tZ) = A(tZ){1 - Fu(tZ)} is
the subdensity function of cause k. Hence, given Z = z,
(A, V, e = k) shares a subdensity function with (A, T, e = k),
ie.,

P(A=a,T=te=k|lZ=12)= I(t > a>0),

fr(t|2)
wz)

In the presence of potential censoring, the probability of
observing a pair of uncensored data for cause k is

fav(a,v,e=klz) = t=a+v>0.

P(X=x,A=a,e=k|Z=12)
= PA=a,V=2—-0a,C>zx—a,e=k|Z=2)
P(A=a,V=x—a,e=k|Z=2)P(C >z —alz)
fi(z]2)
= Sc(x —alz)I(z > a),
) Sc(e — a1 > o
where Sc(-|z) is the survival distribution of residual censor-
ing C conditional on z, and the second equality holds by the

conditional independence between C and (A,V,€) given z.
Thus,

P(X =z,e=k|Z =2)

:/P(X:x,éz1,e:k,A:a|Z:z)da

* fr(zlz fr(z|z)we

(2]2)
1(z)

—a|z)da =

)

where w,(t|z) = fg Sc(u|z)du. Then, we can derive
o {I(X >z, e=k)

wXlz) |27 ]

(71 fiu(t]z)we(t]2)
-
Fy(o0o|z) — Fk(x|z).

w(z)

(3) =

Moreover, by some algebraic manipulations and (2), we can
have
1 — Fi(o0|2)

we(X|2)

Combining equations (3) and (4), one can obtain

1 - Fy(2|Z) _1-F(0|Z) | Fi(o|Z) — Fi(x|Z)
w(Z) (Z) wZ)
B Yir(z)
= [mxm] ’

where Yii(z) = [I(X; > x,6; = k) + I(€ > 0,€ # k).
To proceed, we introduce some counting process nota-
tions. We define

Niw(t) = I(X; < £, = k),

t
/ ﬂ—zk
0

where 7 (t|Z;) = Yir (H)we (| Z;) /we (X5 Z;5).
By equations (3) and (4), we have

M, (t) BOT"ZidAOk(S),

EMik(t)

=E E{I(Xl St,Q:k,Ci ZXi_Ai)

_/ Vi (t)we(s|Zs /ch|Z) BosZi I Aoy (s )}IZ}

[ Hstcmvm]

/ E{%m} (s |zz->Ak<s|zi>ds]
i iy ]

1 — Fy(s|Z;)
E_/o (Z;)
=0.

=E

-E

wc(5|Zi))\k(s|Zi)ds]

Motivated by the fact that M, (t) is a zero-mean process,
we propose the estimating equations,

(5) Z/

lek — 7 (tZ2)eP* ZidAgr (1) | =0,
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i |:dN1k — ﬂ'ik(t‘zi)eﬁ’jzidl\ok(t)} = 0,

i=1

(6)

where 7 is a predetermined constant. It follows from (6) that

Zlek /ZW t|Z;)eP 7

If we plug this into (5), we can obtain an unbiased estimating
equation for By,

Ui(Br)

_Z/l

Remark. Note that this estimating equation reduces to the
second estimating equation of Qin and Shen (2010) if K =1
and the censoring variable C' is independent of the covariate
Z. Therefore, this paper can be viewed as an extension of
Qin and Shen (2010) to length-biased data with competing
risks. However, the proposed estimator is beyond such exten-
sion. Under length-biased sampling, the proposed estimating
equation for Fine-Gray proportional subdistribution haz-
ards model is more complex than the work of Qin and Shen
(2010), due to the existence of competing risks. In addition,
as we will show in Section 4, the cumulative incidence func-
tion is of great interest, which is more complicated since it
is improper (i.e., Fi(o0|Z) < 1). We will provide the pre-
diction of CIF, along with its pointwise confidence intervals
and simultaneous confidence bands.

dAor(t

1 Zmik(t|Z; )eﬁfc
;L 17Tjk(t‘zj)eﬁ’“ !

dNix(t)

2.3 The proposed estimator

In the estimating equation (7), however, S.(t|z) is al-
ways unknown in practice. To estimate the weighting func-
tion S¢(t|z), one can use the local Kaplan-Meier estimator

S(t|z),

I(R;<t,6;=0)

)

where R; = X; — A;, and {B,;(z),j = 1,..,n} is a
sequence of nonnegatlve weights addlng up to 1. When
B,,;(z) = 1/n for all j, S.(t|z) reduces to the classic Kaplan-
Meire estimator of the survival function. As suggested in
Wang and Wang (2009), one may use

)]

#) [

Z—7; z21—2 Zp—24 . . .
where IC( i -’) = IC( L Jl,...,%) is a multivari-
n n

ate kernel function, zj, is the mth element of z;, and

Bpj(z) =K (z
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hn, > 0 is the bandwidth. We adopt the commonly used
product kernel function K(uy,...,up) = [[7_; K(u;) with
K(-) being a univariate kernel function. As elaborated in
Leng and Tong (2014), we can choose the bi-quadratic ker-
nel K(z) = 12(1 — 2?)?I(|z| < 1) for the univariate co-
variate (p = 1). However, for multiple continuous covariates
with p > 2, we should use a product kernel function with a
higher order kernel for each covariate. For example, if p = 2,
we use K (z) = 33(3 — 10z% + 7z*)I(Jz| < 1). More details
for the higher order kernel can be found in_ Miiller (1988).
Replacing w.(t|z) by @.(t|z) fo (s|z)ds,
S.(t|z) is defined as in (8), one can obtain an estimator

where

Bk for By by solving the following estimating equation

Ur(Br)
LV Zi 7k (H|Z5)ePr Zi
_ZA l ;’ | Fin(tZ)ePi %

=0.

dNix(t)

(9)

where %jk(t\Zj) = jk(t)ac(t|Zj)/@c(Xj|Zj). Clearly, the
proposed estimating equation requires the information of the
distribution function for censoring variable C. As argued in
Qin and Shen (2010), while S,(t) could be close to zero at

the tail, the integral &.(X,|Z;) of S.(t) will not go to zero
at the tail. Thus, the proposed estimating equation (9) is
stable, at least from our numeric studies.

For comparison, we propose a naive estimating equation
for left-truncated data, which does not require estimating
the survival function of the censoring variable. Let h(-) be
the marginal density function of covariate Z. By model (1),
we have

EZI X =z, A=a,e=k

]
_ [ 2i(]2)Se (@ — al2)h(z)/p(z)dz
[ Te(al2)Se (e — alz)h(z) /ulz)dz

B 2% 2{1 - Fy(2|Z)}/n(Z)]
E [B72{1 — Fy(2]2)}/n(Z)]

It is sufficient to re-express the term {1 — Fj(z|Z)}/u(Z).
By assuming that residual censoring C is independent of
covariate Z, tedious calculation shows

(11)
[1— Fi(x|Z)]

(10) =

we(x)
(Z)

:E{I{X23:,A§x,€zk}+I{A§x,€> 0,6 # k}|z}

=

Combing equations (10) and (11), we can obtain

B[Z|X =2,e=k A=d|
E [zeﬁJZE{I(X >z >AT=k) +I(A<z,E>0,E# k)|Z}]

E [eBZZE{I(X S>> Ac=k) +I(A<z,e>0,e# k)\Z}] '



By sample analogy, one can construct the naive estimating
equation,

UL(Br)

exp(By; Z;)m (Xi)

n > Z;
:Z €l—k‘ Zi—j:;
= 2

xp(By Zj)mj (Xi)

(12) =0,

where nh(t) = I(X; >t > Aj,¢; = k) + 1(A; < X

0,€; # k). It is emphasized that the summations 1n the
fraction terms of naive estimating equation (12) can include
both failure and censored times as long as the pair (4;, X;)
satisfies the inequality condition.

2.4 Asymptotic theory

To derive the asymptotic properties of the proposed es-
timator, we introduce some notations. For [ = 0, 1, 2, we

define
SiBr,t) = DT A BT (112),
j=1
Si(Bk,t) = ZZ;@leﬁ;Zjﬂjk(t|Zj),
j=1
51(Bp,t) = B |25 By (11Z;)]
where z® = zz' for any vector z. Let Q(t|Z;) =

f(f 5(‘/2*) 5la S, Z])dSa
Lemma A.1 in the Appendix. Let ¥ =

where 5(‘/[*751,8,Zj) is defined in
E(¢i(Box)®?), where

die(Bor) = [, {Z - g;ggg:g] dM;.(t) — nir with
ZZ€B0kZlQl M|Zy) / i (tZy)
= dNZ- t).
k= we(X1]Zy) Z So(Bok, 1) k()

We also define

~ S2(Be, Xi) [ S1(Br, X))\
TelPe) = B lf &=# {so(ﬁk,xo (5630 H
and Fk = Fk(ﬂok)-

When S.(-|Z) is known, the estimating equation (7) can
be asymptotically represented by the following indepen-
dent and identical summation of the mean zero process,
Up(Bok) = Yoie 1f0 [z, — Sl(ﬁo’”t)]dM (t). However, in

s0(Bokt)
practice, S.(:|Z) is always unknown, and we can replace it

with its consistent local Kaplan-Meier estimator S, (¢|Z) for
the censoring time. Thus, the estimating equation (9) can
be rewritten as

0n(By) = Z/

S1(Bk,1)
0 Blm )

1 AN (t).

Using the modern empirical process theory, we can derive
the consistency and asymptotic normality of the proposed
estimator.

Theorem 1. Under the regular conditions in the Appendir,
there exists a unique solution ,Bk to the estimating equation
Uk(ﬂk) =0, and ,E)'k converges to Box in probability. More-
over, \/_(B\k —Bok) is asymptotically zero-mean normal with
the covariance matriz P,;lzkr,gl,

Remark. As pointed out by a referee, the local Kaplan-
Meier estimator may converge at a slower rate if the di-
mension of the covariate is high. However, it is common to
assume that the residual censoring C' depends on part of
the covariate Z. Consequently, the convergence rate of the
local Kaplan-Meier estimator could be slower when the di-
mension of the covariate is low. Fortunately, the dimension
of the covariate is two both in our simulation studies and
the real data example. R

The variance-covariance of Bj can be consistently esti-

mated by Fk(ﬂk) 1Fk(ﬂk) where
d 5BX)  [518ux)"
f ,6 _ —1 ['gz:k |:,\2 ks <\i {Al ks <\i } 7
() = ; ( ) So(Br, Xi) So(Brks Xi)

and 3y = n~? Dy bik (,@k)®2, and ¢y, is the corresponding
estimator of ¢;; by replacing the population quantities with
the sample quantities.

Given the estimator 3 for 8o, a natural estimator for
the cumulated baseline hazard function that is similar to
Breslow’s estimator can be proposed,

-3 %

In the Appendix, we show that \/ﬁ[f\mc(t,gk) — AOk(t)]
converges to a zero-mean Gaussian process with covariance
function E [p15(t)¢15(t) "], where ¢;x(t) is defined in the
Appendix.

Another important concern is the choice of the bandwidth
parameter h,,, because the proposed estimator 3; involves
the local Kaplan-Meier estimates. As in Wang and Wang
(2009), we observe that the results are not very sensi-
tive to h,. In practical data analysis, one method for
the bandwidth selection is based on L-fold cross-validation
(Tian et al., 2005; Fan et al., 2006). Specifically, we first di-
vide the dataset randomly into L parts with roughly equal
size. For the Ith part D;, we use the rest L — 1 parts of the
data to fit the model. The [th prediction error is given by

lek

AOk
SO Bkv

€ [0, 7].

PE(h,) = Y / Nig(t) — ENug (¢ { > Nkt }
1€Dy JjeD;
where E (N, =[5 Tir(s 31(fl>d7\0k(s,§,(€_l)), and
,Bk is ebtlmated using the data from all of the subgroups
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other than D;. The optimal bandwidth can be obtained by

ZPEZ( n)

minimizing the total prediction error PE(h,) =

with respect to h,,.

3. MODEL CHECKING TECHNIQUES

In this section, we propose model checking techniques
for the adequacy of model (1) by using cumulative sums
of the residuals. Although Li et al. (2015) proposed model
checking Fine-Gray model with right censoring data, their
method could not be applied to our context of Fine-Gray
model under length-biased sampling. To proceed, we define
the ith residual for cause k,

t U
Mlk(t) = Nik(t) — / %ik.(s\Zj)eﬁk ZidAok(S),
0

which is the difference between the observed and expected
number of failures for subject i due to cause k by time ¢.
Inspired by the basic idea of Lin et al. (1993), we develop
a class of graphical and numerical methods by using the
cumulative sums of the these residuals.

We first consider checking the functional forms of the
covariates. For the jth component of Z, we consider

Wik(z) =n Y2 S / 1(Zyy < =)Ao (u).
i=1"0

As shown in Appendix, the null distribution of Wj(z) can
be approximated by the zero-mean Gaussian process

o~

Wik(z)
i=1 70

n

LT T (u|Z:)
-1/2 (7. < ik (u|Z;
" Z/ i =95 % 1Z.)

X Z Ql(Xi|Zi)e’é’IZ"dK0k(u)Gi
=1
_1/22/ Z” < Z ﬂk

X [nlf,zl(Ak);gm(ﬁ)} ZidAor (u)G;

ik (ulZi)

n

n*”Z/ 1(Ziy < 2)eP i3 (u|Zs)n !

i=1"0
X Z d@l}g(u)G
=1

where {Gy,...,G,} are independently generated from the
standard normal distribution, which are independent of the
observed data, and @ is the corresponding estimator of
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i by replacing the population quantities with the sam-
ple quantities. We can plot the observed process and a few
simulated limiting processes under the model (1) versus the
covariate values for visually checking the linearity of func-
tional form. Moreover, the p-value of the test is obtained
by firstly generating a large number of realizations from

sup |ij(z)|, and then calculate the percentage of those
4
greater than the observed value of sup |W;(z)|. For the case
z

with more than one covariate (p > 1), a global checking
of the model can be accomplished by Sup|Wk(z)|, where

Wi(z) =n= 230 | [ 1(Z; < z) )M (u ) Here, {Z; < z}
means that each component of Z; is no greater than the
corresponding component of z.

To check the proportional hazards assumption for the jth
covariate component, we consider the standard score type
process

“1/2 %

~ 1/2 ~ o~
Vir(t) = (E;Jlk) n_l/QUjk(IBk7t)7

where f];]lk is the jth diagonal element of f],;l and

VAL

is the jth component of estimating equation Us (,@k,t). As
shown in Appendix, the null distribution of Vj;(z) can be
approximated by the zero-mean Gaussian process

Slj ﬁk’ )

+(B) So(Br. )

szk( ),

Vik(z)
:( ;Jlk) [ —1/22/ %}i;}dmk(u)g
n—1/2 SlJ Br,u)] Fin(ulZ:)
/ Z/ S, ﬂ: u)}@clzmzi)

x Z Qu(Xi|Z:)eP % dR oy, (u) G
=1
71/22/

X {n_lfkl(ﬁk)
71/22/

X Z d@k(u)G
=1

Sl] ﬁ]ﬁ )
SO ﬂk?a )

> Fu(B)] ZidRos ()G

Slj /8k7 ):|
SO ﬂ]ﬁ )

o
}eﬁ’c Zlﬂ'ik(u|Zi)

1%ik(u|Z¢)n71

The test statistic for checking the proportional haz-
ards assumption of the jth covariate (j = 1,---,p) is



given by Sl(l)p |Vik(t)|. The p-value can be empirically es-
te[o,r
timated by[t}je percentage of those sup H/}}k(tﬂ greater
than S}ép] |V;i(t)| through generatingtioégy realizations of
te[0,r

sup \‘A/jk(t)\ The overall test statistic for the joint additiv-

;456}[,0;:11 all the covariates is given by ts%p | S Vik(@®)].
elo,r

4. PREDICTION OF THE CUMULATIVE
INCIDENCE

In the competing risks setting, it is of great interest to
predict the cumulative incidence function at time ¢ for an
individual with covariate Z = z. To address this issue, we
first estimate the cumulative subdistribution hazard by

to R
Ak(ﬂZ) :/ eﬁk ZdAQk(S,,@k),
0

where Bk and Ay, (t, Bk) are the proposed estimators in Sec-
tion 2.4. Thus, Fy(t|z) can be consistently estimated by

Fu(tlz) = 1 — exp{—Rx(t]2)}.

The limiting distribution of the process Ii(t|z) =
nl/2 (ﬁk(ﬂz) - Fk(t|z)) is provided in the following theo-
rem.

Theorem 2. Under the regular conditions in the Ap-

pendiz, as n — o0, the stochastic process Ii(t|z) has an
n

asymptotic representation n='/2 3" {1 — Fy,(t|z)} vir(t|z) +
i=1

0p(n™1/2), where vix(t|z) is defined in the Appendiz. More-

over, I (t|z) converges to a zero mean Gaussian process with

the variance-covariance function,

Y (t1, t2]z)
={1— Fy(t1]z)} {1 — Fi(t2|2)} E[y(t1|2)yk(t2|2)] -

The variance function of the limiting distribution,

oi(tlz) = Xp,(t t|z), can 2be consistently estimated by
A n

G2tz = n {1 = Fultla)} 3 Funt])?, where Fip(-]2) is
i=1

the corresponding estimator of 7;x(:|z) with the population

quantities of the sample quantities.
In order to construct pointwise confidence intervals and

simultaneous confidence bands for Fj(t|z), it is common to
consider a class of transformed processes

Jeltlz) = '/ w(t,2) [g{Filtl)} — g{Fi(tl)} ]

where ¢ is a known function whose derivative ¢’ is continu-
ous and nonzero, and w(-,-) is a weight function that con-
verges uniformly in probability to a nonnegative bounded

function on [, 73], 0 < 71 < T2 < 7. For example, let
g(t) = log{—1log(t)}, and let w(t,z) be the reciprocal of an
estimator for the standard deviation of n1/2g(ﬁk (t|z)), i.e.,
w(t,z) = [g’{ﬁk(t|z)}3k(t|z)}fl. By the functional delta-
method, we can show that J(¢,2) is asymptotically equiv-
alent to w(t,z)g'{Fy(t,z)}x(t, ). Based on the asymptotic
variance estimate of Ji(t,z), one may calculate the point-
wise (1 — «) confidence interval for Fy(t|z) from

gt {g {ﬁk(ﬂz)} +n "2y {ﬁk(ﬂz)} Ek(t|z)ca/2} ,
where g~ is the inverse of g, and c,, is the o upper percentile
of the standard normal distribution N(0,1). It is worth not-
ing that this pointwise confidence interval does not depend
on the weight function w(t, z).

However, it is difficult to construct confidence bands for
F.(t|z) based on its covariance function, because the limit-
ing process Iy (t|z) is very complicated. Fortunately, by using
the results in Lin et al. (1993), the limiting distribution of
I).(t|z) can be approximated by a zero-mean Gaussian pro-
cess

Lu(tlz) = n2 Y {1 - ﬁk(t|z)} Fue(t|2) G,
i=1

where {G;,i = 1,..,n} are independent standard nor-
mal variables that are independent of the observed data
(A;, Xi,€,Z;) for i = 1,...,n. Using similar arguments to
those given in Lin et al. (2000), one can show that, condi-
tional on the data, I;(t|z) converges weakly to a zero-mean
Gaussian process.

To construct an (1 — ) simultaneous confidence band for
Fi(t|z), one may use the simulated distribution of Jy(t|z).
One first needs to find the cutoff value ¢,/ satisfying

w(t,z)g' {ﬁk@, z)} Tu(t|z)

P<{ max > ¢, = a.
{Tlstgm o/2

In practice, ¢, 2 can be approximated by the histogram
of NB simulated realizations of Iy, (t|z) by repeatedly gen-
erating standard normal random samples {G;} but fixing
the observed data (A;, X, €, Z;). By using the weight func-
tion w(t,z) = [g'{ﬁk (t|z)}ok(t]2)] _1, one can construct the
(1 — @) confidence band for Fy(t|z) on the interval [71, 75] as

g7 |9 {Euttle) } £ 07129 {Eu(tlz) } 61 (tl2)a s

5. NUMERICAL STUDIES

5.1 Simulation examples

In this section, we demonstrate the good performance of
the proposed estimator using two different examples.
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Table 1. Simulation results based on 1000 replications.

n = 200 n = 400
Proposed Naive Proposed Naive
C% B11 B2 B11 B2 B11 B2 Bi1 B2
covariate-independent censoring
35% Bias 0.006 -0.003 -0.182 -0.002 0.004 0.000 -0.184 -0.013
SD 0.229 0.158 0.257 0.175 0.156 0.108 0.177 0.122
ESE 0.229 0.152 0.241 0.170 0.161 0.107 0.168 0.115
CP 0.950 0.943 0.856 0.944 0.953 0.942 0.789 0.926
MSE 0.052 0.025 0.099 0.031 0.024 0.012 0.065 0.015
15% Bias 0.002 -0.001 -0.070 -0.092 -0.007 -0.001 -0.087 -0.095
SD 0.199 0.145 0.223 0.154 0.145 0.096 0.165 0.108
ESE 0.205 0.140 0.217 0.161 0.143 0.098 0.152 0.111
CP 0.960 0.938 0.937 0.911 0.950 0.958 0.886 0.864
MSE 0.040 0.021 0.055 0.032 0.021 0.009 0.035 0.021
covariate-dependent censoring

35% Bias 0.050 0.051 0.085 -0.109 0.061 0.075 0.081 -0.138
SD 0.199 0.199 0.213 0.213 0.150 0.150 0.162 0.166
ESE 0.208 0.206 0.238 0.240 0.150 0.148 0.168 0.169
CP 0.967 0.963 0.976 0.953 0.935 0.912 0.946 0.847
MSE 0.042 0.042 0.052 0.057 0.026 0.028 0.033 0.047
15% Bias 0.030 0.016 0.048 -0.139 0.030 0.038 0.049 -0.146
SD 0.181 0.184 0.194 0.196 0.138 0.132 0.151 0.151
ESE 0.187 0.186 0.211 0.220 0.133 0.132 0.147 0.154
CP 0.959 0.950 0.973 0.929 0.932 0.934 0.929 0.826
MSE 0.034 0.034 0.040 0.058 0.020 0.019 0.025 0.044

Proposed: the proposed estimator from estimating equation (9); Naive: the naive estimator from estimating equation (12); 31 and

B2: the estimated coefficients; C%: censoring ratio; Bias: the empirical bias; SD: the empirical standard error; ESE: the average
estimated standard error; CP: 95% coverage probability; MSE: the average of estimated mean square error.

Example 1 (Covariate-independent censoring). Data are
generated from the following model. The sampling time &
is set to 100, and W9 is simulated from a uniform [0, 100]
distribution to mimic the incidence of a stable disease. With
K =2, as in Fine and Gray (1999) and Zhang et al. (2011),
the subdistributions are given by

P(TO <t e=1]Z) =1 [1 - p{l — exp(—nt)}|"*E 2
P(T° < t,e = 2|Z) = (1 — p)>PB2)
x {1 — exp(—vatexp(B, Z))} ,

where 31 = (B11,B12) = (L,1)T and By = (Bo1,f22) =
(0.5,—0.5)", and the components of the covariate vec-
tor Z = (Zy,Z)7 are independently generated from the
Bernoulli distribution with Pr(Z; = 1) = 0.5 and the stan-
dard normal distribution, respectively. The covariate effects
on the cumulative incidence function of cause 1 can be as-
sessed via a proportional subdistribution hazard model. We
set 1 = 0.8 and v = 0.5, and let p = 0.75 to generate
a setting with a domain risk. To form a prevalent cohort,
pairs of observations (W°, T?) are generated repeatedly un-
til there are n pairs of observations satisfying the sampling
constraint W9 +T° > £. Residual censoring time C' is inde-
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pendently generated from the Uniform(0, ¢) with different
c’s, corresponding to censoring rates of approximately 15%
and 35%.

Example 2 (Covariate-dependent censoring). We consider
a second scenario in which the residual censoring variable
C is dependent on the covariate Z. The set-up is the same
as in Example 1, except that (Z7, Zs) are generated from a
bivariate normal distribution with mean vector (0,0) and co-

0.5
05 1
C is generated from a Cox model, A\¢(t|Z) = cexp(Z1 — Z2),
with different ¢’s to control the censoring rates of approxi-
mately 15% and 35%.

variance matrix ( , and the residual censoring time

For each scenario, 1000 datasets of size n = 200, 400 are
generated. For comparison, the proposed estimator (“Pro-
posed”) from estimating equation (9) and the naive estima-
tor (“naive”) from estimating equation (12) are used. For
Example 2 with covariate-independent censoring, the used
kernel function is K(z) = 12(3 — 1022 + 72)I(|z| < 1)

32
for two covariates. We only report the results using the
bandwidth h, = 0.05 for saving space, since the results

using other bandwidths are similar and comparable. Ta-
ble 1 reports the average biases (“Bias”) of the estimators,



the empirical standard errors (“SD”), the average estimated
standard errors (“ESE”), the 95% coverage probabilities
(“CP”), and the average of the estimated mean square errors
(“MSE”).

From Table 1, the biases of the proposed estimator in the
covariate-independent censoring scenario are small. But the
biases in the covariate-dependent censoring scenario are not
very small. This is not strange because it requires the local
Kaplan-Meier estimator. As a referee pointed out, the biases
will shrink as the sample size increases. On the whole, the
biases of the proposed estimator are of reasonable order and
are generally negligible relative to the variance. The ESEs
are close to SDs, and the empirical coverage probabilities are
close to the nominal level. In addition, the proposed estima-
tor outperforms the naive estimator in terms of Monte Carlo
standard deviation and mean square error. In summary, the
proposed estimator is more efficient than the naive estimator
in all of the scenarios.

5.2 Real data analysis

In this section, we analyze the employment data avail-
able in StatLib. The data were firstly analyzed by
Kadane and Woodworth (2004), who advocated a Bayesian
analysis of the employment decisions. Such flow data were
collected to examine a specified observation period. There
were 416 subjects employed by the companies. The data con-
sist of birth, hire and end of employment dates, and causes
of termination. Here, the days of termination, counted from
the first day of the study, are subjected to right censoring;
that is, subjects may still be in the workforce at the end of
the study period. It should be noted that some subjects are
hired after the study start date. Thus, the employed times
are left truncated by the searching-job times. In this exam-
ple, we consider the subjects who were fired by the company
before the first day of the study, and denote the delayed en-
try time A as the day until entry into the study period. Let
the failure time T be the day in the study period when ter-
mination occurred. Thus, the observed failure time X is the
exit date (or end date of the study period if still employed
then) expressed in days after the study start. Obviously,
the data are left truncated. To check the stationarity of the
entry times, we use the formal test statistic proposed by
Addona and Wolfson (2006). Unfortunately, the stationar-
ity condition is rejected and the length-biased assumption
fails to hold for the original data set. However, for those
subjects with a delayed entry time greater than 200 days
(the 0.15-th quantile of A), the p-value becomes 0.5324, and
the truncation variable A is approximately uniformly dis-
tributed. There are 176 subjects included in this subset, and
104 subjects died before the end of study. Meanwhile, most
of the subjects are censored because they are still employed
at the end of the study period. The censoring rate is 40.9%.

The primary purpose of our study is to compare two dif-
ferent causes of termination on the cumulative incidence,
voluntary and involuntary. The voluntary termination and

Table 2. Results for employment data. Standard errors are in

parentheses.
Method Involuntary Voluntary
Bi1 Bz B Bz
Proposed -0.0230 1.4393 0.0085 -0.8958
(0.0211)  (0.6415) (0.0198)  (0.4859)
Naive -0.0221 1.3034 0.0089 -0.8200
(0.0206)  (0.6485) (0.0193)  (0.3875)

involuntary termination are competing risks. We let £k = 1
be the involuntary termination and k& = 2 be the vol-
untary termination. We consider the following factors: Z;
(age in years) and Z; (age greater than 40 years old
or not). For each competing risk, we construct the Fine-
Gray proportional subdistribution hazards model, Ag(t|z) =
Aok (t) exp(B] Z), k = 1,2, where A (+) is an unknown non-
negative function in ¢, B is a 2 x 1 regression parameter,
and covariate Z = (7, Z5)".

To derive the estimates of 3, we should find the solution
of estimating equation (9). Note that the proposed estima-
tor involves the local Kaplan-Meier estimate and we should
choose the bandwidth parameter h, through L-fold cross-
validation, as discussed in Section 2.4. In this data set, we
use L = 4 and select the optimal bandwidth h,, = 0.1908.
The estimate results are summarized in Table 2, and the
predicted cumulative incidence functions for Z = (25,0)"
and Z = (45,1)7 are presented in Figures la and 1b, re-
spectively.

For comparison, we also use the naive estimator. All the
results are tabulated in Table 2. The estimating coefficients
by the naive estimator are similar to those by the proposed
estimator. From these estimating results, we draw the fol-
lowing conclusions for this data subset:

1. For involuntary termination, young employees seem to
have a higher risk of termination than those old em-
ployees, but they are not significantly different (517 =
—0.0230, p-value 0.2749). However, employees older
than 40 have significantly higher risks than those under
40 (B12 = 1.4393, p-value 0.0248).

2. For voluntary termination, in contrast to involuntary
termination, older employees seem to have a higher risk
of termination than young employees but they are not
significantly different (821 = 0.0085, p-value 0.6661).
However, those employees older than 40 have lower risks
than those under 40 (822 = —0.8958, p-value 0.0652),
perhaps because young employees voluntarily leave the
firm more frequently than their older colleagues.

3. Figure 1 confirms the convincing evidence for age dis-
crimination at 40 years, which is in accordance with the
conclusions of Tableman et al. (2006).

To check the adequacy of the assumed model, the pro-
posed model-checking techniques are also applied to the data
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Figure 1. Predicted cumulative incidence function (CIF, solid curves) for (a) (Z1,Z2) = (25,0) and (b) (Z1,Z2) = (45,1),
along with their 95% confidence intervals (dotted curves) and confidence bands (dashed curves).

based on 1000 simulated realizations. For involuntary termi-
nation, the p-values for testing the functional forms of the
covariates Z; and Zy are 0.775 and 1, respectively; the p-
values for testing the additive risk assumption of Z; and Z5
are 0.598 and 0.917, respectively, which suggests that the
additive assumption is appropriate. Figure 2a displays the
observed cumulative residuals versus Z;, which appears to
be within the normal ranges. However, we do not recom-
mend testing the functional form for Z,, since it dichoto-
mous with two values and discussing the linearity is not
very meaningful. Figures 2c and 2e display that the observed
score processes appear to be completely covered by the first
100 simulated ones, which graphically supports that there
is no evidence against the assumed model.

For voluntary termination, the p-values for testing the
functional forms of the covariates Z; and Z5 are 0.660 and 1,
respectively. Figure 2b pertains to the functional forms of
Zy. However, Figures 2d and 2f demonstrate that the pro-
portional hazards assumption of both Z; (p-values 0.037)
and Zy (p-value 0.067) are strongly violated. More flexible
regression models for the competing risks data under length-
biased sampling, which allow some covariates to have time-
varying effects, need to be considered in the future study.
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6. CONCLUDING REMARKS

In this paper, we propose an estimating procedure for
Fine-Gray proportional subdistribution hazards model with
length-biased competing risks data. The developed estima-
tion and inference procedures use the competing risks struc-
ture and account for length-biased sampling. We also de-
velop model checking techniques to assess the adequacy
of Fine-Gray model based on the cumulative residual pro-
cesses. As a comparison, the naive estimator from the left-
truncation model has the advantages of not requiring an es-
timate for the censoring distribution, and it works for gen-
eral left-truncated data, including length-biased data as a
special case. However, the ignored component of the struc-
ture of length-biased data would cause a loss of information
compared to the proposed estimator, as demonstrated in the
simulation studies.

However, in the proposed estimating equation, we need
to estimate the censoring distribution, which increases the
burden of computation. Moreover, the integral of S.(t) may
go to zero at the tail when censoring is very heavy. Further
research is needed to investigate such situations, and some
new methods should be developed.
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Figure 2. Plots of residual processes for the employment data.
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APPENDIX A. TECHNIQUE DETAILS

The regularity conditions are provided as follows.

(C1) P(min(V,C) > 7) > 0, where 7 is a predetermined
constant. In practice, 7 is the maximum of the obser-
vations.

(C2) The parameter space B is a compact subset of RP and
the true parameter value Bg is in the interior of B.

®2
(C3) Hy(Boy,t) = 28oml) (81(50"’”) is positive defi-

50(Bokt) s0(Bokt)
nite, and
['k(Bk)
B - S2(Br, Xi) S1(Br, Xi) 2
=E I(el_k){So(,BkaXz) o <So(,6k,Xi)> }]

is nonsingular.
(C4) 0 < w(r) < oo and [
where S, () =P(Y — A > t).
(C5) The kernel function () is a higher order kernel with
order ¢; that is,

[f;’Sc(u)du]z

SemEm dS.(t) < oo,

(i) K has a compact support and is a bounded kernel
function,

(ii) K has order ¢, satisfying [ K(z)dz = 1, and

u u
/zll...zpf’lC(zl,...,zp)dzl...dzp

" =0, ifO;«éZ?_luj<q,
#0, 1fZJ LU =q.

(C6) Z is bounded, and the first ¢ partial derivatives of
fz(z) with respect to z are uniformly bounded for z;
fo(t|z) and f.(t|z) are uniformly bounded away from
infinity and have bounded first g order partial deriva-
tives with respect to z.

(C7) The bandwidth h,, satisfies h,
1/2¢ < a < 1/3p.

= O(n

~—), where

Conditions C1-C4 are standard in survival analysis for
length-biased data (Qin and Shen, 2010). Condition C5 is
the definition of higher order kernel (Miiller, 1988). Con-
ditions C6—C7 are needed to ensure the consistency of the
local Keplan-Meier estimator.

The following conclusion follows directly from Theo-
rems 2.2 and 2.3 of Liang et al. (2012) and Corollary 1 of
Leng and Tong (2014). We omit the details for saving space.

Lemma A.1l. Under conditions (C1)—(C7), we have

(i) supsup Se(slz) — Se(slz)| = O({logn/(nhh)}3/* +
}i%) =op(n~'/?) as., and
(ii) Sec(slz) — Se(slz) = —377; Bnj(2)€(X;,05,5,2) +

O({logn/(nh?)¥3/* + hd) as. for s < b such that
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inf {1 — F,(b|z)} S.(b|z) > 0, where

§(V}", 6 ,s,2)

/mmw;,s) dS.(ulz)
0 {1 - Fe(ul2)}52(ulz)

I(V; < 5,05 =0)
- Fy(Vi12)}Se(Vilz) |

Fy(slz) =

= S.(s]2)

and V7 = min(V}, Cj),
Sc(s|z) = P(C > s|z).

A.1 Proof of Theorem 1

We divide the proof in two parts.
(1) For the consistence of B, we need apply the Theo-
rem 5.9 of Van der Vaart (1998). It suffices to show that

(i) sup [n~1Uk(Br)
BreEB
to infinity, and

(i) uk(Bor) = 0 and ug(Bk) is bounded away from 0.

P(V < s|z) and

—ug(Br)| — 0 almost surely as n goes

We first show that sup [n='Ux(Bk) — n~ U (Be)| — 0
BeB

almost surely, as n goes to infinity. By Lemma A.1, §C(t|z)
converges almost surely to S. (t|z) uniformly over t € [0, 7]

and all z. Thus, ©.(¢|z) fo

surely to w.(t|z) = fo (s|z)ds umformly over t € [0,7]
and all z. For any a,, > 0 w1th an — 0 as n — 0o, we define

F={f(t,s) = (91(t) — we(t[2)) (92(s) — we(s]z) ") 2%
x exp(By 2)Yi(s) : g1
nondecreasing, go(s) is nonnegative and nonincreasing,

Br € B,sup |(g1(s) — we(s2))(92(5) DI < an}-

z)ds converges almost

(t) is nonnegative and

— we(s|z)

By the definition, sup |Pf| < a, sup |zexp(B{ z)|. As F is
feF BrLeB

a class of the product of monotone functions and indicator

functions, F is Glivenko-Cantelli class. Hence, sup | P, f —
fer

Pf| converges almost surely to zero, as n — oo. For suffi-

ciently large n, we have

In"151(B,t) — Si(B,t)| < sup |Pf| + sup [P f — Pf.
feF feF

Thus, sup |n’1§l (B, t)—

BrEF,tel0,7]

surely to zero. It follows that sup |n = Uk (Bk)—Uk(Bk)| — 0
BreEB

almost surely by the permanence of product.

Next, we show that sup |n~1Ug(B) — uk(Bk)| converges

BreB
almost surely to zero, as n — oo, where ui(8x) = EUL(3).

Note that B is compact, m(8y) = I(¢ = k)[z — %} is

continuous and dominated by an integrable function. Then

S1(Bk,t)| converges almost



{m(Bk) : B € B} is Glivenko-Cantelli class. By the uniform +0 ({10g n/(nhﬁ)}?’M + h%)
law of large numbers (Pollard, 1990), sup |n~'Ui(Bx) —
BreEB

ug(Br)| converges almost surely to zero, and consequently, =_ Z (X,1Z;) ( 71/2) ’
sup |n " Uk(Bk) — Uk (Br)| converges almost surely to zero. =1

€B

It is easy to show that u(Box) = 0. Note that where

aUk i *
93 ‘B Bos Qi(tlZ;) = an(Zj)/o EV"501,8,25)ds
®2
B |1 =) S2(Bok, Xi) (51 (Bok Xz‘)) Using a standard change of variables and Taylor expan-
So(Bok, Xi) So(Bok, Xi) sion arguments, we obtain

=H (Bok,t) > 0.

I (twe(t|Z)ePor2i 7
T Z/ SoﬂOk, Z (¢ /

Hence, Uk(B) is bounded away from zero. It follows that

Bk converges to By in probability by the Theorem 5.9 of

Van der Vaart (1998). v [ 1 — 1 ] AN (t) + op(n1/?)
(2) To show the asymptotic normality of Bk» we first es- we(X;1Z5)  ©e(X;]Zy)

tablish the weak convergence of the process n=1/20, (B). We

T .
can write Z/ B D ﬁok Z )we(t|Z;)ePorZi Z;
) 4

0e(X5|Z5) — we(X5|Z5) o
X [ w2(X,|Z;) ] AN (t) +op(n / )

ﬁOk
3 [ [ e my

S t
+Z/ Sl /6016, o */S'\l(ﬁolﬂ ) deLk(t) =1
SO ﬂOkv So(ﬁok,t) 1/2
top (n )7
= I1 + .[2.
where
It requires the decomposition of Is as follows. By Lemma
A.1 (ii), we have the almost surely i.i.d. representation: Z; ePorZi Q) (X, F1Z; Cmi(t)
= dNZ
" k= Jz::l we(X;|Z;) Z/ So( ﬂolw (0),
Se(s|z) — ZB §(V;", 65, 8,2)
j=1 and by Conditions (C7), the residual items are of order

op(n'/?). Since E (£(V}*, 61, 8,Z;)|Z;) = 0, then ny, are i.i.d

p 3/ 4 q
+0 ({logn/(nhy) +h > a5 random variables with mean zero. Thus, we have

where V" = min(Vj, C;) and

U(8 bix(Bok) + op(nt/?),
§(V],05,5,2) o) ; k(Bok) + op

min(V}',s) ds (U‘Z) S1(Bok,t)
_ c where ¢ix(Bok) i — gt | Mk (t) — Nk
Sl U {1 = F,(ulz)}5(ul2) ) = I [2— S33] aniu )

I(Vy < 5,8, =0)
+ .
{1 - F,(V]'[2)}5e(V] |2)

Using the multivariate central limit theorem,
n~2U(Bor) is asymptotically normal with mean zero and

covariance matrix Xy, = E [¢1,(8ox)©?].

: : : . By the Tayl ion of Ux(Bk) at Bok,
are independent random variables with mean zero and finite y the Taylor expansion of Uy(By) at Box

variance for any given s and z. Hence, by (C7),

~ ~

aUk(ﬂ ) 2

_ 0 = Uk(Br) = Uk(Br) + —5 5~ (Br — Bok),
De(X;1Z5) — we(X;1Z;) o
_ —En:B l(z_)/xj (Vi 01,5, Z;)ds where 3* is on the line segment between ,@k and Bog. It
= B e then follows from the uniform convergence of I'y(8) =
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-l Eﬂ% g ) and the consistency of ﬁk that

VB — Bor) = Ti'n Y20:(Box) + op(1)

= T.'n72> " 6u(Bor) + op(1).

i=1

This implies that \/ﬁ(ﬁk — Bok) is asymptotically zero-mean
normal with the covariance matrix F;lEkFIZl.

A.2 Weak convergence of JAXOk

Recall that the Breslow-type estimator

n
R R t Z dN;(s)
AOk(ta/Bk) :/ %7
0 SO(/gkas)
for t € [0,7]. It is easy to see that Ag(t,Bx) is contin-
uous functional of two empirical processes, §(ﬁk,s) and

n
> dN;x(s) with respect to the supremum norm. The al-
i=1
most sure convergence of the two processes implies that

sup |K0]€(ta/6k) — Aok (t, Br)| — 0, where
tel0,7],BLEB
b A (u)
Aok(t, By) = / LHON
ot B) o So0(Bk,u)
and F'(t) = P(X < u, € = k). Then, by the functional delta

method, it follows

\/B{ch(t,ﬁk) Ao (t, ﬂk} Z%k +op(n1/?),
where
o X <ta=k) [ dFE(w) }
par(t) = { 50(Bok, Xi) /o s50(Bok, u)
T

dem} b (Bon)-

o] - 15 6n) [
pt] = | T (Bor) o 55(Bok, )
A.3 Weak convergence of W, Wy (z) and
Vi
We establish the consistency of each model-checking test
statistic by using similar arguments to Lin et al. (1993). The

process W, Wi(z) and Vjj, are all special cases of the pro-
cess

1(Z; < z)dM;,(u),

W(t,z) =n 1/22/

where ¢(+) is a known bounded vector-valued function, and
I(ZIL < Z) = I(Z“ < 2’1,...,Zip < Zp). By Taylor series
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expansion and some simple algebra, we have

W(t,z)

_nfl/zz/
nﬂ/zz/o A(Z)[(Z; gz)%

3" Qu(Xi|Z:)ePr ZidAor(u)

=1

1(Z; < z)dM;,(u)

—1/22/ 1(Z; < 2)eP 2y (ulZ;)
x {F;l(ﬁk)nfl Z ¢lk(ﬂk)} TZidAOk(“)
71/22/ I(Z; < 2)eP% %oy (u]Z;)

12%1@ }“V‘OP 1),

By the arguments similar to those of Lin et al. (2000), one
can show that W (t,z) is tight.

By the strong law of large number, n=' "' | ¢u(Bk)
and n~t3° ¢(u) converge almost surely to ¢ (B)
and @y, respectively. Furthermore, by the kernel theory,
Y, Qi(z]z) converges to Q(z|z). Thus, we can derive
W(t,z) =n"Y23" | (i(t,2) + op(1), where

Q,;(t,z) = /T q(ZZ)I(Zz S z)d]\/[ik(u)

0
it (u|Z;)

wC(Xi|Zi)Q(Xi|Zi)

- / A(Z:)I(Z; < 2)
0
x P Zi N g ()

—/ q(Zl)I(Zl < z)eﬁ’jzf'mk(wzi)
0

_ T
< [T7(81)6x(81)] Zidhon(w)

- /oT 9(Z:)1(Zi < 2)cP %y (u|Z) dy ().

By the multivariate central limit theorem and the tightness
of W(t,z), W(t,z) converges weakly to a mean zero Gaus-
sian process with covariance function E [(1(t,2)(1(¢,2)] at
(t,z) and (t,Z). The covariance function can be consistently
estimated by n=' 31 (i(t,2); (£, Z), where

Cltm) = / " (Z)(Z; < 2)dik(u)

_/O W22 < 2) 577



< > Qu(Xi|Z:)ePr Zidhor(u)
=1

- / 4(Z)1(Zi < )P 2oy (u)
0

X [le (Br)n Z q?zk(@g)} TZidKOk(U)

=1

- /0 9(Z)1(Z; < 2)e Bt (u|Z:)
x d[n’l > @k(“)} :
=1

A.4 Proof of Theorem 2

To derive the asymptotic approximation of the process
Ii(t|z) = nY/2[Fy(t|lz) — Fu(t|z)], we define Wy(t|z) =
n'/2[Ay(t|z) — A (t|z)], where Ag(t|z) = Aok(t) exp(B],2z)
for kK = 1,..., K. By the functional delta method, we can
show that Wy (t|z) can be asymptotically equivalent to the

n
sum of i.i.d. stochastic process Wy (t|z) = n=1/2 3" v (t|z)+
i=1
0p(n~1/2), where

vir(tz) = /o exp(By z) [doi(u) + 2 T} dir(Bor)dAok (u)] -

Now, it follows from a Taylor series approximation that the
process

nt/?[Fy(t|z) — Fy(t|z)
n2{1 — Fy,(t|z) }Ax(

= {1=F(tl2)}n 2 yin(tlz) + 0p(n /).

i=1

]
tlz) — Ax(t|z)]
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