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A semiparametric linear transformation model for
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The semiparametric linear transformation (SLT) model
is a useful alternative to the proportional hazards ([9]) and
proportional odds ([4]) models for studying the dependency
of survival time on covariates. In this paper, we consider
the SLT model for biased-sampling and right-censored data,
a feature commonly encountered in clinical trials. Specifi-
cally, we develop an unbiased estimating equations approach
based on counting process for the simultaneous estimation of
unknown coefficients and handling of sampling bias. We es-
tablish the consistency and the asymptotic normality of the
proposed estimator, and provide a closed form expression for
the estimator’s covariance matrix that can be consistently
estimated by a plug-in method. In a simulation study, we
compare the finite sample properties of the proposed esti-
mator with those of existing methods that either assumes
that the sampling bias is of the length-bias type, or ignores
the sampling bias altogether. The proposed method is fur-
ther illustrated by two real clinical datasets.
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1. INTRODUCTION

Biased-sampling arises when there is a preferential selec-
tion of observations from the population. Ignoring the sam-
pling bias will lead to biased estimators of the parameters
because the sample is no longer a faithful representation of
the target population. Left truncation, which often occurs in
survival studies, is well-known to produce biased samples.
There is an extensive literature on methods for handling
left-truncated data. See, for example, [20, 21, 40, 42], among
others. In particular, when the left-truncated variable is uni-
formly distributed, the variable is said to be length-biased.
Studies focusing on inference under length-biased sampling
include [2, 3, 14, 15, 16, 27, 30, 31, 32, 34, 35, 39, 43], among
others.
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Suppose that T is the observed failure time in a sur-
vival study. Under length-biased sampling ([15, 23, 38]),
T = A + V , where A is the left truncation or backward
recurrence time, measured from the onset of event (e.g., the
beginning of disease) to the time of examination, and V is
the residual survival or forward recurrence time, measured
from the time of examination to the event of interest (e.g.,
death). Typically, V is also right-censored by some censor-
ing time C. The total censoring time is thus A + C, and
censoring is informative because the failure and censoring
times share the common backward recurrence time A. While
length-biased sampling has been extensively studied, it is
just one type of biased-sampling encountered in practice.
[22] gave an example of biased-sampling that does not fall
within the category of length-biased sampling. They con-
sidered the situation where individuals are randomly asked
to provide data on a variable X with density f(x). These
individuals may or may not respond, and let w(x) be the
probability that an individual responds with w(·) being a
known function. Hence X has a conditional density that
is proportional to w(x)f(x). The observations of X thus
constitute a biased sample, but they are not length-biased
because there is no observable backward recurrence time
A. For estimation under general biased-sampling, [41] con-
sidered a proportional hazards (PH) model and proposed
a pseudo-partial likelihood approach. [41] assumed that the
the density function g(t|Z,R(t)) of the observed biased data
is

(1) g(t|Z,R) = W (t, Z)f(t|R(·))/α(Z,R),

where W (t, Z) is a known nonnegative weight function,
R(t) is a time-dependent covariate, Z is a time-independent
covariate, f(t|R(·)) denotes a conditional density function
given R(s) for s ≤ t and α(Z,R) is a normalising con-
stant making g(t|Z,R) a genuine density function. The den-
sity function in (1) includes those under left-truncated and
length-biased sampling as special cases with W (t, Z) =
I(t ≥ Z) and W (t, Z) = t, respectively. For these latter two
cases, W (t, Z) in the density function is completely deter-
mined by the distribution of the truncated variable; as well,
the truncated and biased variables are both observed. On
the other hand, under general biased-sampling (1), only the
biased variable is observed but the truncated variable is la-
tent or missing. This is the major difference between (1) and
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left-truncated or length-biased sampling. In other words, the
left-truncated and length-biased data can be treated as com-
plete data, whereas the general biased-sampling data are
incomplete data with missing truncated variable. Thus, un-
der general biased-sampling, the data are less informative
([41]), and consequently, existing approaches for analysing
left-truncated and length-biased data are inapplicable and
new methods are needed.

The purpose of this paper is to examine the covariate
effects on a simplified version of the general biased-sampling
setup of (1), given by

(2) gT (t|Z) = W (t, Z)fT∗(t|Z)/u(Z),

where gT (t|Z) is the conditional density function of T , an
observed nonnegative random variable conditional on Z, the
time-independent covariate, W (t, Z) is a known nonneg-
ative weight function, fT∗(t|Z) is the conditional density
function of the unbiased sample T ∗ given Z, and u(Z) =∫∞
0

W (t, Z)fT∗(t|Z)dt < ∞ is a normalising constant. We
assume that the data are subject to both biased-sampling
and right-censoring.

For the analysis of covariate effects on survival time, the
PH and proportional odds (PO) models are by far the most
popular methods. Although these models make no paramet-
ric assumptions about the baseline hazards, they assume
multiplicative covariate effects on either the hazard function
or the odds of survival beyond t, which may be difficult to
justify in some situations. An alternative modelling frame-
work that has gained popularity in recent years is the semi-
parametric linear transformation (SLT) model, which relates
an unknown transformation of the survival time linearly to
the covariates, and includes the PH and PO models as spe-
cial cases ([7]). The SLT model has been extensively studied
for the case of right-censored data. In particular, [7] pro-
posed an inverse probability weighting approach to estimate
the coefficients. Although their procedure avoids the estima-
tion of the infinite dimensional transformation function, it
assumes independence between the censoring variable and
the covariates. [5] relaxed this covariate-independent cen-
soring assumption and suggested a martingale-based ap-
proach for the simultaneous estimation of finite and infi-
nite dimensional parameters. There have been various refine-
ments and modifications of approaches in [5] and [7] to other
data types, including the work of [8, 12, 18, 19, 24, 25, 44],
among others. [45] considered a broader class of transforma-
tion models that can accommodate time-varying covariates
and recurrent events. In addition, [6] and [26] studied the
varying-coefficient and partially linear transformation mod-
els respectively, both being extensions of the SLT model.

As mentioned above, [41] considered the data assump-
tion (1) in conjunction with the PH model. In addition,
[28] considered the biased-sampling scheme in (2) but as-
sumed the data were uncensored, and used the accelerated
failure time (AFT) model as their basis of analysis. [18] stud-
ied the SLT model for general biased-sampling data for the

case where the data are sampled with bias after having been
subject to right-censoring. Furthermore, [8, 23, 44] consid-
ered the SLT model under the length-biased data. To the
best of our knowledge, the biased-sampling scheme (2) cou-
pled with right-censored data under the SLT model is un-
explored, and in this paper we take steps in this direction.
The major difference between our and [18] work is that we
consider data that are subject to right-censoring after they
have been sampled with bias, whereas [18] considered the
opposite. As noted by [41], the case we consider is more
complex and difficult to handle. It is also more commonly
encountered than the case considered by [18] - in clinical
trials, usually the biased sample data due to preferential se-
lection first arises and then the sample data are subject to
right-censoring due to loss of follow-up, and not the other
way round.

The remainder of this paper is organised as follows. Sec-
tion 2 begins with a presentation of the model and notations.
The same section also contains a derivation of the proposed
estimation method and the description of an iterative algo-
rithm for computing the estimator. Section 3 develops an
asymptotic theory of the proposed method. Simulation re-
sults on the finite sample properties of the method are re-
ported in Section 4. Section 5 contains applications of the
method to two data sets on heart transplant and dementia.
Section 6 contains some concluding remarks. The proof of
our main theorem is given in the Appendix.

2. MODEL, NOTATIONS, ESTIMATION
METHODOLOGY AND

COMPUTATIONAL ALGORITHM

2.1 Model and notations

Let T ∗ be the unbiased failure time variable of interest,
and Z be a p × 1 dimensional time-independent covariate.
Denote the conditional density function and survival func-
tion of T ∗ given Z as fT∗(t|Z) and ST∗(t|Z) respectively.
We assume the following SLT model for T ∗:

(3) H(T ∗) = −ZTβ + ε,

where H(·) is an unknown monotonic increasing transfor-
mation function, β is an unknown p× 1 vector of regression
coefficients, and ε is an error term with a known distribution
and independent of Z. We use λε(t) and Λε(t) to denote the
hazard and cumulative hazard functions of ε, respectively.
The special cases of the PH and PO models result when
ε follows the extreme value and standard logistic distribu-
tions ([7]), respectively. Moreover, model (3) generalizes the
Box-Cox transformation models when ε follows the standard
normal distribution in the absence of right-censoring ([26]).

We assume that T ∗ is subject to both the biased-sampling
scheme (2) and right-censoring. Let (2) be the density func-
tion of T , the biased-sampling variable, and C be the right-
censored variable with survival function SC(·). The observed
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data set {(Xi, δi, Zi), i = 1, . . . , n} is a sample of n indepen-
dently and identically distributed (i.i.d.) realizations from
the population (X, δ, Z), where X = min(T,C), δ = I(T ≤
C), and I(·) is an indicator function. We assume through-
out our analysis that C and Z are independent, and for
any given Z, T and C are mutually independent. Hence the
likelihood function of the observed data set is proportional
to

n∏
i=1

gT (Xi|Zi)
δi{1−GT (Xi|Zi)}1−δi ,

with GT (t|Z) being the corresponding cumulative distribu-
tion function of gT (t|Z). Next, we consider an unbiased es-
timating equations approach for estimating β and H(·) in
model (3) based on the observed data set.

2.2 Estimating methodology

Our approach of estimation is in the spirits of [5] and
[41]. We first discuss the uncensored case to facilitate un-
derstanding. Define N∗(t) = I(T ≤ t) and Y ∗(t) =
I(T ≥ t). Motivated by [41], a mean zero process for
the uncensored biased-sampling data is M∗(t) = N∗(t) −∫ t

0
Y ∗(s)W (s,Z)

W (T,Z)dΛε(H(s) + ZTβ), obtained by taking ex-

pectation of the mean zero process for left-truncated data
([37]) conditional on the observations. For any nonnegative
W (t, Z) that satisfies u(Z) =

∫∞
0

W (t, Z)fT∗(t|Z)dt < ∞,
it can be easily verified that

E{M∗(t)}

= E
{
N∗(t)−

∫ t

0

Y ∗(s)
W (s, Z)

W (T, Z)
dΛε(H(s) + ZTβ)

}

= EZ

{
E
[
N∗(t)−

∫ t

0

Y ∗(s)
W (s, Z)

W (T, Z)

×dΛε(H(s) + ZTβ)
∣∣∣Z

]}

= EZ

{
E[I(T ≤ t)|Z]−

∫ t

0

E
[ Y ∗(s)

W (T, Z)

∣∣∣Z
]

×W (s, Z)dΛε(H(s) + ZTβ)
}

= EZ

{∫ t

0

W (s, Z)fT∗(s|Z)

u(Z)
ds−

∫ t

0

∫ ∞

s

W (u, Z)

W (u, Z)

×fT∗(u|Z)

u(Z)
duW (s, Z)dΛε(H(s) + ZTβ)

}

= EZ

{∫ t

0

W (s, Z)fT∗(s|Z)dt

u(Z)
−
∫ t

0

W (s, Z)ST∗(s|Z)

u(Z)

×dΛε(H(s) + ZTβ)
}
= 0,

where the notation EZ(·) means that the expectation is
taken with respect to Z. Similar to [5], the estimating equa-
tions for the uncensored biased-sampling data {(Ti, Zi), i =

1, . . . , n} are:

(4)

n∑
i=1

{
dN∗

i (t)− Y ∗
i (t)

W (t, Zi)

W (Ti, Zi)
dΛε(H(t) +ZT

i β)
}
= 0

and
(5)
n∑

i=1

∫ ∞

0

Zi

{
dN∗

i (t)−Y ∗
i (t)

W (t, Zi)

W (Ti, Zi)
dΛε(H(t)+ZT

i β)
}
= 0,

where H(·) is a nondecreasing function satisfying H(0) =
−∞, and N∗

i (t) and Y ∗
i (t), i = 1, . . . , n, are the correspond-

ing sample analogues of N∗(t) and Y ∗(t), respectively. Note
that equation (4) is a difference equation for identifying of
the transformation function H(·) when β is fixed, whereas
equation (5) is for the purpose of identifying β.

In the presence of right-censoring, let N(t) = I(X ≤
t, δ = 1) be the counting process for the failure, and
Y (t) = I(X ≥ t) be the at-risk indicator. Under the con-
ditional independent censoring assumption, i.e., T and C
are independent given the covariate Z, the conditional joint
probability of observing a failure at time t is

P (X ∈ (t, t+ dt), δ = 1|Z) = P (T ∈ (t, t+ dt), T ≤ C|Z)

= gT (t|Z)SC(t)dt.

By the mean zero property of M∗(t), it makes
strong sense to consider the process M(t) = N(t) −∫ t

0
δY (s) W (s,Z)

W (X,Z)
SC(s)
SC(X)dΛε(H(s) + ZTβ) for the right-

censored case. Straightforward calculations yield

E[M(t)|Z]

= E[N(t)|Z]− E
[ ∫ t

0

δY (s)
W (s, Z)

W (X,Z)

SC(s)

SC(X)

×dΛε(H(s) + ZTβ)
∣∣∣Z

]

=

∫ t

0

gT (s|Z)SC(s)ds−
∫ t

0

W (s, Z)SC(s)

×E
[ δY (s)

W (X,Z)SC(X)

∣∣∣Z
]
dΛε(H(s) + ZTβ)

=

∫ t

0

gT (s|Z)SC(s)ds−
∫ t

0

W (s, Z)SC(s)

×
∫ ∞

s

gT (v|Z)SC(v)

W (v, Z)SC(v)
dvdΛε(H(s) + ZTβ)

=

∫ t

0

W (s, Z)fT∗(s|Z)

u(Z)
SC(s)ds

−
∫ t

0

W (s, Z)SC(s)ST∗(s|Z)

u(Z)
dΛε(H(s) + ZTβ) = 0.

Thus, we have E[M(t)] = EZ{E[M(t)|Z]} = 0.
When the survival function SC(·) is known, the unbiased

estimating equations for H(·) and β can be constructed sim-
ilar to (4) and (5). In practice, however, SC(·) is always un-
known and a consistent estimator is needed to substitute for
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SC(·). Under the covariate-independent censoring assump-
tion, a natural consistent estimator of SC(·) is the following
Kaplan-Meier estimator ([17]):

ŜC(t) =
∏
s≤t

{
1− ΔNC(s)

Y (s)

}
,

where ΔNC(t) = NC(t) − NC(t−), NC(t) =
∑n

i=1 N
C
i (t),

NC
i (t) = I(Xi ≤ t, δi = 0), Y (t) =

∑n
i=1 Yi(t), and Yi(t) =

I(Xi ≥ t). Replacing SC(·) by ŜC(·) in M(t) results in the
following asymptotically unbiased estimating equations for
H(·) and β:

n∑
i=1

{
dNi(t)− δiYi(t)

W (t, Zi)

W (Xi, Zi)

ŜC(t)

ŜC(Xi)
(6)

×dΛε(H(t) + ZT
i β)

}
= 0

and

U(β,H) =

n∑
i=1

∫ τ

0

Zi

{
dNi(t)− δiYi(t)

W (t, Zi)

W (Xi, Zi)
(7)

× ŜC(t)

ŜC(Xi)
dΛε(H(t) + ZT

i β)
}
= 0,

where Ni(t) = I(Xi ≤ t, δi = 1), Yi(t) = I(Xi ≥ t) for
i = 1, . . . , n, and H(·) is also a nondecreasing function that
satisfies H(0) = −∞ and τ = inf{t : Pr(X > t) = 0}.

The assumption of covariate-independent censoring may
be too rigid in practice and this constitutes the main dis-
advantage of our method. When this assumption does not
hold, estimating equations similar to (6) and (7) may be con-
structed in the same manner but with SC(t) replaced by a
consistent estimator under that corresponding case. Specif-
ically, when Z is discrete and takes on only finite values,
for any fixed value Z = z, we can estimate SC(·|z) by the
Kaplan-Meier estimator ŜC(·|z) based on the observations
for which Z = z in {(Xi, δi, Zi), i = 1, . . . , n} ([7]). On the
other hand, if Z is continuous, we can relate C to Z by an
auxiliary model, such as the PH, AFT or additive hazards
models, and then obtain a consistent estimator of SC(·|Z).
The simulation results reported in Section 4 indicate that
the performance of the proposed estimator constructed un-
der the covariate-independent censoring assumption is quite
robust when the dependence exists between C and Z. This
indicates that our method can be applied to a wide range of
real data.

2.3 Computational algorithm

Since the estimating equations under the uncensored and
right-censored cases share a very similar structure and both
can be solved by the same algorithm, we only provide the
iterative steps for the right-censored case here.

Let 0 < t1 < · · · < tK < ∞ denote the observed K
uncensored failure times within the data set {(Xi, δi, Zi), i =

1, . . . , n}. For any fixed β, H(·) is uniquely determined by
the estimating equation (6) as a nondecreasing step function
with jumps occurring only at the uncensored failure times
tj , j = 1, . . . ,K. Thus, for all t < t1, H(t) ≡ −∞, and the
estimation of H(·) is only required at the points t1, . . . , tK .

Note that the estimating equation (6) can be equivalently
expressed by the following K equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
i=1 δiYi(t1)

W (t1,Zi)
W (Xi,Zi)

ŜC(t1)

ŜC(Xi)
Λε(H(t1)

+ZT
i β) =

∑n
i=1 dNi(t1),∑n

i=1 δiYi(t2)
W (t2,Zi)
W (Xi,Zi)

ŜC(t2)

ŜC(Xi)
λε(H(t2−)

+ZT
i β)ΔH(t2) =

∑n
i=1 dNi(t2),

...∑n
i=1 δiYi(tK)W (tK ,Zi)

W (Xi,Zi)
ŜC(tK)

ŜC(Xi)
λε(H(tK−)

+ZT
i β)ΔH(tK) =

∑n
i=1 dNi(tK),

(8)

where ΔH(t) = H(t) − H(t−). Thus, we can compute the
estimators of (β,H(·)) via the following iterative steps:

Step 0: Choose an initial value for β and denote it as

β(0), where β(0) = (β
(0)
1 , . . . , β

(0)
p ).

For the m-th iteration, the estimators are updated based
on (β(m−1), H(m−1)(·)) as follows.

Step 1: The estimators of H(m)(tj) j = 1, . . . ,K are ob-
tained by solving the equations in (8). Specifically, H(m)(t1)
is obtained by solving

n∑
i=1

δiYi(t1)
W (t1, Zi)

W (Xi, Zi)

ŜC(t1)

ŜC(Xi)
Λε(H(t1) + ZT

i β
(m−1))

=

n∑
i=1

dNi(t1).

Similarly, H(m)(tj), j = 2, . . . ,K, are obtained one
by one by solving the remaining K − 1 equations
in (8). Denote the resultant estimators as H(m)(·) =
(H(m)(t1), . . . , H

(m)(tK)).
Step 2: The estimator of β is obtained by solving

n∑
i=1

∫ τ

0

Zi

{
dNi(t)− δiYi(t)

W (t, Zi)

W (Xi, Zi)

ŜC(t)

ŜC(Xi)

×dΛε(H
(m)(t) + ZT

i β)
}
= 0.

As H(m)(·) is a step function with K positive jumps, solving
the above equation is equivalent to finding a solution to

n∑
i=1

K∑
j=1

Zi

{
ΔNi(tj)− δiYi(tj)

W (tj , Zi)

W (Xi, Zi)

ŜC(tj)

ŜC(Xi)

×λε(H
(m)(tj−) + ZT

i β)ΔH(m)(tj)
}
= 0,

where ΔNi(tj) = Ni(tj)−Ni(tj−),ΔH(m)(tj) = H(m)(tj)−
H(m)(tj−).
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Repeat Steps 1 and 2 alternately until the estimators con-
verge. Our convergence criterion is based on the following
l2-norm:

Δ(m) =
{ p∑

j=1

(β
(m)
j − β

(m−1)
j )2

+

K∑
j=1

(H(m)(tj)−H(m−1)(tj))
2
} 1

2

.

The algorithm ends when Δ(m) is less than a prescribed
threshold value, say, 10−3. Denote the final estimators as
(β̂, Ĥ(·, β̂)).

3. ASYMPTOTIC PROPERTIES OF THE
PROPOSED ESTIMATOR

We write the estimators as (β̂n, Ĥn(t, β̂n)) to indicate
their dependence on the sample size n, and denote the true
values of β and H(·) as β0 and H0(·), respectively. For the
purpose of simplifying the analysis, we define the following
quantities for any s and t ∈ (0, τ ]:

B1(t) = E
{
δY (t)

W (t, Z)SC(t)

W (X,Z)SC(X)
λ̇ε(H0(t) + ZTβ0)

}
,

B2(t) = E
{
δY (t)

W (t, Z)SC(t)

W (X,Z)SC(X)
λε(H0(t) + ZTβ0)

}
,

B(t, s) = exp
{∫ t

s

B1(u)

B2(u)
dH0(u)

}
,

BZ
1 (t) = E

{
ZδY (t)

W (t, Z)SC(t)

W (X,Z)SC(X)
λ̇ε(H0(t) + ZTβ0)

}
,

BZ
2 (t) = E

{
ZδY (t)

W (t, Z)SC(t)

W (X,Z)SC(X)
λε(H0(t) + ZTβ0)

}
,

z(t) =
1

B2(t)

{
BZ

2 (t) +

∫ τ

t

[
BZ

1 (s)−
BZ

2 (s)B1(s)

B2(s)

]

×B(t, s)dH0(s)
}
,

D(t) = E
{∫ τ

0

[Z − z(s)]δY (s)
W (s, Z)SC(s)

W (X,Z)SC(X)
{I(s ≥ t)

−I(X ≥ t)}dΛε(H0(s) + ZTβ0)
}
/π(t),

Σ∗ = E
{∫ τ

0

{Z − z(t)}ZT δY (t)
W (t, Z)SC(t)

W (X,Z)SC(X)

×λ̇ε(H0(t) + ZTβ0)dH0(t)
}
,

Σ∗ = E
{∫ τ

0

{Z − z(t)}dM(t) +

∫ τ

0

D(t)dMC(t)
}⊗2

,

where λ̇ε(t) is the derivative of λε(t) and a⊗2 = aaT

for any vector a, π(t) = P (X ≥ t),MC(t) = NC(t) −∫ t

0
Y (s)dΛC(s), N

C(t) = I(X ≤ t, δ = 0), and ΛC(·) is the
cumulative hazard function of the censoring variable C.

The asymptotic properties of the proposed estimator β̂n,
including its consistency and asymptotic normality, are sum-
marised in the following theorem, the proof of which is given
in the Appendix.

Theorem 3.1. (Asymptotic Properties of β̂n) Assume
that conditions (C1)-(C6) in the Appendix are satisfied, then

there exists a unique β̂n within a neighborhood of β0 for all
large n. That is, as n → ∞, we have

β̂n
P→ β0,

where
P→ denotes convergence in probability. Also, as n →

∞, we have

√
n(β̂n − β0)

D→ N(0,Σ),

where Σ = Σ−1
∗ Σ∗(Σ−1

∗ )T , and
D→ denotes convergence in

distribution. In other words, β̂n has an asymptotic normal
distribution. In addition, Σ can be consistently estimated by
a plug-in estimator Σ̂ = Σ̂−1

∗ Σ̂∗(Σ̂−1
∗ )T , where

Σ̂∗ =
1

n

n∑
i=1

{∫ τ

0

{Zi − ẑ(t)}ZT
i δiYi(t)

W (t, Zi)

W (Xi, Zi)

× ŜC(t)

ŜC(Xi)
λ̇ε(Ĥn(t, β̂n) + ZT

i β̂n)dĤn(t, β̂n)
}
,

Σ̂∗ =
1

n

n∑
i=1

{∫ τ

0

{Zi − ẑ(t)}dM̂i(t)

+

∫ τ

0

D̂(t)dM̂C
i (t)

}⊗2

,

ẑ(t) =
1

B̂2(t)

{
B̂Z

2 (t) +

∫ τ

t

[
B̂Z

1 (s)−
B̂Z

2 (s)B̂1(s)

B̂2(s)

]

×B̂(t, s)dĤn(s, β̂n)
}
,

D̂(t) =
1

n

n∑
i=1

∫ τ

0

[Zi − ẑ(s)]δiYi(s)
W (s, Zi)ŜC(s)

W (Xi, Zi)ŜC(Xi)

×{I(s ≥ t)− I(Xi ≥ t)}
×dΛε(Ĥn(s, β̂n) + ZT

i β̂n)/π̂(t),

M̂i(t) = Ni(t)−
∫ t

0

δiYi(s)
W (s, Zi)

W (Xi, Zi)

ŜC(s)

ŜC(Xi)

×dΛε(Ĥn(s, β̂n) + ZT
i β̂n),

M̂C
i (t) = NC

i (t)−
∫ t

0

Yi(s)dΛ̂C(s),

π̂(t) =
1

n
Y (t), Λ̂C(t) =

∫ t

0

dNC(s)

Y (s)
,

B̂1(t) =
1

n

n∑
i=1

{
δiYi(t)

W (t, Zi)ŜC(t)

W (Xi, Zi)ŜC(Xi)

×λ̇ε(Ĥn(t, β̂n) + ZT
i β̂n)

}
,

Transformation model for general biased data 81



B̂2(t) =
1

n

n∑
i=1

{
δiYi(t)

W (t, Zi)ŜC(t)

W (Xi, Zi)ŜC(Xi)

×λε(Ĥn(t, β̂n) + ZT
i β̂n)

}
,

B̂(t, s) = exp
{∫ t

s

B̂1(u)

B̂2(u)
dĤn(u, β̂n)

}
,

B̂Z
1 (t) =

1

n

n∑
i=1

{
ZiδiYi(t)

W (t, Zi)ŜC(t)

W (Xi, Zi)ŜC(Xi)

×λ̇ε(Ĥn(t, β̂n) + ZT
i β̂n)

}
,

B̂Z
2 (t) =

1

n

n∑
i=1

{
ZiδiYi(t)

W (t, Zi)ŜC(t)

W (Xi, Zi)ŜC(Xi)

×λε(Ĥn(t, β̂n) + ZT
i β̂n)

}

for any s, t ∈ [0, τ ].

In the Appendix, we also show the consistency of
Ĥn(·, β̂n) and the asymptotic normality of

√
n{Ĥn(·, β̂n) −

H0(·)}. We do not state these results here as main theorems
as we are primarily interested in the estimation of β and
hence consider H(·) as a nuisance parameter only.

4. SIMULATION RESULTS

In this section, we conduct simulations to evaluate the
performance of the proposed estimator in small sample, and
draw comparisons with two other estimators, the estimator
of [5] which accounts for right-censoring but ignores biased-
sampling, and the combined estimating equation (CEE) es-
timator of [8] which assumes that the data are length-biased
and right-censored. For the implementation of the iterative
algorithm, we set the threshold value for convergence to
10−3. It is found that our algorithm always converges with
this threshold.

The unbiased data T ∗ are generated from the transfor-
mation model (3) with two independent covariates Z1 and
Z2, generated from the U(0, 1) and Bernoulli(0.5) distri-
butions, respectively. We let the hazard function of ε be

λε(t) =
exp(t)

1+r∗exp(t) with r = 0, 1, 2 ([11]). This hazard func-

tion leads to the PH and PO models when r = 0 and
r = 1, respectively. We set the transformation function
to H(t) = log(t) when r = 0, and H(t) = 2r log(t) when
r = 1, 2. The true values β0 are set to (1,−1)T or (−1, 1)T .
For purposes of simplicity and to facilitate comparisons with
the CEE estimator in [8], we set the biased weight function
to W (t, Z) ≡ t. With this weight function, T , the biased
data, can be generated by a similar procedure to that for
generating length-biased data described in [38]. The only
difference is that A, the backward recurrence time, is avail-
able for computing the CEE estimator in [8], but it is un-
available for the computation of the estimators in this pa-
per and in [5]. In other words, the CEE estimator is able

to utilise more information. We consider both the uncen-
sored and right-censored cases. For the latter, we generate
the censoring variable from the EXP (c) distribution, where
c is chosen in order for the censoring percentages (CR) to
be 20% or 40%. We set the sample size n to 100 or 200, and
the number of replications to 500.

The simulation results are reported in Tables 1-4 on pages
83-84. In the tables, our proposed estimator, and the esti-
mators in [5] and [8] are labelled as “Proposed”, “Chen”
and “CEE” respectively. We evaluate the estimators’ per-
formance in terms of bias magnitude (BIAS), standard er-
ror (SE), estimated standard deviation (SD) and the cov-
erage probability (CP) of the corresponding nominal 95%
level confidence interval. The SDs of all three estimators
are calculated via their corresponding plug-in estimators of
the variances. In all cases, our proposed estimator results in
biases of negligible magnitude, and are comparable to the
biases of the CEE estimator, whereas the biases of Chen’s
estimator are relatively large. This result comes as no sur-
prise since Chen’s method does not take the biased-sampling
aspect of the data into account. The SDs and SEs associ-
ated with our proposed estimator are very generally close,
indicating that the plug-in estimator of the variance is con-
sistent. Although in most cases, the SDs and SEs of the
proposed estimator are larger than their CEE-based coun-
terparts, this should not count against our method because
the CEE estimator uses information from the backward re-
currence time A, while our method does not utilise this in-
formation. Moreover, in many cases, the CEE-based SDs
and SEs have a large discrepancy, indicating the likelihood
of inconsistency of the plug-in estimator of the variance of
the CEE estimator. This discrepancy between the SDs and
SEs can sometimes result in a relatively large deviation in
the CPs obtained by the CEE method from the nominal
0.95 level, whereas our estimator generally yields CPs that
are very close to 0.95. In a large number of cases, Chen’s
method results in CPs that differ very considerably from
0.95. Finally, an increase in CR generally has the effect of
worsening all estimators’ performance, and an increase in
sample size generally improves all estimators’ performance,
ceteris paribus.

As stated in Section 2.2, the proposed estimator is de-
veloped under the covariate-independent censoring assump-
tion. This independence assumption may be a major draw-
back of our method. Here, we also examine the covariate-
dependent censoring case to gain some insights of the ex-
tent to which the independence assumption impacts the re-
sults when this assumption does not hold. For this purpose,
we generate the censoring variable based on −Z1 − Z2 +
EXP (c), and let all other parameters be the same as be-
fore. Table 5 on page 85 and Table 6 on page 85 report the
results for the case of β0 = (1,−1)T . The results are very
comparable to those reported in Table 1 on page 83 and
Table 2 on page 83, where covariate-independent censoring
is assumed. In addition, we find that the simulation results
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Table 1. Simulation results for β0 = (1,−1)T with n = 100

r = 0 r = 1 r = 2
CR(%) Proposed Chen CEE Proposed Chen CEE Proposed Chen CEE

0% 0.0260 0.4918 0.0254 -0.0143 -0.2799 -0.0817 0.0111 -0.3506 -0.0594
Bias 20% 0.0165 0.5095 -0.0290 0.0035 -0.2322 -0.0660 0.0693 -0.3088 -0.0305

40% 0.0064 0.5466 -0.0631 -0.0014 -0.1773 -0.0212 0.0534 -0.3369 -0.0850
0% 0.2995 0.4222 0.3030 0.7453 0.7314 0.7726 1.2343 1.0628 1.2111

SE 20% 0.3631 0.4600 0.3284 0.9821 0.7642 0.8886 1.5218 1.0481 1.3463
β01 = 1 40% 0.4545 0.4940 0.3765 1.1729 0.7539 0.8748 1.6919 1.0246 1.3194

0% 0.2748 0.3831 0.2862 0.8827 0.7156 1.0154 1.4296 1.0746 2.0848
SD 20% 0.3201 0.4230 0.3167 0.9896 0.7169 1.1074 1.5817 1.0525 2.1661

40% 0.3864 0.4760 0.3654 1.1188 0.7430 1.1878 1.7875 1.0709 2.1182
0% 94.0 73.4 94.0 98.0 91.8 96.6 97.4 92.6 93.4

CP(95%) 20% 92.4 77.4 94.6 94.4 92.4 96.0 95.4 92.8 95.2
40% 91.6 79.6 93.0 92.2 93.2 96.8 95.2 94.4 94.2

0% -0.0215 -0.5125 -0.0223 -0.0217 0.2474 0.0183 0.0245 0.3960 0.0985
Bias 20% -0.0446 -0.5483 -0.0022 0.0052 0.2239 0.0600 0.0125 0.3910 0.0923

40% -0.0390 -0.5608 0.0401 0.0035 0.2147 0.0507 -0.0438 0.3373 0.0407
0% 0.2089 0.2928 0.2128 0.4741 0.4422 0.5018 0.7024 0.6134 0.6948

SE 20% 0.2330 0.2972 0.2206 0.5635 0.4340 0.4929 0.8173 0.5592 0.7011
β02 = −1 40% 0.2866 0.3364 0.2550 0.6804 0.4526 0.5335 1.0295 0.6559 0.8146

0% 0.1923 0.2620 0.1986 0.4900 0.4276 0.3833 0.7790 0.6285 0.7782
SD 20% 0.2178 0.2798 0.2169 0.5488 0.4234 0.4165 0.8672 0.6144 0.7489

40% 0.2474 0.3060 0.2391 0.6313 0.4384 0.4482 0.9803 0.6238 0.7355
0% 94.6 51.8 93.6 95.8 88.8 87.8 96.6 91.6 93.6

CP(95%) 20% 94.0 50.4 95.0 93.2 90.4 91.2 96.4 92.6 94.4
40% 93.6 55.4 91.6 92.0 92.0 92.2 92.2 92.2 90.6

Table 2. Simulation results for β0 = (1,−1)T with n = 200

r = 0 r = 1 r = 2
CR(%) Proposed Chen CEE Proposed Chen CEE Proposed Chen CEE

0% 0.0100 0.4654 0.0112 -0.0391 -0.2951 -0.0594 0.0071 -0.3807 -0.0597
Bias 20% 0.0007 0.4904 -0.0353 0.0118 -0.2380 0.0052 0.0556 -0.3500 -0.0044

40% -0.0043 0.5172 -0.0803 -0.0506 -0.2337 -0.0726 -0.0950 -0.4230 -0.0948
0% 0.1894 0.2680 0.1929 0.5301 0.4769 0.5540 0.8449 0.7477 0.8483

SE 20% 0.2293 0.2952 0.2171 0.7465 0.5310 0.6360 1.1096 0.7782 0.9629
β01 = 1 40% 0.3131 0.3715 0.2613 0.8519 0.5232 0.6600 1.2983 0.7714 1.0073

0% 0.1944 0.2684 0.1987 0.5937 0.5023 0.7218 0.9544 0.7540 1.1482
SD 20% 0.2278 0.2945 0.2191 0.6946 0.5029 0.7855 1.0993 0.7375 1.2753

40% 0.2805 0.3335 0.2519 0.8159 0.5212 0.8359 1.2590 0.7490 1.4167
0% 94.8 60.0 95.2 96.8 92.0 96.4 98.0 92.4 95.6

CP(95%) 20% 95.0 63.2 94.8 93.0 91.8 96.6 95.2 92.2 95.6
40% 93.0 66.4 91.6 92.2 92.4 96.8 94.4 89.0 93.8

0% -0.0159 -0.4936 -0.0172 -0.0033 0.2717 0.0305 -0.0516 0.3485 -0.0094
Bias 20% -0.0080 -0.5012 0.0273 0.0149 0.2666 0.0490 -0.0451 0.3295 0.0050

40% -0.0232 -0.5241 0.0640 -0.0059 0.2077 0.0187 0.0287 0.3298 -0.0039
0% 0.1385 0.1907 0.1426 0.3264 0.3041 0.3385 0.5120 0.4480 0.5192

SE 20% 0.1597 0.2140 0.1553 0.4142 0.3265 0.3728 0.5958 0.4233 0.5430
β02 = −1 40% 0.1970 0.2334 0.1745 0.4676 0.3221 0.3744 0.7545 0.4354 0.5812

0% 0.1372 0.1824 0.1400 0.3391 0.3012 0.2694 0.5251 0.4402 0.4039
SD 20% 0.1516 0.1944 0.1491 0.3934 0.2990 0.2907 0.6044 0.4297 0.4380

40% 0.1762 0.2131 0.1643 0.4604 0.3089 0.3155 0.7013 0.4360 0.5120
0% 94.8 23.0 95.2 96.8 85.0 88.4 95.4 86.6 88.0

CP(95%) 20% 93.4 28.8 93.8 93.8 82.4 89.8 94.8 88.6 89.2
40% 93.4 32.4 91.0 93.4 88.6 89.6 92.6 88.4 89.0
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Table 3. Simulation results for β0 = (−1, 1)T with n = 100

r = 0 r = 1 r = 2
CR(%) Proposed Chen CEE Proposed Chen CEE Proposed Chen CEE

0% -0.0275 -0.4939 -0.0324 -0.0224 0.2024 0.0194 -0.0419 0.3028 0.0424
Bias 20% -0.0507 -0.5399 -0.0042 -0.0180 0.1951 0.0116 0.0415 0.3598 0.0713

40% 0.0145 -0.4857 0.0932 0.0277 0.2428 0.0854 0.0950 0.3885 0.1030
0% 0.3001 0.4266 0.3049 0.7749 0.7169 0.8206 1.2827 1.1029 1.3048

SE 20% 0.3453 0.4474 0.3219 0.9113 0.7241 0.8197 1.5345 1.0354 1.2966
β01 = −1 40% 0.4444 0.5052 0.3807 1.0970 0.7502 0.9095 1.8106 1.0981 1.4334

0% 0.2751 0.3835 0.2850 0.8239 0.6953 0.7458 1.3289 1.0430 1.9591
SD 20% 0.3227 0.4212 0.3188 0.9266 0.6919 0.8299 1.4860 1.0221 1.7409

40% 0.3838 0.4739 0.3616 1.0411 0.7199 0.8792 1.6547 1.0377 3.2623
0% 92.6 74.6 92.8 95.6 93.8 92.0 95.0 93.2 90.2

CP(95%) 20% 93.2 76.2 94.8 95.2 93.0 93.0 94.0 94.0 88.8
40% 92.4 82.8 93.6 92.4 92.8 93.0 92.2 92.6 91.8

0% 0.0321 0.5225 0.0341 -0.0243 -0.2554 -0.0815 0.0425 -0.3560 -0.0099
Bias 20% 0.0148 0.5273 -0.0231 -0.0221 -0.2399 -0.0793 0.0124 -0.3560 -0.0446

40% 0.0338 0.5665 -0.0501 -0.0306 -0.1813 -0.0688 0.0495 -0.2991 -0.0092
0% 0.2179 0.2996 0.2238 0.4706 0.4469 0.4656 0.7313 0.6248 0.7409

SE 20% 0.2121 0.2831 0.2132 0.6129 0.4349 0.5433 0.8799 0.5959 0.7413
β02 = 1 40% 0.2593 0.3164 0.2356 0.6800 0.4462 0.5194 1.0937 0.6711 0.8688

0% 0.1941 0.2621 0.1996 0.5276 0.4387 0.5812 0.8491 0.6489 1.1799
SD 20% 0.2128 0.2777 0.2122 0.5950 0.4370 0.6345 0.9363 0.6348 1.1019

40% 0.2455 0.3057 0.2366 0.6615 0.4525 0.6641 1.0464 0.6471 1.6717
0% 93.0 50.4 92.8 96.8 89.2 96.6 97.4 91.6 95.6

CP(95%) 20% 95.2 55.2 94.2 93.8 91.8 95.0 93.8 92.8 95.0
40% 93.2 56.4 94.4 94.6 92.4 97.2 92.6 90.6 95.2

Table 4. Simulation results for β0 = (−1, 1)T with n = 200

r = 0 r = 1 r = 2
CR(%) Proposed Chen CEE Proposed Chen CEE Proposed Chen CEE

0% -0.0103 -0.4712 -0.0104 -0.0260 0.2910 0.0143 -0.0352 0.3565 0.0189
Bias 20% -0.0059 -0.4885 0.0383 0.0203 0.2549 0.0315 0.0107 0.3907 0.0743

40% 0.0177 -0.4910 0.1018 0.0089 0.2233 0.0389 0.0057 0.3160 -0.0452
0% 0.1988 0.2831 0.1998 0.5624 0.5003 0.5796 0.8276 0.7153 0.8369

SE 20% 0.2342 0.3022 0.2231 0.6731 0.4898 0.5980 1.0754 0.7207 0.9586
β01 = −1 40% 0.2984 0.3259 0.2382 0.8336 0.5183 0.6563 1.2460 0.7686 0.9733

0% 0.1938 0.2682 0.1981 0.5661 0.4954 0.5047 0.9001 0.7397 0.8071
SD 20% 0.2275 0.2954 0.2195 0.6588 0.4921 0.5395 1.0295 0.7232 0.8969

40% 0.2794 0.3346 0.2504 0.7768 0.5107 0.6010 1.1947 0.7313 0.9636
0% 94.8 59.0 94.2 94.2 91.4 92.6 96.6 92.0 91.8

CP(95%) 20% 94.4 62.4 93.4 94.2 92.4 92.6 93.4 92.0 90.0
40% 92.6 69.4 93.8 92.2 92.6 93.2 93.0 93.2 90.8

0% 0.0096 0.4862 0.0083 -0.0083 -0.2859 -0.0420 0.0159 -0.3735 -0.0340
Bias 20% 0.0149 0.5066 -0.0224 0.0135 -0.2460 -0.0328 0.0343 -0.3552 -0.0104

40% 0.0085 0.5188 -0.0701 -0.0016 -0.2150 -0.0076 -0.0668 -0.3560 -0.0186
0% 0.1420 0.1991 0.1438 0.3284 0.3131 0.3375 0.4854 0.4126 0.4932

SE 20% 0.1664 0.2239 0.1656 0.3992 0.2924 0.3533 0.6130 0.4191 0.5439
β02 = 1 40% 0.1925 0.2347 0.1678 0.4890 0.3259 0.3823 0.7721 0.4416 0.5823

0% 0.1365 0.1818 0.1392 0.3587 0.3053 0.4158 0.5565 0.4473 0.6347
SD 20% 0.1520 0.1941 0.1493 0.4122 0.3040 0.4397 0.6378 0.4382 0.6874

40% 0.1773 0.2129 0.1649 0.4831 0.3140 0.4807 0.7428 0.4441 0.7438
0% 94.8 25.6 95.6 97.0 84.0 97.6 97.2 88.4 97.0

CP(95%) 20% 93.6 28.8 91.8 95.8 87.2 97.4 95.6 86.0 97.8
40% 94.2 31.0 91.6 93.2 89.2 98.4 92.8 86.2 97.4
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Table 5. Simulation results for β0 = (1,−1)T under covariate-dependent censoring with n = 100

r = 0 r = 1 r = 2
CR(%) Proposed Chen CEE Proposed Chen CEE Proposed Chen CEE

Bias 20% 0.0249 0.5017 -0.0135 0.0384 -0.2385 -0.0325 0.0268 -0.3091 -0.0548
40% 0.0229 0.5411 -0.0358 0.0454 -0.1943 -0.0357 -0.0336 -0.3931 -0.0987

SE 20% 0.3480 0.4561 0.3270 0.9405 0.7399 0.9070 1.4915 1.1529 1.3045
β01 = 1 40% 0.4242 0.5170 0.3846 1.1235 0.7775 0.9404 1.7417 1.1668 1.3683

SD 20% 0.3174 0.4245 0.3191 0.9868 0.7287 1.1088 1.6232 1.0837 2.1373
40% 0.3756 0.4877 0.3660 1.1403 0.7807 1.2506 1.8498 1.1476 2.7439

CP(95%) 20% 94.6 76.2 95.2 95.8 94.0 95.6 96.4 91.8 92.4
40% 91.4 79.4 93.4 94.0 94.4 95.4 95.6 93.4 95.4

Bias 20% -0.0212 -0.5150 0.0132 0.0267 0.2433 0.0940 -0.0245 0.3520 0.0584
40% -0.0281 -0.5361 0.0414 0.0308 0.2022 0.0588 0.0210 0.3332 0.0893

SE 20% 0.2311 0.3115 0.2285 0.5812 0.4636 0.5342 0.8652 0.6165 0.7732
β02 = −1 40% 0.2820 0.3514 0.2623 0.6533 0.4639 0.5370 0.9825 0.6519 0.8019

SD 20% 0.2140 0.2807 0.2157 0.5596 0.4312 0.4290 0.8682 0.6302 0.7541
40% 0.2429 0.3075 0.2407 0.6344 0.4541 0.4683 0.9790 0.6595 0.9256

CP(95%) 20% 93.8 56.2 92.0 93.4 89.2 91.0 95.0 92.6 91.4
40% 91.4 62.2 92.2 93.8 90.8 92.2 94.8 91.4 92.2

Table 6. Simulation results for β0 = (1,−1)T under covariate-dependent censoring with n = 200

r = 0 r = 1 r = 2
CR(%) Proposed Chen CEE Proposed Chen CEE Proposed Chen CEE

Bias 20% 0.0207 0.5016 -0.0130 0.0274 -0.2504 0.0017 0.0039 -0.3701 -0.0363
40% -0.0100 0.4992 -0.0669 -0.0757 -0.2499 -0.0752 -0.0031 -0.3124 -0.0040

SE 20% 0.2297 0.3026 0.2205 0.6730 0.5190 0.6056 1.0293 0.7340 0.8981
β01 = 1 40% 0.2942 0.3480 0.2466 0.8573 0.5745 0.7023 1.2795 0.7856 0.9957

SD 20% 0.2251 0.2971 0.2215 0.6943 0.5136 0.7872 1.0925 0.7579 1.2653
40% 0.2711 0.3386 0.2533 0.8273 0.5474 0.8620 1.2755 0.7989 1.4317

CP(95%) 20% 93.6 63.2 94.2 95.0 91.4 97.6 96.0 92.4 96.2
40% 93.2 70.8 94.6 92.4 91.4 95.2 95.0 94.4 96.4

Bias 20% 0.0037 -0.4727 0.0313 -0.0314 0.2482 0.0029 0.0192 0.3819 0.0320
40% -0.0076 -0.5048 0.0515 -0.0235 0.2284 0.0084 0.0075 0.3447 0.0188

SE 20% 0.1502 0.2006 0.1463 0.3941 0.3185 0.3661 0.6344 0.4669 0.5724
β02 = −1 40% 0.1863 0.2346 0.1697 0.4739 0.3303 0.4086 0.7364 0.4836 0.5949

SD 20% 0.1508 0.1941 0.1501 0.3886 0.3035 0.2864 0.6040 0.4405 0.4453
40% 0.1738 0.2149 0.1673 0.4585 0.3191 0.3227 0.6945 0.4598 0.5019

CP(95%) 20% 94.2 33.6 95.2 93.2 85.8 87.4 93.2 85.0 89.2
40% 94.8 37.2 91.6 93.4 90.2 90.6 92.4 87.8 92.2

of the proposed estimator are comparable to those of the
CEE estimator, which requires no assumption of covariate-
independent censoring. These results may be taken as an
indication that our proposed method is robust with respect
to dependence of C on Z. Similar results are observed for
the case of β0 = (−1, 1)T , and they are omitted here to
conserve space.

To sum up, the simulation results demonstrate that the
proposed estimator performs well under general biased-
sampling and right-censored situations, and is robust with
respect to the censoring mechanism. The proposed iterative
algorithm also works effectively.

5. REAL DATA EXAMPLES

5.1 Application to the Stanford heart
transplant data

This real data example uses the Stanford heart trans-
plant data given in [10] and subsequently updated by [29].
The original data set contains information on the ages, pre-
transplant waiting time, censoring indices, transplant sta-
tus, observed survival time, and three mismatch scores of
103 potential heart transplant patients who participated
in the Stanford heart transplant program between October
1967 and April 1974. The updated data set, constructed by
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Table 7. Estimation Results for the Stanford heart transplant data

r=0 r=1 r=2

Est -0.1368 -0.2533 -0.4124
β1 SD 0.0535 0.0839 0.1158

CI(95%) (-0.2417, -0.0319) (-0.4177, -0.0889) (-0.6394, -0.1853)

Est 0.0019 0.0035 0.0057
β2 SD 0.0007 0.0011 0.0018

CI(95%) (0.0005, 0.0033 ) (0.0014, 0.0056) (0.0021, 0.0093)

Note: β1 and β2 are the regression coefficients for “age” and “age2”, respectively.

[29], contains observations up to February 1980 for a total
of 184 patients who have received heart transplants. It pro-
vides information on the survival time, censoring indicators
in February 1980, ages at the first transplant and the T5 mis-
match scores for these patients. However, the pre-transplant
waiting time is unreported in the new data set.

[29] utilized four regression techniques for right-censored
data to analyse their data. As the pre-transplant waiting
time is missing, the updated data can be treated as the
biased-sampling and right-censored data, with the distri-
bution function of the pre-transplant waiting time used as
the weight function ([41]). Based on the original 103 ob-
servations, [41] estimated the weight function as W (t, Z) =
1−exp(−0.027t0.925). We use the same weight function here
and assume that it is known a priori. Following [29, 41], we
remove 27 of the 184 observations for which the T5 mis-
match scores are missing and 5 observations for which the
survival time is less than 10 days from the data set. This
results in a sample of 152 observations with a 36% right-
censoring rate.

Following [41], we consider two covariates “age” and
“age2” in the regression. We select the same parameter r
as in Section 4. The estimated coefficients (EST), estimated
standard deviations (SD) and estimated 95% confidence in-
tervals (CI) for the regression coefficients are reported in
Table 7 on page 86.

The results based on our proposed method for r = 0
are very similar to those reported by [29, 41] under the PH
model. The covariates “age” and “age2” are significantly
related to the survival time as the 95% confidence intervals
of both β1 and β2 do not contain 0. The results for r = 1
and r = 2 are also very similar to those obtained for r = 0,
indicating no major difference in results based on the three
special cases of the SLT model.

5.2 Application to the dementia data

Our second real data example uses the dementia data
from the Canadian Study of Health and Aging that com-
prise observations of 1132 patients diagnosed with dementia
in 1991 and subsequently followed until 1996. The same data
were used by [8, 23, 38] in their studies. The data provide
information on the dementia types: possible Alzheimer’s,
probable Alzheimer’s or vascular dementia. The data also

contain the date of onset, date of screening, date of death
or censoring, and the censoring indicators of the patients.
We remove observations with missing date of onset or miss-
ing dementia type, leaving 818 observations in the data set
for analysis. These include 393 observations of patients with
probable Alzheimer’s, 252 with possible Alzheimer’s, and
173 with vascular dementia. The right-censoring rate for this
sample is 22%.

Our primary interest here is to study the survival dif-
ference among the three disease types. An application of
the stationarity test of [1] to the observations confirms that
the data satisfy the stationarity assumption. We thus treat
the data as length-biased and set the weight function to
W (t, Z) = t. Similar to [38], we find no evidence of de-
pendence between the censoring variable and the dementia
type. We take probable Alzheimer’s as the reference type
and represent possible Alzheimer’s and vascular dementia
by two dummy variables. The parameter r are selected as in
Section 4. The estimation results of our proposed estimator
and the CEE estimator in [8] are reported in Table 8 on
page 87.

From Table 8, we find that the estimated coefficients by
the proposed method are negative for β1 and positive for β2

under all three choices of r, implying that relative to proba-
ble Alzheimer’s, possible Alzheimer’s and vascular dementia
are associated with lower and higher risk of death, respec-
tively. However, in all cases the 95% confidence intervals of
the coefficients contain 0. The survival difference between
probable Alzheimer’s and possible Alzheimer’s, and between
probable Alzheimer’s and vascular dementia, are therefore
not statistically significant. The same conclusions may be
drawn from the results based on the CEE estimator also
shown in Table 8. Our findings concur with the conclusions
reached by [38] even though our analysis ignores informative
censoring, which is usually considered as a salient feature of
the data in other studies. This demonstrates the robustness
of our approach.

6. CONCLUDING REMARKS

In this paper, we have proposed an estimation method in
conjunction with the SLT model when the data are subject
to general biased-sampling and right-censoring. We show
that the proposed estimator possesses good large sample
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Table 8. Estimation Results for the dementia data

Proposed CEE

r=0 r=1 r=2 r=0 r=1 r=2

Est -11.31 -31.67 -59.17 -9.95 -28.07 -52.49
β1 SD 8.28 23.37 43.41 6.69 17.52 30.76

CI(95%) (-27.55, 4.93) ( -77.48, 14.14) (-144.25, 25.90) (-23.06,3.17) (-62.41,6.27 ) (-112.77,7.79 )

Est 6.45 18.49 35.04 7.68 21.50 41.38
β2 SD 10.53 29.57 57.70 8.25 23.02 47.26

CI(95%) (-14.18, 27.09) (-39.46, 76.44) (-78.07, 148.14) (-8.49, 23.84 ) (-23.62, 66.62 ) (-51.25,134.01 )

Note: β1 and β2 are the regression coefficients for possible Alzheimer’s and vascular dementia, respectively. All the quantities
are multiplied by 102.

asymptotic properties, can be easily implemented by an
iterative algorithm, and fares well in terms of finite sam-
ple efficiency compared to the method in [5] that neglects
biased-sampling, and the CEE method in [8] which assumes
that the data are length-biased. Our proposed estimator also
demonstrates robustness when the assumption of covariate-
independent censoring is violated or informative censoring is
ignored when the data are length-biased. Work in progress
by the authors considers the broader class of transformation
models ([45]) to incorporate the time-dependent covariates
and the varying coefficient transformation models ([6]) for
more general cases.

7. APPENDIX

This appendix provides the proofs of the main results
given in Section 3. Let ‖a‖ denote the Euclidean norm for a
vector a and ‖f‖ the supremum norm for a function f , that
is, ‖f‖ = supt∈[0,τ ] |f(t)|. Our proofs of results require the
following conditions:

(C1) The true parameter β0 belongs to the interior of the
parameter space B, where B is a compact set in R

p.
(C2) The covariate Z is a p×1 dimensional bounded vector

not contained in a (p− 1) dimensional hyperplane.
(C3) τ is finite with P (T > τ) > 0 and P (C > τ) > 0.

The survival function SC(·) of the censoring variable C
is continuous, satisfying P (C > T ) > 0.

(C4) λε(t) is positive and bounded and λ̇ε(t) is bounded
and continuously differentiable on (−∞,m) for any fi-
nite constant m; as well, limt→−∞ λε(t) = 0.

(C5) H0(t) has a continuous and positive derivative Ḣ0(t)
on [0, τ ].

(C6) Σ∗ and Σ∗ are nonsingular matrices.

Condition (C1) that requires the compactness of the fi-
nite dimensional parameter space B is conventional in the
literature. Condition (C2) is a mild condition for the bound-
edness of the covariate Z and the nonsingularity of ZZT .
Condition (C3) suggests the right-censoring can occur after
failure times in order to avoid the complex technical issues
concerning tail behaviour. Condition (C4) is usually satis-
fied for distributions of ε commonly assumed for transfor-

mation models, and (C5) is a general assumption for trans-
formation models. Condition (C6) restricts Σ∗ and Σ∗ to be
nonsingular, which is a necessary condition for establishing
the asymptotic normality of β̂n and usually holds for spe-
cific families that are commonly used for the transformation
models; e.g., the PH and PO models ([18]).

Proof of Theorem 1. Our approach is similar to the ap-
proaches taken by [5, 18, 25]. Here, we only present the
main results and divide them into three parts.
Part 1: Proof of the consistency of β̂n and Ĥn(t, β̂n).

For any fixed β, let Ĥn(t, β) be the function representing
the unique solution of the estimating equation (6). Write
Ĥn0(t) = Ĥn(t, β0). We first show that Ĥn0(t) converges
to H0(t), namely, as n → ∞, sup{|Ĥn0(t) − H0(t)| : t ∈
(0, τ ]} → 0 in probability. Due to the monotonicity of Ĥn0(t)
on t ∈ (0, τ ], it suffices to show that the limiting function
of {Ĥn0(t)} is unique and equal to H0(t). Let H̃(t) be any
limit of the sequence {Ĥn0(t)}, where H̃(t) is a function on
t ∈ (0, τ ]. We only have to show H̃(t) = H0(t).

Now, consider the estimating equation (6). It follows from
the law of large numbers and the uniform consistency of the
Kaplan-Meier estimator ŜC(t) ([13], Theorem 3.4.2, p. 115)
that

E[N(t)] =

∫ t

0

E
{
δY (s)

W (s, Z)SC(s)

W (X,Z)SC(X)

×λε(H̃(s) + ZTβ0)
}
dH̃(s),

which implies that H̃(t) is differentiable and hence must
satisfy

dH̃(t)

dt
=

dE[N(t)]

dt

(
E
{
δY (t)

W (t, Z)SC(t)

W (X,Z)SC(X)
(9)

×λε(H̃(t) + ZTβ0)
})−1

.

On one hand, (9) is a Cauchy problem which always results
in a unique solution under local smoothness assumptions
([36], Theorem 3.4.2, p. 40). On the other hand, H0(t) sat-
isfies (9). Thus, we have H̃(t) = H0(t) and the sequence
{Ĥn0(t)} converges to H0(t) on t ∈ (0, τ ].
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For any t in a compact subset of the interior of the sup-
port of X, we will show in Part 2 that the derivative of
Ĥn(t, β) with respect to β is bounded in the neighborhood
of β0. Thus, Ĥn(t, βn) → Ĥn0(t) provided that βn → β0. As

Ĥn0(t) → H0(t), we have Ĥn(t, β̂n) → H0(t) provided that

β̂n is a consistent estimator of β0.

We now prove the consistency of β̂n. Using the uniform
law of large numbers ([33]) and the uniform consistency
of ŜC(t), we can show that for β in a neighborhood of
β0, n

−1U(β, Ĥn(·, β)) converges uniformly to a non-random

function u(β), and n−1 ∂U(β,Ĥn(·,β))
∂β converges uniformly to

u̇(β), the first derivative of u(β). We will show in Part 2
that u̇(β0) = −Σ∗. As we assume −Σ∗ to be nonsingu-

lar, n−1 ∂U(β,Ĥn(·,β))
∂β is nonsingular in a neighborhood of β0.

Thus there exists boundary values r and R that are bounded
away from 0 and ∞ in probability such that for any β1 and
β2 in a neighborhood of β0, we have

r‖β1 − β2‖ ≤ ‖U(β1, Ĥn(·, β1))− U(β2, Ĥn(·, β2))‖
≤ R‖β1 − β2‖.

Combining condition (C1) and the fact that

U(β̂n, Ĥn(·, β̂n)) = 0 and U(β0, Ĥn0(·)) → u(β0) = 0
as n → ∞, it follows that there is a neighborhood of β0

such that β̂n exists and is unique. Therefore, β̂n → β0 in
probability, and thus we have Ĥn(t, β̂n) → H0(t).

Part 2: Proof of 1
n

∂U(β,Ĥn(·,β))
∂β converging to −Σ∗ at β = β0

in probability.

For any t > 0 and x ∈ (−∞,∞), let us define

λ∗{H0(t)} = B(t, a), Λ∗(x) =

∫ x

b

λ∗(s)ds,

where a > 0 and b are finite fixed numbers chosen
to guarantee the finiteness of the above integrals. It

is clear that B(t, s) = λ∗{H0(t)}
λ∗{H0(s)} and dλ∗{H0(t)} =

λ∗{H0(t)}B1(t)
B2(t)

dH0(t). For simplicity, denote

A◦
i (t) = δiYi(t)

W (t, Zi)SC(t)

W (Xi, Zi)SC(Xi)

and

Ai(t) = δiYi(t)
W (t, Zi)ŜC(t)

W (Xi, Zi)ŜC(Xi)
, i = 1, . . . , n.

Mimicking step 2 of [18] (p. 225) and recognizing that
Ĥn(t, β0) converges to H0(t) and condition (C4), we obtain

∂Ĥn(t, β)

∂β

∣∣∣
β=β0

= −
∫ t

0

B(s, t)

B2(s)
BZ

1 (s)dH0(s) + op(1)

and

d
∂Ĥn(t, β)

∂β

∣∣∣
β=β0

= −B−1
2 (t)

[
BZ

1 (t) +B1(t)

×∂Ĥn(t, β)

∂β

∣∣∣
β=β0

+ op(1)
]
dH0(t).

Based on these results, we have

1

n

∂U(β, Ĥn(·, β))
∂β

∣∣∣
β=β0

= − 1

n

n∑
i=1

∫ τ

0

ZiAi(t)λε(Ĥn(t, β0) + ZT
i β0)

×d
∂Ĥn(t, β)

∂β

∣∣∣
β=β0

− 1

n

n∑
i=1

∫ τ

0

ZiAi(t)
(∂Ĥn(t, β)

∂β

∣∣∣
β=β0

+Zi

)T

λ̇ε(Ĥn(t, β0) + ZT
i β0)dĤn(t, β0)

= − 1

n

n∑
i=1

∫ τ

0

[
Zi −

BZ
2 (t)

B2(t)

]
ZT
i A

◦
i (t)λ̇ε(H0(t) + ZT

i β0)

×dH0(t) +

∫ τ

0

[
BZ

1 (t)−
B1(t)B

Z
2 (t)

B2(t)

]

×
∫ t

0

B(s, t)

B2(s)
BZ

1 (s)dH0(s)dH0(t) + op(1)

= − 1

n

n∑
i=1

∫ τ

0

[Zi − z(t)]ZT
i A

◦
i (t)λ̇ε(H0(t) + ZT

i β0)dH0(t)

+op(1),

which yields the desired result that 1
n

∂U(β,Ĥn(·,β))
∂β

∣∣∣
β=β0

con-

verges to −Σ∗ in probability.

Part 3: Proof of the asymptotic normality of β̂n and
Ĥn(t, β̂n).

Combining the definition of the process M(t) and esti-
mating equation (6), and following step 2 of [5] (p. 666), we
obtain

1

n

n∑
i=1

dMi(t) =
1

n

n∑
i=1

[Ai(t)dΛε(Ĥn(t, β0) + ZT
i β0)

−A◦
i (t)dΛε(H0(t) + ZT

i β0)]

=
1

n

n∑
i=1

A◦
i (t)[dΛε(Ĥn(t, β0) + ZT

i β0)

−dΛε(H0(t) + ZT
i β0)] +

1

n

n∑
i=1

[Ai(t)

−A◦
i (t)]dΛε(H0(t) + ZT

i β0) + op(n
− 1

2 )

=
1

n

n∑
i=1

A◦
i (t)d

{λε(H0(t) + ZT
i β0)

λ∗{H0(t)}

×(Λ∗(Ĥn(t, β0))− Λ∗(H0(t)))
}
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+
1

n

n∑
i=1

[Ai(t)−A◦
i (t)]dΛε(H0(t) + ZT

i β0)

+op(n
− 1

2 )

=
B2(t)

λ∗{H0(t)}
d(Λ∗(Ĥn(t, β0))− Λ∗(H0(t)))

+(Λ∗(Ĥn(t, β0))− Λ∗(H0(t)))

×
{B1(t)−B2(t)

B1(t)
B2(t)

λ∗{H0(t)}
}
dH0(t)

+
1

n

n∑
i=1

[Ai(t)−A◦
i (t)]dΛε(H0(t) + ZT

i β0)

+op(n
− 1

2 )

=
B2(t)

λ∗{H0(t)}
d(Λ∗(Ĥn(t, β0))− Λ∗(H0(t)))

+
1

n

n∑
i=1

[Ai(t)−A◦
i (t)]dΛε(H0(t) + ZT

i β0)

+op(n
− 1

2 ).

This leads to

Λ∗(Ĥn(t, β0))− Λ∗(H0(t))(10)

=
1

n

n∑
i=1

∫ t

0

λ∗{H0(s)}
B2(s)

[A◦
i (s)−Ai(s)]dΛε(H0(s) + ZT

i β0)

+
1

n

n∑
i=1

∫ t

0

λ∗{H0(s)}
B2(s)

dMi(s) + op(n
− 1

2 ).

Now, because

n− 1
2U(β0, Ĥn(·, β0))

= n− 1
2

n∑
i=1

∫ τ

0

Zi[dNi(t)−Ai(t)dΛε(Ĥn(t, β0) + ZT
i β0)]

= n− 1
2

n∑
i=1

∫ τ

0

Zi[dNi(t)−A◦
i (t)dΛε(Ĥn(t, β0) + ZT

i β0)]

+n− 1
2

n∑
i=1

∫ τ

0

Zi[A
◦
i (t)−Ai(t)]dΛε(Ĥn(t, β0) + ZT

i β0)

=: I1 + I2,

where

I1 = n− 1
2

n∑
i=1

∫ τ

0

Zi[dNi(t)−A◦
i (t)

×dΛε(Ĥn(t, β0) + ZT
i β0)]

= n− 1
2

n∑
i=1

∫ τ

0

ZidMi(t)− n− 1
2

n∑
i=1

∫ τ

0

ZiA
◦
i (t)

×d[Λε(Ĥn(t, β0) + ZT
i β0)− Λε(H0(t) + ZT

i β0)]

= −n− 1
2

n∑
i=1

∫ τ

0

ZiA
◦
i (t)d

{λε(H0(t) + ZT
i β0)

λ∗{H0(t)}

×[Λ∗(Ĥn(t, β0))− Λ∗(H0(t))]
}

+n− 1
2

n∑
i=1

∫ τ

0

ZidMi(t) + op(1)

= −n− 1
2

∫ τ

0

BZ
2 (t)

λ∗{H0(t)}
{ n∑

i=1

λ∗{H0(t)}
B2(t)

[dMi(t)

+(A◦
i (t)−Ai(t))dΛε(H0(t) + ZT

i β0)]
}

−n− 1
2

n∑
i=1

∫ τ

0

λ∗{H0(t)}
B2(t)

∫ τ

t

BZ
1 (s)−BZ

2 (s)
B1(s)
B2(s)

λ∗{H0(s)}
×dH0(s)[dMi(t) + (A◦

i (t)−Ai(t))

×dΛε(H0(t) + ZT
i β0)] + n− 1

2

n∑
i=1

∫ τ

0

ZidMi(t)

+op(1)

= −n− 1
2

n∑
i=1

∫ τ

0

BZ
2 (t)

B2(t)
dMi(t)− n− 1

2

n∑
i=1

∫ τ

0

BZ
2 (t)

B2(t)

[A◦
i (t)−Ai(t)]dΛε(H0(t) + ZT

i β0)

−n− 1
2

n∑
i=1

∫ τ

0

1

B2(t)

∫ τ

t

(BZ
1 (s)−

BZ
2 (s)B1(s)

B2(s)
)

×B(t, s)dH0(s)dMi(t)− n− 1
2

n∑
i=1

∫ τ

0

A◦
i (t)−Ai(t)

B2(t)

×
∫ τ

t

(BZ
1 (s)−

BZ
2 (s)B1(s)

B2(s)
)B(t, s)dH0(s)

×dΛε(H0(t) + ZT
i β0) + n− 1

2

n∑
i=1

∫ τ

0

ZidMi(t)

+op(1)

= n− 1
2

n∑
i=1

∫ τ

0

[Zi − z(t)]dMi(t)− n− 1
2

n∑
i=1

∫ τ

0

[A◦
i (t)

−Ai(t)]z(t)dΛε(H0(t) + ZT
i β0) + op(1),

and

I2 = n− 1
2

n∑
i=1

∫ τ

0

Zi[A
◦
i (t)−Ai(t)]dΛε(Ĥn(t, β0) + ZT

i β0)

= n− 1
2

n∑
i=1

∫ τ

0

Zi[A
◦
i (t)−Ai(t)]dΛε(H0(t) + ZT

i β0)

+op(1),

we have

n− 1
2U(β0, Ĥn(·, β0))

= n− 1
2

n∑
i=1

∫ τ

0

[Zi − z(t)]dMi(t)− n− 1
2

n∑
i=1

∫ τ

0

[A◦
i (t)

−Ai(t)]z(t)dΛε(H0(t) + ZT
i β0) + n− 1

2

n∑
i=1

∫ τ

0

Zi
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×[A◦
i (t)−Ai(t)]dΛε(H0(t) + ZT

i β0) + op(1)

= n− 1
2

n∑
i=1

∫ τ

0

[Zi − z(t)][dMi(t) + (A◦
i (t)−Ai(t))

×dΛε(H0(t) + ZT
i β0)] + op(1).

From [13], SC(·)−ŜC(·)
SC(·) has the following martingale integral

representation:

SC(t)− ŜC(t)

SC(t)
=

∫ τ

0

I(s ≤ t)

Y (s)
dMC(s),

where

MC(t) =

n∑
i=1

MC
i (t), MC

i (t) = NC
i (t)−

∫ t

0

Yi(s)dΛC(s).

Thus, we have

A◦
i (t)−Ai(t) = A◦

i (t)
{∫ τ

0

I(s ≤ t)− I(s ≤ Xi)

Y (s)
dMC(s)

}
,

and hence

n− 1
2U(β0, Ĥn(·, β0))

= n− 1
2

n∑
i=1

∫ τ

0

[Zi − z(t)]
{
dMi(t) +A◦

i (t)

×
{∫ τ

0

I(s ≤ t)− I(s ≤ Xi)

Y (s)
dMC(s)

}

×dΛε(H0(t) + ZT
i β0)

}
+ op(1)

= n− 1
2

n∑
i=1

{∫ τ

0

[Zi − z(t)]dMi(t) +

∫ τ

0

1

n

n∑
j=1

∫ τ

0

[Zj

−z(s)]A◦
j (s)

I(s ≥ t)− I(Xj ≥ t)
1
nY (t)

dΛε(H0(s) + ZT
j β0)

×dMC
i (t)

}
+ op(1)

= n− 1
2

n∑
i=1

∫ τ

0

[Zi − z(t)]dMi(t)

+n− 1
2

n∑
i=1

∫ τ

0

D(t)dMC
i (t) + op(1),

which is a sum of independent mean zero random vec-
tors. Hence it follows from the Central Limit Theorem that
n− 1

2U(β0, Ĥn(·, β0))
D→ N(0,Σ∗). By the Taylor series ex-

pansion, we have

n− 1
2 {U(β̂n, Ĥn(·, β̂n))− U(β0, Ĥn(·, β0))}

=
1

n

∂U(β, Ĥn(·, β))
∂β

∣∣∣
β=β0

√
n(β̂n − β0) + op(1).

Using results from Part 2 and recognizing that

U(β̂n, Ĥn(·, β̂n)) = 0, it follows that

√
n(β̂n − β0)

D→ N(0,Σ−1
∗ Σ∗(Σ−1

∗ )T ).

The proof of the consistency of the variance estimator is
straightforward and we omit it here.

To prove the weak convergence of
√
n{Ĥn(t, β̂n)−H0(t)},

note that

√
n{Ĥn(t, β̂n)−H0(t)}

=
√
n{Ĥn(t, β̂n)− Ĥn(t, β0)}+

√
n{Ĥn(t, β0)−H0(t)}

=
√
n
∂Ĥn(t, β)

∂β

∣∣∣
β=β0

(β̂n − β0) +
√
n{Ĥn(t, β0)−H0(t)}

+op(1)

= − 1√
n

∫ t

0

B(s, t)

B2(s)
BZ

1 (s)dH0(s)Σ
−1
∗

n∑
i=1

{∫ τ

0

[Zi − z(t)]

×dMi(t) +

∫ τ

0

D(t)dMC
i (t)

}

+
√
n{Ĥn(t, β0)−H0(t)}+ op(1).

By (10), we have

√
n{Ĥn(t, β0)−H0(t)}

=
1√
n

n∑
i=1

∫ t

0

B(s, t)

B2(s)
[dMi(s) + (A◦

i (s)−Ai(s))

×dΛε(H0(s) + ZT
i β0)] + op(1)

=
1√
n

n∑
i=1

∫ t

0

B(s, t)

B2(s)

{
dMi(s) +A◦

i (s)

×
∫ τ

0

I(u ≤ s)− I(u ≤ Xi)

Y (u)
dMC(u)

×dΛε(H0(s) + ZT
i β0)

}
+ op(1)

=
1√
n

n∑
i=1

∫ t

0

B(s, t)

B2(s)
dMi(s)

+
1√
n

n∑
i=1

∫ t

0

∫ t

u
B(s,t)
B2(s)

A◦
i (s)dΛε(H0(s) + ZT

i β0)

Y (u)

×dMC(u)−
1√
n

n∑
i=1

∫ t

0

B(s, t)

B2(s)
A◦

i (s)

×dΛε(H0(s) + ZT
i β0)

∫ Xi

0

1

Y (u)
dMC(u) + op(1).

Consequently,

√
n{Ĥn(t, β̂n)−H0(t)}

= − 1√
n

∫ t

0

B(s, t)

B2(s)
BZ

1 (s)dH0(s)Σ
−1
∗

n∑
i=1

{∫ τ

0

[Zi

−z(t)]dMi(t) +

∫ τ

0

D(t)dMC
i (t)

}
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+
1√
n

n∑
i=1

∫ t

0

B(s, t)

B2(s)
dMi(s)

+
1√
n

n∑
i=1

∫ t

0

∫ t

u
B(s,t)
B2(s)

A◦
i (s)dΛε(H0(s) + ZT

i β0)

Y (u)

×dMC(u)−
1√
n

n∑
i=1

∫ t

0

B(s, t)

B2(s)
A◦

i (s)

×dΛε(H0(s) + ZT
i β0)

∫ Xi

0

1

Y (u)
dMC(u) + op(1).

Using an argument similar to that used in step 3 in [18] (p.

226), we can show that
√
n{Ĥn(t, β̂n) − H0(t)} converges

weakly to a tight Gaussian process. This completes the proof
of the theorem.
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