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An adaptive spatial-sign-based test for mean
vectors of elliptically distributed high-dimensional
data

Bu Zhou, Jia Guo, Jianwei Chen, and Jin-Ting Zhang
∗

Recently, a nonparametric test for mean vectors of el-
liptically distributed high-dimensional data has been pro-
posed in the literature. The asymptotic normality of the
test statistic under some strong assumptions is established.
In practice, however, these strong assumptions may not be
satisfied or hardly be checked so that the above test may
not perform well in terms of size control. In this paper, we
propose an adaptive spatial-sign-based test for mean vectors
of elliptically distributed high-dimensional data without im-
posing strong assumptions. The null distribution of the pro-
posed test statistic is shown to be a chi-squared mixture
which is generally skewed. We propose to approximate the
null distribution using the well-known Welch–Satterthwaite
χ2-approximation. The resulting approximate distribution is
able to adapt to the shape of the underlying null distribution
of the proposed test statistic. Simulation studies and three
real data examples demonstrate that the proposed test has
a better size control than the existing nonparametric test
while both tests enjoy about the same powers.
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1. INTRODUCTION

Suppose we have n independently and identically dis-
tributed (i.i.d.) observed vectors x 1, . . . ,xn from a p-variate
elliptical distribution (Fang et al. 1990, Anderson 2003) with
mean vector μ and covariance matrix Σ , we are interested
in testing the following hypotheses:

(1.1) H0 : μ = 0 , vs H1 : μ �= 0 .

Let x̄ = n−1
∑n

i=1 x i and S = (n−1)−1
∑n

i=1(x i− x̄ )(x i−
x̄ )� denote the usual sample mean vector and sample co-
variance matrix, respectively, and let ‖x‖ = (x�x )1/2 de-
note the usual L2-norm of x . When p ≥ n, the classical
Hotelling T 2 test cannot be used because the sample covari-
ance S is not invertible. One way to solve this problem is
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to replace the sample covariance matrix S in the Hotelling
T 2 test statistic with the identity matrix I p. For the corre-
sponding problem of testing the equality of mean vectors of
two high-dimensional samples, the tests proposed by Bai and
Saranadasa (1996) and Chen and Qin (2010), denoted as BS
and CQ, respectively, are two examples adopting this idea.
Although not explicitly discussed by their authors, most
high-dimensional two-sample tests can be modified to test
the one-sample problem (1.1). For example, to test (1.1),
the BS test can be modified as

(1.2) TBS =
n‖x̄‖2 − tr(S)√

2n(n−1)
(n−2)(n+1){tr(S

2)− tr2(S)
n−1 }

,

where and throughout this paper, we denote the trace of a
matrixA as tr(A), and for some integer s, we write {tr(A)}s
as trs(A) for notational ease. Similarly, for testing (1.1), the
CQ test can be modified as

(1.3) TCQ =

∑
i �=j x

�
i x j√

2n(n− 1) ̂tr(Σ2)

,

where
(1.4)

̂tr(Σ2)=
1

n(n− 1)
tr

⎧⎨
⎩

n∑
j �=k

(x j − x̄ (j,k))x
�
j (xk − x̄ (j,k))x

�
k

⎫⎬
⎭

is a ratio-consistent estimator of tr(Σ2), and x̄ (j,k) denotes
the usual sample mean vector of x 1, . . . ,xn with the ob-
served vectors x j and xk excluded. The asymptotic normal-
ity of the BS and CQ tests are established by the respective
authors. Wang et al. (2015) showed that while the BS and
CQ tests work well for high-dimensional data with light-
tailed distributions, e.g., the multivariate normal distribu-
tion, they are less powerful for high-dimensional data with
heavy-tailed distributions. A generalization of the multivari-
ate normal distribution, which includes many heavy-tailed
distributions, such as normal mixture and multivariate-t
distributions, is the elliptical distributions. Elliptically dis-
tributed data have the following representation (Fang et al.
1990):

(1.5) x i = μ+ εi, εi = riΓu i, i = 1, . . . , n,
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Table 1. Empirical sizes (%) of the four tests in Simulation 1

ρ = 0.1 ρ = 0.5 ρ = 0.9

Model p n NEW WPL BS CQ NEW WPL BS CQ NEW WPL BS CQ

1

50
30 5.52 6.91 1.48 6.88 6.64 7.55 6.54 7.70 5.83 8.21 7.92 8.44
60 5.21 6.46 2.81 6.59 5.99 7.15 6.37 6.99 5.99 7.32 6.98 7.31
120 5.36 6.07 3.74 6.05 5.65 7.01 6.62 7.00 5.15 7.42 7.54 7.79

500
30 7.17 7.07 1.04 7.28 6.38 7.92 7.14 8.60 6.31 7.75 7.97 8.39
60 6.73 6.73 1.71 7.41 6.46 7.11 6.75 7.45 5.37 7.00 7.27 7.57
120 6.28 6.35 2.99 6.91 5.93 7.07 6.77 7.21 5.36 7.24 7.28 7.42

1000
30 7.39 7.26 1.04 7.88 6.81 7.86 6.70 8.14 5.76 7.21 6.97 7.59
60 6.85 7.31 1.66 7.46 5.95 7.14 6.30 7.09 5.85 7.12 7.30 7.67
120 6.70 7.17 3.04 7.19 5.75 7.05 6.99 7.54 5.34 6.76 7.20 7.42

2

50
30 6.02 6.66 1.59 6.75 6.15 7.66 6.46 8.55 6.25 7.71 7.48 8.18
60 5.66 6.07 2.18 6.64 5.71 7.24 6.46 7.86 5.89 7.11 6.87 7.52
120 5.17 6.21 2.57 6.50 5.71 6.63 5.98 7.01 5.50 7.48 6.94 7.25

500
30 6.90 7.60 1.00 7.75 6.59 7.77 6.59 8.46 6.03 8.42 8.03 8.97
60 6.29 6.28 1.39 6.83 6.00 7.28 6.27 7.82 5.46 7.34 7.28 7.98
120 6.10 7.08 2.03 6.94 6.08 6.56 6.11 7.24 5.40 6.79 6.66 7.16

1000
30 6.80 7.74 0.97 7.62 6.89 8.05 6.16 8.43 6.03 7.93 7.29 8.22
60 6.60 7.15 1.48 7.78 6.17 7.73 6.70 8.17 5.62 7.41 6.79 7.49
120 6.79 6.97 1.89 7.18 6.13 7.13 6.03 6.98 5.50 7.33 7.05 7.60

ARE 26.16 36.77 61.54 41.82 23.32 46.57 29.93 53.60 14.04 48.39 45.36 55.52

where Γ : p× p is a constant matrix, u i is a random vector
uniformly distributed on the unit sphere in Rp, ri ≥ 0 is a
random variable independent of u i, and p−1 E(r2i )ΓΓ

� = Σ .

An important class of tests for elliptical distributions are
based on the multivariate spatial sign or rank function, see
Oja (2010) for an introduction to these multivariate non-
parametric tests. The multivariate spatial signs of the orig-
inal data are given by

(1.6) z i = U(x i) =

{
x i

‖x i‖ , x i �= 0 ,

0 , x i = 0 ,
i = 1, . . . , n.

Note that when x i �= 0 , we have ‖z i‖2 = z�
i z i = 1, so that

the original nonzero observations are transformed into vec-
tors on the unit sphere in Rp, whose L2-norms are always 1.
Inspired by the CQ test, Wang et al. (2015) proposed a non-
parametric one-sample test (denoted as the WPL test) based
on the transformed data (1.6) for elliptically distributed
high-dimensional data, as briefly described below.

Set

(1.7) V p = Cov{U(ε1)} = E
ε1ε

�
1

‖ε1‖2
,

which equals to the covariance matrix of z 1 under the null
hypothesis. That is, under the null hypothesis, we have
E(z 1z

�
1 ) = V p. By (1.7), it is easy to see that

(1.8) tr(V p) = 1.

By imitating the CQ test statistic (1.3), Wang et al. (2015)

defined their test statistic for testing (1.1) as

(1.9) TWPL =

∑
i<j z

�
i z j√

n(n−1)
2

̂tr(V 2
p)

,

where
(1.10)

̂tr(V 2
p) =

1

n(n− 1)
tr

⎧⎨
⎩
∑
j �=k

(z j − z̄ (j,k))z
�
j (z k − z̄ (j,k))z

�
k

⎫⎬
⎭

is an estimator of tr(V 2
p).

Wang et al. (2015) showed that compared with the clas-
sical nonparametric test with finite fixed p, the WPL test
has a substantial power gain and is more powerful than the
CQ test for high-dimensional data with heavy-tailed distri-
butions. The WPL test is conducted via a normal approx-
imation to its null distribution. However, strong conditions
(see Conditions (C1) and (C2) of Wang et al. 2015) are
needed for the WPL test statistic (1.9) to have a normal
limit distribution under the null hypothesis. These condi-
tions usually assume that the underlying covariance matrix
is sparse in the sense that the p component variables of
the data are nearly independent. This is, however, unreal-
istic for many highly correlated high-dimensional data. In
fact, the simulation studies presented in Section 3 indicate
that the normal approximation to the null distribution of
the WPL test statistic is not adequate for highly correlated
high-dimensional data so that the WPL test tends to have
inflated empirical sizes. For example, from Table 1, it is seen
that the empirical sizes of the WPL test can be as large as
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Figure 1. Empirical size curves (%) of the four tests and the
estimated approximate degrees of freedom curve of the NEW

test for a set of ρ’s values simulated under Model 1 of
Simulation 1 with n = 120 and p = 1000.

8.42% for highly correlated high-dimensional data when the
nominal size is 5%, meaning a 68.4% relative error. More
details are presented in Figure 1. This is an unacceptable
size control problem since the resulting conclusion can be
misleading and not reliable. It also artificially enlarges the
power of the WPL test in some degree; see Figures 2 and 3
for some details. A possible reason for this undesired prop-
erty of the WPL test is that although the underlying dis-
tribution of TWPL can be skewed, the approximate normal
distribution used by the WPL test is always symmetric and
bell-shaped and hence it is not flexible to adapt to the un-
derlying null distribution of TWPL.

To overcome the above problems, in this paper, based on
the spatial signs (1.6) of the original data, we propose to use
the following test statistic

(1.11) Tn,p = n‖z̄‖2,

which is connected with the statistic of the WPL test in the
following way:

(1.12) Tn,p =

√
2(n− 1)

n
̂tr(V 2

p)TWPL + 1.

Note that Tn,p and TWPL are essentially equivalent since{
2n−1(n−1) ̂tr(V 2

p)
}1/2

is nearly a constant when n is large.
Thus, their distributions are similar in shapes, i.e., both
distributions are skewed, symmetric or normal. However, it
is seen from (1.11) that Tn,p is always nonnegative while
TWPL takes both positive and negative values.

The main contributions of this paper can be summarized
as follows. First of all, we show in Theorem 1 that the limit
null distribution of Tn,p is in general a chi-squared mixture

Figure 2. Empirical power curves (%) of the four tests for a
set of δ’s values with ρ = 0.1, simulated under Model 1 of

Simulation 1 with n = 120 and p = 1000.

Figure 3. Empirical power curves (%) of the four tests for a
set of δ’s values with ρ = 0.9, simulated under Model 1 of

Simulation 1 with n = 120 and p = 1000.

with non-negative coefficients. This means that the limit
null distribution of Tn,p is generally skewed and often not
normally distributed. This result is very different from the
normal limit distribution of TWPL obtained with strong con-
ditions imposed in Wang et al. (2015). Secondly, we propose
to approximate the distribution of Tn,p using a scaled chi-
squared random variable of form R ∼ χ2

d/d which is always
nonnegative and generally skewed. The parameter d is usu-
ally called the approximate degrees of freedom of Tn,p. We
determine the value of d via matching the variances of Tn,p

and R under the null hypothesis. By doing so, the distri-
bution of R is adaptive to the shape of the underlying null
distribution of Tn,p in the sense that when the distribution of
Tn,p is skewed, the value of d is small; when the distribution
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of Tn,p is symmetric, the value of d is large; and when the
null distribution of Tn,p is asymptotically normal, the value
of d will tend to infinity. The above method is essentially the
well-known Welch–Satterthwaite (W–S) χ2-approximation
(a two-moment matched method, see Welch 1947, Satterth-
waite 1946, and Zhang et al. 2015 among others) to the
distribution of Tn,p since we always have E(R) = 1 and by
Lemma 1, under the null hypothesis, we have E(Tn,p) = 1.
Note also that Tn,p and R have the same range [0,∞). The
adaptivity of the above χ2-approximation is obviously not
shared by the normal approximation used in the WPL test
although the normal approximation is also a two-moment
matched method. Thirdly, based on Theorem 1, we present
a sufficient and necessary condition such that the limit null
distribution of Tn,p is normal. This condition allows us to
determine if and when a normal approximation to the under-
lying distribution of Tn,p is adequate in practice. Fourthly,
based on the theoretical results of Zhang (2005) and Zhang
et al. (2015), we show that the density error bound of the
W–S χ2-approximation to the limit null distribution of Tn,p

is generally of smaller order than that of the normal ap-
proximation. This hence shows that the former is generally
preferred to the latter theoretically in terms of size control.
This is actually demonstrated by several simulation studies
under various settings, presented in Section 3 and in the sup-
plementary material (http://intlpress.com/site/pub/pages/
journals/items/sii/content/vols/0012/0001/s002), and two
real data examples presented in Section 4. Fifthly, we show
that under some mild conditions, the estimator (1.10) is
a ratio-consistent estimator of tr(V 2

p) which has not been
shown in Wang et al. (2015) but we shall use it in estimat-
ing the approximate degrees of freedom d. Note that the
ratio-consistency of the estimator (1.4) of tr(Σ2) as shown
in Chen and Qin (2010) does not imply the ratio-consistency
of the estimator (1.10) of tr(V 2

p) since the factor model and
the “pseudo independence” condition required by Chen and
Qin (2010) are no longer satisfied by the transformed data
(1.6).

The rest of the article is organized as follows. The main
results are presented in Section 2. Several simulation stud-
ies and two real data examples are presented in Sections 3
and 4, respectively. Two additional simulation studies are
presented in the supplementary material. All the technical
proofs of the main results are given in the Appendix.

2. MAIN RESULTS

2.1 Asymptotic null distribution

Denote Tn,p,0 as Tn,p under the null hypothesis. Let
L−→,

P−→ and
d
= denote convergence in distribution, in proba-

bility and equal in distribution, respectively. The following
theorem shows that the limit null distribution of Tn,p is a
chi-squared mixture, i.e., a linear combination of a series of
independent chi-squared random variables.

Theorem 1. For any fixed finite p, as n → ∞, we have

Tn,p,0
L−→ Tp,0 where Tp,0

d
=

∑p
r=1 λp,rAr with λp,r’s being

the eigenvalues of V p and A1, . . . , Ar, . . . being i.i.d. χ2
1

random variables. The above expression also holds for p =
∞ provided that limp→∞ V p = V∞ and limp→∞ λp,r =
λ∞,r for all r = 1, 2, . . . uniformly where λ∞,r’s are the
eigenvalues of V∞.

Remark 1. Theorem 1 shows that Tn,p,0 is asymptotically
a chi-squared mixture which is generally skewed and is often
not normally distributed unless some strong assumptions are
imposed as in Wang et al. (2015). In practice, it is often
not easy to check if the assumptions imposed in Wang et al.
(2015) are satisfied.

2.2 Approximate the distribution of Tp,0

In practice, p is always finite but it can be very large.
Further, the eigenvalues λp,r’s of V p are generally unknown
and it is often rather challenging to estimate them consis-
tently. Therefore, it is unrealistic to compute the distri-
bution of Tp,0 directly via replacing the eigenvalues λp,r’s
by their estimates. Fortunately, we can approximate the
distribution of Tp,0 by the W–S χ2-approximation. Since
E(Tp,0) =

∑p
r=1 λp,r = tr(V p) = 1, we can approximate

the distribution of Tp,0 using that of a random variable of
form

(2.1) R ∼ χ2
d/d,

where χ2
d denotes a chi-squared random variable with d de-

grees of freedom. The parameter dmay be called the approx-
imate degrees of freedom of Tp,0. It can be determined via
matching the variances of Tp,0 and R. By (2.1), we have
Var(R) = 2/d and by Theorem 1, we have Var(Tp,0) =∑p

r=1 λ
2
p,r = tr(V 2

p). Equating the variances of Tp,0 and
R leads to

(2.2) d = 1/ tr(V 2
p).

Under some conditions, the distribution of Tp,0 can tend
to normal as shown by Theorem 1 (c) of Zhang (2005). A
question arises naturally, under the same conditions, will the
distribution of R also tend to normal? To answer this ques-
tion, we introduce the following notations. Let λmax denote
the largest eigenvalue of V p, and let
(2.3)

Δ =
λ2
max

tr(V 2
p)
, d∗ =

tr3(V 2
p)

tr2(V 3
p)
, and M =

tr(V 4
p)

tr2(V 2
p)
.

Then we can easily show that the skewness and kurtosis of
Tp,0 can be expressed as

√
8/d∗ and 12M , respectively. In

addition, by Lemma 1 (c) and (d) of Zhang (2005), we have
(2.4)
1/d∗ ≤ Δ ≤ (1/d∗)1/3, and 1/d∗ ≤ M ≤ (Δ/d∗)1/2.
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Furthermore, by some simple algebra, we have (Zhang et al.
2015, Theorem 3)

(2.5) 1 ≤ d∗ ≤ d ≤ p.

We have the following useful theorem.

Theorem 2. As p → ∞, the distribution of Tp,0 tends to
normal if and only if d∗ → ∞. In addition, when d∗ → ∞,
we have

Tp,0 − 1√
2/d

L−→ N (0, 1) and
R− 1√
2/d

L−→ N (0, 1).

Remark 2. Theorem 2 indicates that when d∗ → ∞, both
the distributions of Tp,0 and R tend to normal, and when d
is finite, both the distributions of Tp,0 and R will not tend
to normal. In practice, p is always finite and hence by (2.5),
both d∗ and d are finite so that both the distributions of Tp,0

and R will not tend to normal.

2.3 Accuracy of the χ2-approximation and
the normal approximation

Let the probability density function and the normalized
version of a random variable X be denoted by fX(x) and
X̃ = {X−E(X)}/

√
Var(X), respectively. Then by Theorem

4 of Zhang et al. (2015), when Δ < 1/10 and d > 10 we have
(2.6)

supx |fT̃p,0
(x)− fR̃(x)|

≤ 0.1403
[
{3 + 3.8578

(1−10Δ)5/2
}M + {3 + 3.8578

(1−10/d)5/2
}d−1

]
+0.7040{(d∗)−1/2 − d−1/2}.

That is, the density approximate error bound of the W–S
χ2-approximation to the distribution of Tp,0 is determined
by the variance, skewness, and kurtosis of Tp,0. Let φ(x)
denote the probability density function of the standard nor-
mal distribution. By Theorem 1 (a) of Zhang (2005), when
Δ < 1/8, we have
(2.7)

sup
x

|fT̃p,0
(x)− φ(x)| ≤ 0.1323

{
4 +

2.3617

(1− 8Δ)2

}
(d∗)−1/2.

Remark 3. By (2.6), the density error bound of the
W–S χ2-approximation R to Tp,0 is O(M) + O(d−1) +
O{(d∗)−1/2− d−1/2} while by (2.7), the density error bound
of the normal approximation is O{(d∗)−1/2}. By (2.4) and
(2.5), O(M), O(d−1) and O{(d∗)−1/2−d−1/2} are of smaller
orders or generally smaller than O{(d∗)−1/2}. Thus we the-
oretically justify that the W–S χ2-approximation to Tp,0 is
generally preferred to the normal approximation. These con-
clusions are actually verified by simulation results presented
in Section 3 and in the supplementary material and explain
why our test has a much better size control than other ap-
proaches generally as demonstrated in Section 3 and in the
supplementary material.

2.4 Implementation

For a given high-dimensional sample, both n and p are
finite. To take this fact into account, by Theorem 1, one
may approximate the distribution of Tn,p,0 directly using
that of R (2.1) via matching the variances of Tn,p,0 and R
to determine the approximate degrees of freedom d. By some
calculation, we have the following lemma.

Lemma 1. We have E(Tn,p,0) = 1 and Var(Tn,p,0) =
2(n−1)

n tr(V 2
p).

Therefore, equating the variances of Tn,p,0 and R leads
to

(2.8) d = n/
{
(n− 1) tr(V 2

p)
}
.

For any fixed finite p, as n → ∞, it is easy to see that the
expression (2.8) will tend to the expression (2.2).

To apply the proposed test, we need to estimate d or
tr(V 2

p) consistently. An estimator of tr(V 2
p) is given in

(1.10) by Wang et al. (2015). A computational efficient ex-

pression of ̂tr(V 2
p) is given in Eq. (8) of Wang et al. (2015).

The estimator (1.10) is inspired by the estimator ̂tr(Σ2)
(1.4) of Chen and Qin (2010) under a general factor data
model, which was shown to be ratio-consistent by Chen and
Qin (2010) under some assumptions including a “pseudo
independence” condition. However, Wang et al. (2015) did

not show the ratio-consistency of ̂tr(V 2
p) given in (1.10)

for high-dimensional elliptically distributed data considered
here while the original ratio-consistency result obtained by
Chen and Qin (2010) is not directly applicable because the
factor data model (3.1) and the “pseudo independence” con-
dition (3.2) in Chen and Qin (2010) are no longer satisfied
by the transformed data (1.6). Here we would like to close

this gap via showing the ratio-consistency of ̂tr(V 2
p). To this

end, we impose the following Condition A:

(1) n−1 E(z�
1 V pz 1)

2 = o
{
tr2(V 2

p)
}
,

(2) n−2 E(z�
1 z 2)

4 = o
{
tr2(V 2

p)
}
.

Condition A is rather general and much milder than the
respective conditions imposed by Chen and Qin (2010) for

the ratio-consistency of their estimator ̂tr(Σ2). It can be
shown (see the proof of Lemma 1 in Wang et al. 2015)
that Condition A is satisfied under the conditions (C1) and
(C2) of Wang et al. (2015). The following theorem presents

the unbiasedness and the ratio-consistency of ̂tr(V 2
p) under

Condition A and the null hypothesis.

Theorem 3. Under H0, we have E
{ ̂tr(V 2

p)
}

=

tr(V 2
p). Further, under H0 and Condition A, we have

̂tr(V 2
p)/ tr(V

2
p)

P−→ 1.
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With ̂tr(V 2
p) and by (2.8), a ratio-consistent estimator

of d is then given by d̂ = n/
{
(n − 1) ̂tr(V 2

p)
}
. The pro-

posed test can then be conducted via using the critical value
χ2
d̂
(α)/d̂ or the approximate p-value Pr

(
χ2
d̂
> d̂ Tn,p

)
where

χ2
d̂
(α) denotes the 100(1−α)th percentile of the chi-squared

distribution with d̂ degrees of freedom. The empirical per-
formance of the proposed test will be demonstrated by the
simulation studies presented in the next section and in the
supplementary material.

3. SIMULATION STUDIES

In this section, we conduct two simulation studies (some
additional simulation studies are presented in the supple-
mentary material) to compare the proposed test (denoted
as NEW) against the WPL, BS and CQ tests. We compare
them under various simulation settings in terms of size con-
trol and power, aiming to see how the proposed test performs
compared with the existing competitors.

In each run, we generate the data using the following
factor model

(3.1) x i = μ+Σ1/2v i, i = 1, . . . , n,

where μ = δh and Σ is a p× p nonnegative definite matrix,
depending on a nonnegative tuning parameter denoted as
ρ. The tuning parameters δ and h are used to control the
mean vector so that the power of a test will increase with
increasing the value of δ and the tuning parameter ρ is used
so that the data correlation will increase with increasing the
value of ρ. For simplicity, without loss of generality, we set
h = u/‖u‖ with u = (1, . . . , p)�. To compare the perfor-
mance of the tests under consideration with small, moder-
ate, and large tuning parameters, we consider three cases of
dimension with p = 50, 500, 1000, three cases of sample sizes
with n = 30, 60, 120, and three cases of data correlation with
ρ = 0.1, 0.5, 0.9. Other cases are considered in Figures 1–3.

The empirical sizes and powers are calculated based on
N = 10,000 simulation runs with the nominal size α = 5%.
In each run, the test statistics are computed and the asso-
ciated p-values are calculated. When the p-value of a test
is smaller than α = 5%, the null hypothesis is rejected.
The empirical size or power of a test is then calculated
as the proportions of the number of rejections out of N
runs based on the calculated p-values. To assess the per-
formance of a test in maintaining the nominal size (type I
error), we use the following so-called average relative error

ARE = 100M−1
∑M

j=1 |α̂j − α|/α, where α̂j , j = 1, . . . ,M
denote the empirical sizes under consideration. A smaller
ARE value indicates a better overall performance of the as-
sociated test in terms of size control.

3.1 Simulation 1

In this simulation study, the matrix Σ is specified as
Σ = (1 − ρ)I p + ρJ p, with I p a p × p identity matrix and

J p a p×p matrix of ones, and we generate the i.i.d. random
vectors v i, i = 1, . . . , n from the following two models:

• Model 1. vij , j = 1, . . . , p, i.i.d. follow the normal mix-
ture 0.9N (0, 1) + 0.1N (0, 9).

• Model 2. v i = w i/
√
3, with w i following a multivariate

t-distribution with mean 0 , correlation matrix I p, and
3 degrees of freedom.

The generated data are then with symmetric and heavy-
tailed distributions. It is expected that they will favor the
NEW and WPL tests against the BS and CQ tests in terms
of power.

Table 1 displays the empirical sizes of the NEW, WPL,
BS and CQ tests under various settings with their ARE
values listed at the last row. It is seen that the NEW test
performs well with most of its empirical sizes around 6%
while the other three tests are rather liberal with most of
their empirical sizes more than 7% except when ρ = 0.1,
the BS test is very conservative with most of its empir-
ical sizes less than 2%. Therefore, in terms of size con-
trol, the NEW test outperforms the other three tests. This
is also indicated by their ARE values. The ARE values
of the four tests are respectively 26.16, 36.77, 61.54, 41.82
when ρ = 0.1, 23.32, 46.57, 29.93, 53.60 when ρ = 0.5, and
14.04, 48.39, 45.36, 55.52 when ρ = 0.9, showing that the
ARE values of the NEW test are always smaller than those
of the other three tests.

Table 2 displays the associated empirical powers of the
four tests. It is seen that in terms of power, the NEW and
WPL tests are generally comparable and they both outper-
form the BS and CQ tests. This shows that the spatial-
sign-transformation indeed helps to improve the power of a
one-sample test when the data are heavy-tailed. Note that
compared with the NEW test, the slightly higher empirical
powers of the WPL test are mainly due to the fact that
it also has larger associated empirical sizes than the NEW
test; see Figures 2 and 3 below for more details.

Table 3 presents the estimated approximate degrees of
freedom, d̂, of the NEW test. It is seen that the value of d̂
has strong relationship with n, p and ρ. When n and p are
fixed, d̂ decreases with ρ increasing while when ρ is fixed, d̂
increases with p/n increasing. In particular, when ρ = 0.5

and 0.9, d̂ is generally small (≤ 10), showing that in these
cases, the underlying null distribution of the NEW test is
skewed. Since the underlying null distribution of the WPL
test has a similar shape as that of the underlying null distri-
bution of the NEW test (see (1.12)), the normal approxima-
tion to the null distribution of the WPL test is impossibly
adequate when ρ = 0.5 and 0.9. This partially explains why
the NEW test always outperforms the WPL test in terms of
size control.

To further study the effect of ρ on the performance of
the four tests in terms of size control, Figure 1 displays the
empirical size curves of the four tests (NEW — solid, WPL
— dashed, BS — dotted, and CQ — dot-dashed) and the
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Table 2. Empirical powers (%) of the four tests in Simulation 1

ρ = 0.1 ρ = 0.5 ρ = 0.9

Model p n δ NEW WPL BS CQ NEW WPL BS CQ NEW WPL BS CQ

1

50
30 1.5 85.56 86.62 52.55 71.76 37.42 40.55 28.33 30.85 23.98 29.90 21.28 22.11
60 1.1 88.51 89.81 60.88 73.13 38.95 42.70 28.95 30.23 25.68 30.22 19.79 20.32
120 0.8 90.95 91.47 68.74 75.31 40.82 44.98 29.37 30.31 26.27 31.88 19.71 20.08

500
30 4.0 88.86 90.01 40.69 73.69 28.64 31.81 22.61 25.11 18.27 22.23 16.65 17.44
60 2.8 89.22 89.80 48.45 70.54 27.33 29.47 20.43 21.67 17.75 20.57 14.91 15.43
120 2.0 89.80 90.90 56.64 70.10 27.29 30.63 21.23 21.85 17.04 20.64 14.72 14.98

1000
30 5.5 88.67 90.18 39.34 73.26 26.74 30.06 21.86 24.22 18.18 21.47 16.90 17.65
60 4.0 91.49 92.02 50.20 73.33 28.14 31.60 21.81 23.14 16.72 21.56 15.56 16.04
120 2.5 81.34 82.93 44.62 60.46 22.01 24.50 17.24 17.82 14.81 17.39 12.28 12.56

2

50
30 1.1 96.29 96.86 55.09 76.73 54.87 59.08 31.77 35.90 37.67 43.81 22.96 24.38
60 0.8 97.87 98.18 59.77 77.12 57.59 62.17 30.16 33.40 39.17 46.62 20.85 21.93
120 0.5 93.82 94.40 49.05 65.10 45.52 49.95 23.09 25.34 30.56 36.65 16.86 17.57

500
30 2.7 95.60 96.12 38.06 72.41 35.59 39.19 21.12 24.89 23.11 27.36 16.20 17.44
60 1.9 96.32 96.79 39.05 68.58 35.25 39.07 19.78 22.67 22.72 27.20 15.19 16.18
120 1.3 95.83 96.15 39.73 63.93 33.02 36.72 17.92 19.82 20.56 25.19 13.49 14.08

1000
30 3.5 92.76 93.34 31.70 67.03 31.36 34.57 19.22 22.63 20.10 24.09 14.89 16.03
60 2.5 94.60 95.06 34.26 65.17 31.28 34.40 18.38 20.94 20.00 24.27 13.94 14.98
120 1.8 96.27 96.77 38.00 63.67 31.47 34.85 17.25 19.21 19.96 24.68 13.83 14.47

Table 3. Estimated approximate degrees of freedom of the
NEW test in Simulation 1.

Model 1 Model 2

p n ρ = 0.1 ρ = 0.5 ρ = 0.9 ρ = 0.1 ρ = 0.5 ρ = 0.9

50
30 39.29 8.30 2.32 39.23 8.32 2.33
60 38.18 7.85 2.24 38.21 7.84 2.24
120 37.69 7.65 2.20 37.62 7.65 2.20

500
30 124.00 9.44 2.37 124.50 9.44 2.37
60 115.50 8.85 2.27 115.94 8.81 2.27
120 111.18 8.58 2.24 110.57 8.56 2.24

1000
30 143.93 9.52 2.37 142.67 9.54 2.38
60 129.64 8.90 2.28 130.57 8.92 2.28
120 124.30 8.61 2.23 124.04 8.62 2.23

estimated approximate degrees of freedom (d̂) of the NEW
test for a set of ρ’s values, simulated under Model 1 of Simu-
lation 1 with n = 120 and p = 1000. From the empirical size
curves of the four tests, it is seen that in terms of size control,
the NEW test outperforms other three tests generally, the
WPL and CQ tests are rather liberal when ρ ≥ 0.10, and the
BS test is very conservative when ρ ≤ 0.10 and it becomes
very liberal when ρ ≥ 0.40. These conclusions are consistent
with those observed from Table 1. From the estimated ap-
proximate degrees of freedom curve of the NEW test, it is
seen that with the value of ρ increasing, d̂ generally becomes
smaller, showing that the normal approximation used in the
WPL, BS and CQ tests becomes less adequate. This again
partially explains why the NEW test generally outperforms
the WPL, BS and CQ tests, especially when the value of ρ
is large.

To further study the effect of ρ on the performance of the
four tests in terms of power, Figures 2 and 3 display the em-

pirical power curves of the four tests (NEW — solid, WPL
— dashed, BS — dotted, and CQ — dot-dashed) for a set of
δ’s values with ρ = 0.1 and ρ = 0.9 respectively, simulated
under Model 1 of Simulation 1 with n = 120 and p = 1000.
From these two figures, it is seen that in terms of power,
both the NEW and WPL tests outperform the BS and CQ
tests and when ρ = 0.1, the NEW and WPL tests are gen-
erally comparable since their empirical sizes are comparable
and when ρ = 0.9, the WPL test has slightly larger empir-
ical powers than the NEW test since the former also has a
larger empirical sizes than the latter. These conclusions are
consistent with those drawn from Table 2.

3.2 Simulation 2

In this simulation study, we use the same settings as Sim-
ulation 1 except the matrix Σ is specified as Σ = DRD ,
where D = diag(h), h = u/‖u‖ with u = (1, . . . , p)�, and
R is a p × p matrix with the (i, j)th element being ρ|i−j|.
The simulation results are presented in Tables 4–6. The con-
clusions drawn from these tables are similar to those drawn
from Tables 1–3 of Simulation 1, i.e., in terms of size con-
trol, the NEW test outperforms the other three tests and in
terms of power, the NEW and WPL tests are generally com-
parable and they outperform the BS and CQ tests except
now most of the empirical sizes of the NEW test are around
5%, most of the empirical sizes of the WPL and CQ tests
are around 6% and the BS test becomes very conservative
with most of its empirical sizes less than 2%.

4. APPLICATIONS

An important application of a one-sample test is to test
if two paired samples have the same mean vectors. Suppose
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Table 4. Empirical sizes (%) of the four tests in Simulation 2

ρ = 0.1 ρ = 0.5 ρ = 0.9

Model p n NEW WPL BS CQ NEW WPL BS CQ NEW WPL BS CQ

1

50
30 5.25 6.58 1.57 6.59 5.44 6.65 3.05 6.90 5.58 7.04 6.39 7.66
60 5.21 6.27 2.73 6.42 5.19 6.49 3.99 6.35 5.99 7.56 6.85 7.77
120 4.85 6.00 3.96 6.11 5.45 6.68 5.11 6.79 5.16 6.73 6.32 6.79

500
30 5.40 5.84 0.21 5.92 5.75 6.35 0.30 6.28 5.48 6.69 1.64 6.99
60 4.95 5.28 0.01 4.94 5.14 5.65 0.09 5.71 5.79 6.84 2.99 6.83
120 4.89 5.35 0.03 5.28 5.42 5.98 0.30 5.78 5.57 6.51 4.42 7.08

1000
30 4.67 5.01 0.24 5.58 5.65 6.05 0.22 6.13 5.93 6.69 0.58 6.57
60 5.55 5.94 0.02 5.60 5.06 5.47 0.01 5.46 5.55 6.16 1.11 6.47
120 4.93 5.27 0.00 5.19 5.14 5.59 0.00 5.46 5.45 6.13 2.21 5.97

2

50
30 5.30 6.51 1.32 6.15 5.63 7.11 2.76 7.14 6.17 7.66 5.89 7.98
60 5.25 6.54 1.97 6.20 5.56 6.76 3.27 6.86 5.94 7.54 6.14 7.52
120 5.11 6.28 2.23 5.78 5.52 6.70 3.79 6.64 5.71 7.59 6.15 7.24

500
30 5.29 5.72 0.01 5.53 5.55 6.19 0.01 6.14 5.63 6.63 1.55 6.75
60 5.14 5.62 0.01 5.49 5.30 5.84 0.12 5.84 5.37 6.49 1.91 6.35
120 5.29 5.72 0.08 5.69 5.21 5.75 0.11 6.16 5.22 6.08 2.57 6.23

1000
30 5.40 5.77 0.00 5.58 5.37 5.77 0.00 6.04 5.74 6.41 0.50 6.42
60 4.95 5.29 0.00 5.07 5.61 6.04 0.02 5.63 5.62 6.41 0.75 6.17
120 5.20 5.41 0.00 5.43 5.48 5.91 0.00 5.55 5.84 6.73 1.46 6.49

ARE 4.61 16.00 84.01 14.08 8.30 23.31 74.52 23.18 13.04 35.43 51.17 36.98

Table 5. Empirical powers (%) of the four tests in Simulation 2

ρ = 0.1 ρ = 0.5 ρ = 0.9

Model p n δ NEW WPL BS CQ NEW WPL BS CQ NEW WPL BS CQ

1

50
30 0.250 98.43 98.71 73.75 88.97 87.86 89.55 61.65 74.33 40.86 45.06 36.31 39.31
60 0.170 97.53 98.13 75.95 85.41 84.75 86.85 61.69 69.27 38.81 43.37 34.26 35.94
120 0.120 97.57 98.05 80.88 85.87 84.92 86.89 64.83 69.08 38.60 43.10 33.51 34.60

500
30 0.120 97.50 97.74 5.55 82.26 86.18 87.09 7.56 66.28 35.98 38.98 13.78 29.33
60 0.080 95.23 95.61 6.07 75.05 81.59 82.65 9.78 58.81 31.89 34.59 15.50 25.49
120 0.060 98.10 98.24 25.77 82.35 86.77 87.90 26.49 64.95 36.20 38.96 21.13 27.26

1000
30 0.090 92.21 92.55 4.11 70.87 77.24 78.20 3.55 55.10 29.65 31.83 5.36 23.85
60 0.065 94.51 94.88 0.51 72.01 80.17 81.20 1.25 55.41 30.64 32.83 8.13 23.19
120 0.050 98.48 98.60 5.29 82.85 88.83 89.47 9.06 65.04 35.91 38.10 14.96 26.16

2

50
30 0.130 92.19 93.40 39.79 64.18 76.71 79.01 35.19 50.22 33.72 37.41 23.78 27.67
60 0.100 97.26 97.87 50.12 70.01 84.60 86.73 40.73 53.65 38.52 42.82 25.73 28.57
120 0.080 99.61 99.68 64.68 80.12 93.81 95.01 52.66 63.39 47.06 51.87 29.32 31.74

500
30 0.070 96.31 96.57 3.95 64.00 85.03 85.89 5.05 50.74 35.12 37.88 9.36 22.53
60 0.050 97.49 97.63 4.94 63.26 87.03 88.06 6.52 47.50 36.69 39.47 11.05 22.36
120 0.033 94.91 95.26 4.65 50.99 80.48 81.88 6.12 39.11 31.53 34.19 10.10 18.07

1000
30 0.056 95.14 95.40 0.58 60.45 82.28 83.15 0.85 46.02 32.68 35.20 4.13 20.53
60 0.040 96.51 96.81 0.53 57.26 84.93 85.74 1.17 43.76 33.79 36.08 4.95 19.07
120 0.028 96.46 96.68 0.92 53.28 83.76 84.71 1.58 40.48 32.81 35.30 5.71 17.30

we have two paired samples: (y i1,y i2), i = 1, . . . , n which
are i.i.d. but for each i, y i1 and y i2 may be correlated. It is
often of interest to test if the two paired samples have the
same mean vectors:

(4.1) H0 : E(y11) = E(y12) vs H1 : E(y11) �= E(y12).

It is well known that the above paired two-sample problem
can be easily transformed into a one-sample problem. In
fact, set x i = y i1 − y i2, i = 1, . . . , n. Then testing (4.1)

is equivalent to testing the one-sample problem (1.1) with
μ = E(y11) − E(y12) being the mean vector of x 1, . . . ,xn.
Thus, the proposed NEW test, together with the WPL, BS
and CQ tests, can be used to test (4.1).

As real data examples, we consider applications of the
proposed NEW test, together with the WPL, BS and CQ
tests, to three datasets. The first two datasets were pro-
vided by Chowdary et al. (2006), available at the Gene Ex-
pression Omnibus (GEO) (Barrett and Edgar 2006) with
accession number GSE3726. The first dataset contains 31
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Table 6. Estimated approximate degrees of freedom of the
NEW test in Simulation 2

Model 1 Model 2

p n ρ = 0.1 ρ = 0.5 ρ = 0.9 ρ = 0.1 ρ = 0.5 ρ = 0.9

50
30 29.47 20.02 5.83 29.47 20.06 5.85
60 28.85 19.54 5.66 28.87 19.53 5.66
120 28.58 19.32 5.58 28.59 19.31 5.57

500
30 284.50 176.36 34.18 284.50 176.42 34.17
60 278.40 172.69 33.41 278.40 172.87 33.39
120 275.89 171.06 33.00 275.89 171.04 33.01

1000
30 567.68 349.68 64.72 567.78 349.95 64.79
60 555.78 342.31 63.16 555.72 342.37 63.25
120 550.52 339.10 62.56 550.57 339.26 62.55

Table 7. Results for the first two datasets, provided by
Chowdary et al. (2006)

1st dataset 2nd dataset

Method Statistic p-value d̂ Statistic p-value d̂

NEW 1.35 0.20 9.93 1.45 0.16 8.65
WPL 0.78 0.22 - 0.93 0.18 -
BS 0.03 0.49 - 0.19 0.42 -
CQ 0.03 0.49 - 0.49 0.31 -

pairs of matched lymph node-negative either “fresh frozen”
or “stored in RNAlater preservative” breast tumor tissues.
The second dataset contains 21 pairs of matched Dukes’
B either “fresh frozen” or “stored in RNAlater preserva-
tive” colon tumor tissues. In both the datasets, each tu-
mor tissue has p = 22, 283 gene expression levels. Chowdary
et al. (2006) used correlation analysis to demonstrate that
tissues stored in RNAlater preservative can generate expres-
sion profiles similar to those produced by tissues that were
snap-frozen and they suggested that prognostic signatures
can be obtained from RNAlater preservative-suspended tis-
sues. It is then of interest to check if the paired tissues of
“fresh frozen” and “stored in RNAlater preservative” for
these two datasets have the same mean gene expression lev-
els, respectively.

Table 7 presents the test results for the first two datasets.
It is seen that all the four tests indicate there is no strong
evidence to reject the null hypothesis that the paired breast
and colon tumor tissues have the same mean gene expres-
sion levels, respectively. These results are consistent with
the findings of Chowdary et al. (2006). Note that both the
estimated approximate degrees of freedom of the NEW test
are less than 10. They indicate that the normal approxima-
tion used in the WPL, BS and CQ tests is less adequate so
that their p-values are less trustful.

The third dataset was provided by Badea et al. (2008),
available at GEO with accession number GSE15471. This
dataset contains paired samples of pancreatic ductal adeno-
carcinoma tumors and matching normal pancreatic tissue
from n = 36 pancreatic cancer patients, with each tissue

Table 8. Results for the third dataset, provided by Badea
et al. (2008)

Method Statistic p-value d̂

NEW 11.98 9.57× 10−49 24.94
WPL 38.78 0.00 -
BS 35.83 2.24× 10−281 -
CQ 35.92 8.09× 10−283 -

having p = 54, 675 gene expression levels. It is of interest if
the paired tumor and normal tissues have same mean gene
expression levels.

Table 8 presents the test results of the proposed NEW
test, together with the WPL, BS and CQ tests. It is seen
that all the four tests strongly reject the null hypothesis that
the paired tumor and normal tissues have the same mean
gene expression levels. Again, the number of the estimated
approximate degrees of freedom of the NEW test is only
24.94, indicating that the normal approximation used in the
WPL, BS and CQ tests is also less adequate so that the
p-values of these three tests are also less reliable than that
of the NEW test.

APPENDIX: TECHNICAL PROOFS

Proof of Theorem 1. Set wn =
√
nz̄ . For any fixed finite

p, by the central limit theorem, as n → ∞, we have

wn
L−→ w where w ∼ Np(0 ,V p). By the continuous map-

ping theorem, we have Tn,p,0 = ‖wn‖2 L−→ Tp,0 where

Tp,0 = ‖w‖2 d
=

∑p
r=1 λp,rAr with A1, . . . , Ar, . . . being i.i.d.

χ2
1 random variables.
We now prove the case when n, p → ∞ via the char-

acteristic function method. Let up,1, . . . ,up,p be the eigen-
vectors associated with the decreasing-ordered eigenvalues
λp,1, . . . , λp,p of V p. We have wn =

∑p
r=1 ξp,rup,r where

ξp,r = w�
nup,r. It is known that ξp,r, r = 1, . . . , p are uncor-

related and E(ξp,r) = 0 and Var(ξp,r) = λp,r, r = 1, 2, . . . .
Note that Tn,p,0 =

∑p
r=1 ξ

2
p,r. Set Tn,q,0 =

∑q
r=1 ξ

2
p,r. Then

we have

|ψTn,p,0(t)− ψTn,q,0(t)|
≤ |t|E |Tn,p,0 − Tn,q,0| = |t|

∑p
r=q+1 E(ξ

2
p,r)

= |t|
∑p

r=q+1 λp,r,

which is valid for all large p. As p → ∞, we have Tn,p,0 →∑∞
r=1 ξ

2
∞,r and the above result still holds with the upper

bound |t|
∑p

r=q+1 λp,r replaced by |t|
∑∞

r=q+1 λ∞,r. Let t be

fixed. Since
∑∞

r=1 λ∞,r = tr(V∞) = 1, for any ε > 0, there
exist Q and N1, both depending on t and ε, such that as n ≥
N1, we have |ψTn,p,0(t) − ψTn,Q,0

(t)| ≤ |t|
∑∞

r=q+1 λ∞,r ≤ ε.
For the fixed Q, by the central limit theorem we have

Tn,Q,0
L−→ T0,Q where T0,Q

d
=

∑Q
r=1 λ∞,rAr since as n, p →

∞, ξp,r
L−→ N (0, λ∞,r) and ξp,r’s are asymptotically inde-

pendent. That is, there exists N2, depending on t and ε, such
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that as n > N2, we have |ψTn,Q,0
(t) − ψT0,Q

(t)| ≤ ε. Note
that T∞,0 =

∑∞
r=1 λ∞,rAr. We have

|ψT0,Q
(t)− ψT∞,0(t)|

≤ |t|
∑∞

r=Q+1 λ∞,r E(Ar) ≤ |t|
∑∞

r=Q+1 λ∞,r ≤ ε.

It follows that as n ≥ min(N1, N2), we have |ψTn,p,0(t) −
ψT∞,0(t)| ≤ 3ε. The theorem follows as we can let ε → 0.

Proof of Theorem 2. If Tp,0 tends to normal as p → ∞, its

skewness
√
8/d∗ will tend to 0, showing that d∗ → ∞.

On the other hand, when d∗ → ∞, by (2.4), we have
Δ → 0. Then by (2.7), we have that Tp,0 tends nor-
mal. The first claim then follows. To show the second
claim, note that when d∗ → ∞, by (2.7) again, we have

(Tp,0 − 1)/
√

2/d
L−→ N (0, 1) and by (2.5), we have d → ∞

so that (R− 1)/
√
2/d

L−→ N (0, 1). The proof is com-
pleted.

Proof of Lemma 1. First of all, we have Tn,p =
n−1

∑n
i=1 z

�
i z i + n−1

∑n
i �=j z

�
i z j . Since z�

i z i = 1
and under H0, we have E(z i) = E{U(εi)} = 0 ,
it is easy to see that E(Tn,p,0) = 1. By Lemma
3 of Zhang et al. (2015), under H0, we have
Var(n‖z̄‖2) = n−2 Var

[
{
∑n

i=1 U(εi)
�}{

∑n
i=1 U(εi)}

]
=

n−1κz ,11 + 2 tr
[
E{U(ε1)U(ε1)

�}
]
2 = n−1κz ,11 + 2 tr(V 2

p),

where κz ,11 = E ‖U(ε1)‖4 − tr2
[
E{U(ε1)U(ε1)

�}
]
−

2 tr
[
E{U(ε1)U(ε1)

�}
]
2 = 1 − 1 − 2 tr(V 2

p) = −2 tr(V 2
p),

since ‖U(ε1)‖2 = 1. Thus under H0 we have

Var(n‖z̄‖2) = 2(1 − 1
n ) tr(V

2
p) = 2(n−1)

n tr(V 2
p) as

desired.

Throughout this section, we define Pn,k = n(n−1) . . . (n−
k + 1). The following lemma with its proof omitted holds
obviously. It will be used in the proofs of Theorem 3 and
Lemmas 3 and 4 stated later.

Lemma 2. Denote
∑∗

i1,...,im
=

∑
i1,...,im

1{i1 �= · · · �= im}
as summation over mutually different indices {i1, . . . , im}.
For any function f(j, k, j1, k1) of indices {j, k, j1, k1}, we
have

∑
j �=k

∑
j1 �=k1

f(j, k, j1, k1) =

∗∑
j,k,j1,k1

f(j, k, j1, k1)

+

∗∑
j,k,k1

f(j, k, j, k1) +

∗∑
j,k,j1

f(j, k, j1, j)

+

∗∑
j,k,k1

f(j, k, k, k1) +

∗∑
j,k,j1

f(j, k, j1, k)

+

∗∑
j,k

f(j, k, j, k) +

∗∑
j,k

f(j, k, k, j).

In addition, if f(j, k, j1, k1) = f(k, j, j1, k1) and
f(j, k, j1, k1) = f(j, k, k1, j1), we have

∑
j1 �=k1

∑
j �=k

f(j1, k1, j, k) =

∗∑
j,k,j1,k1

f(j, k, j1, k1)

+ 4

∗∑
j,k,k1

f(j, k, j, k1) + 2

∗∑
j,k

f(j, k, j, k).

Furthermore, if f(j, k, j1, k1) = f(j1, k1, j, k), we have

∑
j1 �=k1

∑
j �=k

f(j1, k1, j, k) =

∗∑
j,k,j1,k1

f(j, k, j1, k1)

+

∗∑
j,k,k1

f(j, k, j, k1) + 2

∗∑
j,k,j1

f(j, k, j1, j) +

∗∑
j,k,j1

f(j, k, j1, k)

+

∗∑
j,k

f(j, k, j, k) +

∗∑
j,k

f(j, k, k, j).

Proof of Theorem 3. By (1.10), we have

̂tr(V 2
p) =P−1

n,2

∑
j �=k

(z�
j z kz

�
k z j − 2z�

j z̄ (j,k)z
�
k z j

+ z�
j z̄ (j,k)z

�
k z̄ (j,k))

:=B1 − 2B2 +B3,

where

B1 =P−1
n,2

∑
j �=k

(z�
j z kz

�
k z j),

B2 =P−1
n,2

∑
j �=k

(z�
j z̄ (j,k)z

�
k z j),

B3 =P−1
n,2

∑
j �=k

(z�
j z̄ (j,k)z

�
k z̄ (j,k)).

We firstly show the first claim of Theorem 3. Note that
under H0, by independence of z j , z k and z̄ (j,k), we have
E(z j) = E(z̄ (j,k)) = 0 . It follows that

(A.1)
E(B1) = P−1

n,2 tr
(∑

j �=k V pV p

)
= tr(V 2

p),

E(B2) = E(B3) = 0.

The first claim of Theorem 3 then follows immediately.
We now show the second claim of the theorem. By Lem-

mas 3 and 4 (stated and proved later), we only need to show

B1/ tr(V
2
p)

P−→ 1. By (A.1), the above expression holds if
we can show

(A.2) Var(B1) = o
{
tr2(V 2

p)
}
.

Now, we have

E(B2
1) =P−2

n,2 E
∑
j �=k

∑
j1 �=k1

(z�
j z kz

�
k z j)(z

�
j1z k1z

�
k1
z j1)

=P−2
n,2 E

∗∑
j,k,j1,k1

(z�
j z kz

�
k z jz

�
j1z k1z

�
k1
z j1)
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+ 4P−2
n,2 E

∗∑
j,k,k1

(z�
j z kz

�
k z jz

�
j z k1z

�
k1
z j)

+ 2P−2
n,2 E

∗∑
j,k

(z�
j z kz

�
k z jz

�
j z kz

�
k z j)

=
(n− 2)(n− 3)

n(n− 1)
tr2(V 2

p) +
4(n− 2)

n(n− 1)
E(z�

1 V pz 1)
2

+
2

n(n− 1)
E(z�

1 z 2)
4.

By Condition A, we have (A.2). The theorem is then proved.

Lemma 3. Under H0 and Condition A, we have B2 =
o
{
tr(V 2

p)
}
.

Proof of Lemma 3. By (A.1), we only need to show E(B2
2) =

o
{
tr2(V 2

p)
}
. Note that

E(B2
2) =P−2

n,2 E
∑
j �=k

∑
j1 �=k1

(z�
j z̄ (j,k)z

�
k z j)(z

�
j1 z̄ (j1,k1)z

�
k1
z j1)

=P−2
n,2 E

∗∑
j,k,j1,k1

(z�
j z̄ (j,k)z

�
k z j)(z

�
j1 z̄ (j1,k1)z

�
k1
z j1)

+ P−2
n,2 E

∗∑
j,k,k1

(z�
j z̄ (j,k)z

�
k z j)(z

�
j z̄ (j,k1)z

�
k1
z j)

+ 2P−2
n,2 E

∗∑
j,k,j1

(z�
j z̄ (j,k)z

�
k z j)(z

�
j1 z̄ (j1,j)z

�
j z j1)

+ P−2
n,2

∗∑
j,k,j1

(z�
j z̄ (j,k)z

�
k z j)(z

�
j1 z̄ (j1,k)z

�
k z j1)

+ P−2
n,2 E

∗∑
j,k

(z�
j z̄ (j,k)z

�
k z j)(z

�
j z̄ (j,k)z

�
k z j)

+ P−2
n,2 E

∗∑
j,k

(z�
j z̄ (j,k)z

�
k z j)(z

�
k z̄ (k,j)z

�
j z k)

:=B21 +B22 + 2B23 +B24 +B25 +B26,

where B21 = B22 = 0. We now show B23, B24, B25 and
B26 are o

{
tr2(V 2

p)
}
. Notice that z̄ (j,k) = {(n−3)z̄ (j,k,j1)+

z j1}/(n − 2), z̄ (j1,j) = {(n − 3)z̄ (j,k,j1) + z k}/(n − 2), and
z̄ (j1,k) = {(n−3)z̄ (j,k,j1)+z j}/(n−2). First of all, we have

B23 =P−2
n,2 E

∗∑
j,k,j1

(z�
j z̄ (j,k)z

�
k z j)(z

�
j1 z̄ (j1,j)z

�
j z j1)

=P−2
n,3 E

∗∑
j,k,j1

[
z�
j {(n− 3)z̄ (j,k,j1) + z j1}z�

k z j

]
[
z�
j1{(n− 3)z̄ (j,k,j1) + z k}z�

j z j1

]
:=B231 +B232 +B233 +B234,

with B231 = B232 = B233 = 0, and

B234 =P−2
n,3 E

∗∑
j,k,j1

(z�
j z j1z

�
k z jz

�
j1z kz

�
j z j1)

=P−1
n,3 E

{
(z�

1 z 2)
2(z�

1 V pz 2)
}

≤P−1
n,3

√
E(z�

1 z 2)4 E(z�
1 V pz 2)2

=o
{
tr2(V 2

p)
}
,

where note E(z�
1 V pz 2)

2 = tr
{
E(z�

2 V pz 1z
�
1 V pz 2)

}
=

tr(V 4
p), and the last equality is due to the fact tr(V 4

p) ≤
tr2(V 2

p) and Condition A. Secondly, we have

B24 =P−2
n,2 E

∗∑
j,k,j1

(z�
j z̄ (j,k)z

�
k z j)(z

�
j1 z̄ (j1,k)z

�
k z j1)

=P−2
n,3 E

∗∑
j,k,j1

[
z�
j {(n− 3)z̄ (j,k,j1) + z j1}z�

k z j

]
[
z�
j1{(n− 3)z̄ (j,k,j1) + z j}z�

k z j1

]
:=B241 +B242 +B243 +B244,

with

B241 =P−2
n,3 E

∗∑
j,k,j1

{
(n− 3)2z�

j z̄ (j,k,j1)

× z�
k z jz

�
j1 z̄ (j,k,j1)z

�
k z j1

}
=(n− 3)P−1

n,3 tr(V
4
p) = o

{
tr2(V 2

p)
}
,

B242 =B243 = 0,

B244 =P−2
n,3 E

∗∑
j,k,j1

(z�
j z j1z

�
k z jz

�
j1z jz

�
k z j1)

=P−1
n,3 E

{
(z�

1 z 2)
2(z�

1 V pz 2)
}

=o
{
tr2(V 2

p)
}
.

Thirdly, we have

B25 =P−2
n,2 E

∗∑
j,k

(z�
j z̄ (j,k)z

�
k z j)(z

�
j z̄ (j,k)z

�
k z j)

=P−1
n,2(n− 3)−1 E(z�

1 V pz 1)
2 = o

{
tr2(V 2

p)
}
.

And finally, we have

B26 =P−2
n,2 E

∗∑
j,k

(z�
j z̄ (j,k)z

�
k z j)(z

�
k z̄ (k,j)z

�
j z k)

=P−2
n,3 E

∗∑
j,k

[
z�
j {(n− 3)z̄ (j,k,j1) + z j1}z�

k z j

]
[
z�
k {(n− 3)z̄ (j,k,j1) + z j1}z�

j z k

]
:=B261 +B262 +B263 +B264,

with B262 = B263 = 0,
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B261 =P−2
n,3 E

∗∑
j,k

[
z�
j {(n− 3)z̄ (j,k,j1)}z�

k z j

]
[
z�
k {(n− 3)z̄ (j,k,j1)}z�

j z k

]
=Pn,2(n− 3)P−2

n,3 E
{
(z�

1 V pz 2)(z
�
1 z 2)

2
}

=o
{
tr2(V 2

p)
}
,

B264 =P−2
n,3 E

∗∑
j,k

(z�
k z jz

�
k z j1z

�
j1z jz

�
j z k)

=P−2
n,3Pn,2 E

{
(z�

1 z 2)
2z�

1 V pz 2)
}

=o
{
tr2(V 2

p)
}
.

The proof is then completed.

Lemma 4. Under H0 and Condition A, we have B3 =
o
{
tr(V 2

p)
}
.

Proof of Lemma 4.. By (A.1), we only need to show
E(B2

3) = o
{
tr2(V 2

p)
}
. Now

E(B2
3) =P−2

n,2 E
∑
j �=k

(z�
j z̄ (j,k)z

�
k z̄ (j,k))(z

�
j1 z̄ (j1,k1)z

�
k1
z̄ (j1,k1))

=P−2
n,2 E

∗∑
j,k,j1,k1

(z�
j z̄ (j,k)z

�
k z̄ (j,k))

(z�
j1 z̄ (j1,k1)z

�
k1
z̄ (j1,k1))

+ 4P−2
n,2 E

∗∑
j,k,k1

(z�
j z̄ (j,k)z

�
k z̄ (j,k))

(z�
j z̄ (j,k1)z

�
k1
z̄ (j,k1))

+ 2P−2
n,2 E

∗∑
j,k

(z�
j z̄ (j,k)z

�
k z̄ (j,k))(z

�
j z̄ (j,k)z

�
k z̄ (j,k))

:=B31 + 4B32 + 2B33.

Note that z̄ (j,k) = {(n − 4)z̄ (j,k,j1,k1) + z j1 + z k1}/(n − 2)
and z̄ (j1,k1) = {(n−4)z̄ (j,k,j1,k1)+z j+z k}/(n−2), we have

B31 =P−2
n,2 E

∗∑
j,k,j1,k1

(z�
j z̄ (j,k)z

�
k z̄ (j,k))

(z�
j1 z̄ (j1,k1)z

�
k1
z̄ (j1,k1))

=P−2
n,2(n− 2)−4 E

∗∑
j,k,j1,k1

[
z�
j {(n− 4)z̄ (j,k,j1,k1)

+z j1 + z k1}z�
k {(n− 4)z̄ (j,k,j1,k1) + z j1 + z k1}

]
[
z�
j1{(n− 4)z̄ (j,k,j1,k1) + z j + z k}

z�
k1
{(n− 4)z̄ (j,k,j1,k1) + z j + z k}

]
=2P−2

n,2(n− 2)−4 E

∗∑
j,k,j1,k1

(z�
j z j1z

�
k z k1z

�
j1z jz

�
k1
z k)

+ 2P−2
n,2(n− 2)−4

E

∗∑
j,k,j1,k1

(z�
j z k1z

�
k z j1z

�
j1z jz

�
k1
z k)

:=2B311 + 2B312,

with

B311 =P−2
n,2(n− 2)−4 E

∗∑
j,k,j1,k1

(z�
j z j1z

�
j1z jz

�
k1
z kz

�
k z k1)

=P−2
n,2(n− 2)−4Pn,4 tr

2(V 2
p) = o

{
tr2(V 2

p)
}
,

B312 =P−2
n,2(n− 2)−4 E

∗∑
j,k,j1,k1

(z�
j z k1z

�
k z j1z

�
j1z jz

�
k1
z k)

=P−1
n,2(n− 2)−3(n− 3) tr(V 4

p) = o
{
tr2(V 2

p)
}
.

Note that z̄ (j,k) = {(n − 3)z̄ (j,k,k1) + z k1}/(n − 2) and
z̄ (j,k1) = {(n− 3)z̄ (j,k,k1) + z k}/(n− 2), we have

B32 =P−2
n,2 E

∗∑
j,k,k1

(z�
k z̄ (j,k)z̄

�
(j,k)V pz̄ (j,k1)z̄

�
(j,k1)

z k1)

=P−2
n,2(n− 2)−4 E

∗∑
j,k,k1

[
z�
k {(n− 3)z̄ (j,k,k1) + z k1}

{(n− 3)z̄ (j,k,k1) + z k1}�
][
V p{(n− 3)z̄ (j,k,k1) + z k}

{(n− 3)z̄ (j,k,k1) + z k}�z k1

]
=P−2

n,2(n− 2)−4 E

∗∑
j,k,k1

[
z�
k {(n− 3)z k1 z̄

�
(j,k,k1)

+2(n− 3)z̄ (j,k,k1)z
�
k1

+ z k1z
�
k1
}
]

×
[
V p{(n− 3)z̄ (j,k,k1)z

�
k

+2(n− 3)z kz̄
�
(j,k,k1)

+ z kz
�
k }z k1

]
:=B321 + 2B322 +B323 + 2B324 + 4B325 + 2B326

+B327 + 2B328 +B329,

with

B321 =P−2
n,2(n− 2)−4(n− 3)2

E

∗∑
j,k,k1

(
z�
k z k1 z̄

�
(j,k,k1)

V pz̄ (j,k,k1)z
�
k z k1

)

=P−2
n,2(n− 2)−4Pn,4 tr

2(V 2
p) = o

{
tr2(V 2

p)
}
,

B322 =P−2
n,2(n− 2)−4(n− 3)2

E

∗∑
j,k,k1

(
z�
k z k1 z̄

�
(j,k,k1)

V pz kz̄
�
(j,k,k1)

z k1

)

=P−2
n,2(n− 2)−4Pn,4 tr(V

4
p) = o

{
tr2(V 2

p)
}
,

B323 =P−2
n,2(n− 2)−4

E

∗∑
j,k,k1

[
z�
k {(n− 3)z k1 z̄

�
(j,k,k1)

}(V pz kz
�
k z k1)

]
= 0,
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B324 =P−2
n,2(n− 2)−4 E

∗∑
j,k,k1

([
z�
k {(n− 3)z̄ (j,k,k1)z

�
k1
}
]

[
V p{(n− 3)z̄ (j,k,k1)z

�
k }z k1

])
=P−2

n,2(n− 2)−4Pn,4 tr(V
4
p) = o

{
tr2(V 2

p)
}
,

B325 =P−2
n,2(n− 2)−4(n− 3)2

E

∗∑
j,k,k1

(
z�
k z̄ (j,k,k1)z

�
k1
V pz kz̄

�
(j,k,k1)

z k1

)

=P−2
n,2(n− 2)−4Pn,4 tr(V

4
p) = o

{
tr2(V 2

p)
}
,

and

B326 =P−2
n,2(n− 2)−4 E

∗∑
j,k,k1

([
z�
k {(n− 3)z̄ (j,k,k1)z

�
k1
}
]

{
V p(z kz

�
k )z k1

})
= 0,

B327 =P−2
n,2(n− 2)−4 E

∗∑
j,k,k1

(
(z�

k z k1z
�
k1
)

[
V p{(n− 3)z̄ (j,k,k1)z

�
k }z k1

])
= 0,

B328 =P−2
n,2(n− 2)−4 E

∗∑
j,k,k1

(
(z�

k z k1z
�
k1
)

[
V p{(n− 3)z kz̄

�
(j,k,k1)

}z k1

])
= 0,

B329 =P−2
n,2(n− 2)−4 E

∗∑
j,k,k1

(
z�
k z k1z

�
k1
V pz kz

�
k z k1

)
=P−2

n,2(n− 2)−4Pn,3 E
{
(z�

1 z 2)
2
(
z�
1 V pz 2

)}
=o

{
tr2(V 2

p)
}
.

Finally,

B33 =P−2
n,2 E

∗∑
j,k

(
z�
k z̄ (j,k)z̄

�
(j,k)z jz

�
j z̄ (j,k)z̄

�
(j,k)z k

)

=P−2
n,2

∗∑
j,k

E
(
z̄�
(j,k)V pz̄ (j,k)z̄

�
(j,k)V pz̄ (j,k)

)

=P−2
n,2(n− 2)−4

∗∑
j,k

∑
�1,�2,�3,�4 �=j,k

E
(
z�
�1V pz �2z

�
�3V pz �4

)
,

where ∑
�1,�2,�3,�4 �=j,k

E
(
z�
�1V pz �2z

�
�3V pz �4

)
=

∑
��=j,k

E
(
z�
� V pz �z

�
� V pz �

)

+

∗∑
�1,�2 �=j,k

E
(
z�
�1V pz �1z

�
�2V pz �2

)

+ 2

∗∑
�1,�2 �=j,k

E
(
z�
�1V pz �2z

�
�1V pz �2

)
=(n− 2)E(z�

1 V pz 1)
2 + (n− 2)(n− 3) tr2(V 2

p)

+ 2(n− 2)(n− 3) tr(V 4
p).

Thus, B33 = o
{
tr2(V 2

p)
}
. The proof is then completed.
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