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Letter to the Editor

Marco Geraci

Galarza, Lachos and Bandyopadhyay (2017) have re-
cently proposed a method of estimating linear quantile
mixed models (Geraci and Bottai, 2014) based on a Monte
Carlo EM algorithm. They assert that their procedure rep-
resents an improvement over the numerical quadrature and
non-smooth optimization approach implemented by Geraci
(2014). The objective of this note is to demonstrate that this
claim is incorrect. We also point out several inaccuracies and
shortcomings in their paper which affect other results and
conclusions that can be drawn.

1. LINEAR QUANTILE MIXED MODELS

Linear quantile mixed models (LQMMs) were developed
by Geraci and Bottai [4] as an extension of the quantile
regression model with random intercepts of Geraci and Bot-
tai [3]. We consider data from two-level nested designs in
the form (x�

ij , z
�
ij , yij), for j = 1, . . . , ni and i = 1, . . . ,M ,

N =
∑

i ni, where x�
ij is the jth row of a known ni × p

matrix Xi, z�ij is the jth row of a known ni × q matrix
Zi and yij is the jth observation of the response vector
yi = (yi1, . . . , yini)

� for the ith cluster. The N × 1 vector
of responses is denoted by y = (y�

1 , . . . ,y
�
M )�. This kind

of data arise from longitudinal or panel studies and other
cluster sampling designs.

The τth LQMM is defined as

(1) Qyij |ui
(τ) = x�

ijβτ + z�ijui,

where 0 < τ < 1 is the given quantile level, βτ is a p×1 vec-
tor of τ -specific coefficients that are common to all clusters,
while the q × 1 vector ui may vary with cluster. For esti-
mation purposes only, Geraci and Bottai [4] introduced the
convenient assumption that the responses yij , j = 1, . . . , ni,
i = 1, . . . ,M , conditionally on a q × 1 vector of random ef-
fects ui, independently follow the asymmetric Laplace (AL)
density

(2) p(yij |ui) =
τ(1− τ)

στ
exp

{
− 1

στ
ρτ (yij − μτ,ij)

}
,

where ρτ (r) = r {τ − I(r < 0)} is the ‘check’ function and I
denotes the indicator function, with location and scale pa-
rameters given by μτ,ij = x�

ijβτ +z�ijui and στ , respectively,
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which we write as yij ∼ AL (μτ,ij , στ ). (The third param-
eter of the AL is the skew parameter τ ∈ (0, 1) which, in
this model, is fixed and defines the quantile level of inter-
est.) Also, they assumed that ui = (ui1, . . . , uiq)

�
, for i =

1, . . . ,M , is a random vector independent from the model’s
error term with mean zero and τ -specific variance-covariance
matrix Στ of dimensions q×q. The latter is reparameterized
in terms of an m-dimensional vector, 1 ≤ m ≤ q(q + 1)/2,
of non-redundant parameters θτ , i.e. Στ = Σ(θτ ).

The algorithm to estimate (βτ ,θτ , στ ) is described in de-
tail by [2, 4]. First, the (quasi) log-likelihood is integrated
numerically over the distribution of the random effects, i.e.

�GQ(βτ ,θτ , στ |y) =(3)

M∑
i

log

⎧⎨
⎩

K∑
k1=1

· · ·
K∑

kq=1

p
(
yi|vk1,...,kq

) q∏
l=1

wkl

⎫⎬
⎭ ,

with vk1,...,kq = (vk1 , . . . , vkq )
�, where vkl

and wkl
, kl =

1, . . . ,K, l = 1, . . . , q, denote the abscissas and the weights
of the (one-dimensional) Gaussian quadrature. Second, the
integrated log-likelihood (3) is maximized via a non-smooth
optimizer. In principle, one can consider different distribu-
tions for the random effects, which may be naturally linked
to different quadrature rules (or penalties). For example, it
is immediate to verify that the normal distribution is akin
to a Gauss-Hermite quadrature, a special case of LQMM
discussed by Geraci and Bottai.

In their paper, Galarza et al. write

[Geraci and Bottai (2014)] extended [Geraci and Bottai’s

(2007)] setup to accommodate multiple random effects [...]. Here,

we consider a more general correlated random effects framework

with general dispersion matrix Ψ = Ψ(a).

This statement is not justified since their model is pre-
cisely the LQMM defined in (1)-(2) with normal random
effects and general variance-covariance matrix Στ = Σ(θτ ).

2. SIMULATION STUDY

To fit the LQMM (1)-(2), Galarza et al. proposed to use
a stochastic approximation of the expectation-maximization
(SAEM) algorithm. They compared their estimation ap-
proach, as implemented in the qrLMM package, to the
quadrature-based algorithm implemented in the lqmm pack-
age [2]. The description of their simulation study is not clear
as it lacks several details. First of all, it does not spec-
ify which versions of lqmm, qrLMM or R were used in their
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Table 1. Performance summary for the quadrature & non-smooth optimization algorithm (lqmm) and the approximated EM
algorithm (qrLMM) run on a 64-bit operating system machine with 32 Gb of RAM and 3.60 GHz clock-rate processor. All
figures refer to the same subset of scenarios, namely M ∈ {50, 300} and τ ∈ {0.05, 0.5, 0.95}. Averages are calculated over

2× 3× 100 = 600 replicated datasets

Algorithm Average bias Average root mean Total elapsed time Average elapsed time Percentage of convergence
squared error failures

lqmm 0.0019 0.0852 7.5 (min) 0.7 (s) 0%
qrLMM 0.0017 0.0910 24066.0 (min) 2551.2 (s) 21%

study. Most importantly, there is no indication about lqmm
optimization settings and the syntax used for modeling. We
speculate that the default options were used. We tried to
replicate their design and we believe that the setting de-
scribed below is quite similar to theirs.

We generated data according to the model

(4) yij = x�
ijδ + z�ijui + ετ,ij ,

where δ = (0.8, 0.5, 1)�, x1,ij = 1, x2,ij ∼ N (0, 1),
x3,ij ∼ N (0, 1), z1,ij ∼ N (0, 1), z2,ij ∼ N (0, 1), and
ετ,ij ∼ AL (0, 0.2). Moreover, ui ∼ N (0,Σ), where

Σ =

[
0.8 0.5
0.5 1

]
.

The number of clusters M varied (50, 100, 200, 300) while
the size of the clusters was fixed to ni = 3, i = 1, . . . ,M ,
throughout the simulation. We considered five LQMMs (1)
for τ ∈ {0.05, 0.1, 0.5, 0.9, 0.95}. (Note that the error ετ,ij in
(4) is sampled from an AL with skewness determined by the
same τ that defines the quantile to be estimated, therefore
βτ = δ for all τ .) Data were replicated 100 times for each
combination of sample size and quantile level.

For this simulation, we used lqmm 1.5.3, which is, at the
time of writing, the latest version available on the Com-
prehensive R Archive Network, and qrLMM 1.3 for R version
3.4.2 [6]. By default, the function QRLMM starts the SAEM
algorithm with estimates of βτ and στ obtained from linear
programming (package quantreg). In contrast, lqmm starts
by default from ordinary least squares estimates. Therefore,
we changed the option lqmmControl(startQR = TRUE) for
the sake of comparability. Moreover, we used K = 9 quadra-
ture knots instead of the default K = 7 to improve accuracy
since q > 1 (see [4] for details). For the SAEM algorithm we
used the same settings as in Galarza et al., namely 20 Monte
Carlo simulations, 500 maximum iterations and 0.2 for the
cut-point that determines the proportion of initial iterations
with no memory. The variance-covariance matrix was spec-
ified as a general positive-definite matrix in both estima-
tion procedures. All the other estimation settings in lqmm

and QRLMM were left unchanged to their default values. In
a preliminary analysis, we assessed the computational time
needed to run the full simulation and we estimated it would
take approximately two months for QRLMM, but less than half

an hour for lqmm. Given the excessive computational time
needed for QRLMM, we ran the latter only for selected scenar-
ios, namely M ∈ {50, 300} and τ ∈ {0.05, 0.5, 0.95}.

Table 1 shows a summary of the actual performance of
the two algorithms, while Figures 1 and 2 show, respectively,
the absolute bias and root mean squared error (RMSE) of
the two estimators. For comparison, Figure 2 also shows the
RMSE values reported for SAEM by Galarza et al. in their
paper [1, Table 2].

The average bias and RMSE calculated for βτ and στ in
selected scenarios were small for both estimators (Table 1),
with average RMSE slightly lower for lqmm. Most notably,
the time needed by qrLMM to run one model was on average
42.52 minutes (min 5.82, max 132.30 minutes) with a 21%
convergence failure rate. In contrast, lqmm took less than
1 second for one replication (min 0.09, max 9.27 seconds)
with no convergence failures in any of the selected scenarios
(and no convergence failures in any of the other scenarios
either). The bias and RMSE for specific sample sizes and
quantiles were similar in most cases except for the intercept,
in which case lqmm seemed to have an advantage over qrLMM
at more extreme quantiles (Figures 1 and 2). Note also that
the RMSE results reported by Galarza et al. in their paper
are close to those we obtained in our simulation for selected
scenarios (Figure 2); thus, it is reasonable to conclude that
our simulation design is a faithful reproduction of theirs.

Table 2 shows that the (scaled) average log-likelihood re-
sulting from the two fitting algorithms was comparable in
all selected scenarios.

As a side note, we found Galarza et al.’s simulation set-
ting rather unusual since the vector zij is typically a subset
of xij , for the random effects are constrained to have zero-
mean (see also the discussion in the next section). More-
over, the AL distribution in LQMM provides only a quasi-
likelihood for point estimation, i.e. it is not assumed to be
the true distribution. Galarza et al.’s simulation is very lim-
ited and is more of a sanity check than a validation study. It
would be more realistic to simulate errors from a variety of
distributions with different shapes, along with heteroscedas-
tic variants of these models. An extensive simulation of this
kind is provided by Geraci and Bottai [4].

3. FRAMINGHAM STUDY

Galarza et al. also provided a comparison between the
two algorithms using a subset of the cholesterol data from
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Figure 1. Absolute values of bias for linear quantile mixed effects estimators based on quadrature & non-smooth optimization
(filled circles) and approximated EM (filled triangles): βτ,0 (upper left panels), βτ,1 (upper right panels), βτ,2 (lower left

panels), and στ (lower right panels).

the Framingham study [8]. Once again, the description of
their analysis is incomplete. First of all, the authors state

Interestingly, for the extremes quantiles, some warnings mes-

sages on convergence were displayed while fitting Geraci’s

method, even after increasing the number of iterations and re-

ducing [sic] the tolerance, as suggested in the lqmm manual.

The authors do not say which estimation settings were
used initially and how these were changed afterwards. Most
importantly, they do not say whether the warning messages
were obtained during model fitting or bootstrapping, and
how many warnings were produced. These warnings may
be of little concern (see [2] for a discussion on this point)
and, as shown further below, they can be addressed with an
appropriate tweaking of optimization parameters [2], along
with a thoughtful examination of the data and model.

The authors are also silent on the model for Στ . This is
irrelevant for the qrLMM package since it provides only one
model (i.e., the general positive-definite matrix). However,
the lqmm package provides four different models, including
the diagonal variance-covariance structure as the default.

We then decided to replicate the analysis of Galarza et
al. who considered the model

(5) Qyij |ui
(τ) = βτ,0 + βτ,1sexi + βτ,2agei + u1,i + u2,iTij ,

where yij is the ijth measurement of cholesterol (divided by
100) and Tij = (tij − 5)/10, with tij denoting years since
the beginning of the study.

There is clearly something awkward about the specifica-
tion of model (5) since it does not include a fixed coefficient
for Tij . We can only surmise that Galarza et al. misinter-
preted equation (9) in [8], where the random slope is actually
centered about the fixed slope (not about zero). Whatever
the reason, suffice it to say that this oversight not only may
introduce bias in the estimates, but it might also render esti-
mation more difficult and prone to failure if the fixed slope
is effectively different from zero. Therefore, we proceeded
with the following corrected model

Qyij |ui
(τ) =βτ,0 + βτ,1sexi + βτ,2agei + βτ,3Tij(6)

+ u1,i + u2,iTij ,

where (u1,i, u2,i)
� ∼ N (0,Στ ) and Στ is a general positive-

definite matrix. Model fitting and bootstrap standard error
estimation were carried out for 19 vigintiles as detailed in
Appendix A. The tolerance parameters set for lqmm estima-
tion were less restrictive than the default values but still
within reasonable bounds. We obtained only two warning
messages of failed convergence during bootstrapping, but
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Figure 2. Root mean squared error (RMSE) for linear quantile mixed effects estimators based on quadrature & non-smooth
optimization (filled circles) and approximated EM (filled triangles): βτ,0 (upper left panels), βτ,1 (upper right panels), βτ,2

(lower left panels), and στ (lower right panels). The RMSE values reported by Galarza et al. [1, Table 2] for the approximated
EM are marked with empty triangles.

Table 2. Average log-likelihood at convergence (scaled by n)
for the quadrature & non-smooth optimization algorithm

(lqmm) and the approximated EM algorithm (qrLMM) run on
a 64-bit operating system machine with 32 Gb of RAM and
3.60 GHz clock-rate processor. All figures refer to the same

subset of scenarios, namely M ∈ {50, 300} and
τ ∈ {0.05, 0.5, 0.95}. Averages are calculated over

2× 3× 100 = 600 replicated datasets

Algorithm Sample size τ = 0.05 τ = 0.5 τ = 0.95

lqmm 50 −7.78 −4.14 −7.77
300 −7.83 −4.28 −7.83

qrLMM 50 −7.81 −4.11 −7.80
300 −7.86 −4.22 −7.86

not during model estimation. Considering that 19×50 = 950
models were fitted for the bootstrap, this issue is hardly wor-
thy of note in this case.

Finally, Galarza et al.’s statement

We observe that our SAEM method leads to mostly smaller

SEs and AIC compared to the Geraci method. [...] Hence [...] the

substantial gain in the AIC criterion and the SEs establish that

our SAEM approach provides a much better fit to the dataset

is a hodgepodge of claims that are not substantiated any-
where in their paper. First, the authors found in their sim-
ulation study that the asymptotic approximations provide
valid standard errors [1, Table 1]. This should be expected
since the data were generated under the AL distribution.
Theoretical results actually show that outside the AL case
it is not appropriate to quantify uncertainty using this dis-
tribution as it leads to underestimation of the true variabil-
ity [7]. This is why lqmm makes use of bootstrap. Moreover,
the authors never provided a simulation study to compare
SAEM’s standard errors with those obtained with lqmm;
thus, it is not possible to understand the nature of the dif-
ferences found for one particular dataset (even if we grant
for the sake of argument that the lqmm’s estimation set-
tings and modeling syntax were appropriately specified in
the Framingham data analysis). Secondly, the comparison
between average log-likelihoods in our simulation (Table 2)
does not support the superiority of SAEM in terms of good-
ness of fit (GOF). In summary, the issue of standard error
estimation remains to be investigated, while empirical evi-
dence, although limited, contradicts Galarza et al.’s claim
that SAEM gives a better GOF performance.
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4. CONCLUSION

Linear quantile mixed models [4] represent a valuable tool
available to the scientific community. Computational issues
are still an open problem and different approaches have been
investigated by several researchers (see [5] for an overview).
Galarza et al.’s claim of SAEM’s superior performance fails
to stand up to closer examination. Our simulation shows
that while SAEM produces finite-sample bias and RMSE
comparable to those obtained from the quadrature-based
algorithm in lqmm, its sluggish convergence and high pro-
portion of convergence failures put Galarza et al.’s proposal
at enormous disadvantage.

APPENDIX A. R CODE

In this Appendix, we provide the R code for the analysis
of the Framingham cholesterol data using the lqmm package.

library(lqmm)

data(Cholesterol, package = "qrLMM")

Cholesterol$year.c <- (Cholesterol$year - 5)/10

Cholesterol$sex <- as.factor(Cholesterol$sex)

# Set optimization parameters

ctrl <- lqmmControl(method = "df", LP_tol_ll =

1e-3, LP_max_iter = 2000, startQR = TRUE)

# Fit model for tau = 0.05, 0.1, ..., 0.95

fit <- lqmm(I(cholst/100) ~ year.c + sex + age,

random = ~ year.c, group = ID,

data = Cholesterol, tau = 1:19/20,

covariance = "pdSymm", control = ctrl)

# Bootstrap (50 replicates)

fit.s <- summary(fit, R = 50, seed = 178)
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