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Nonparametric estimate of conditional quantile
residual lifetime for right censored data

Yutao Liu, Cunjie Lin
∗
, and Yong Zhou

A nonparametric approach is proposed to estimate the
quantile residual lifetime at a given time while consider-
ing the effect of covariates. An estimating equation is con-
structed and a local Kaplan-Meier estimator is employed to
incorporate the covariates in the equation while leaving the
distribution of survival time unspecified. Asymptotic prop-
erties including both consistency and asymptotic normality
of the proposed estimator are established and a resampling
method is proposed to estimate the asymptotic variance.
Simulation studies are conducted to assess the finite-sample
performance of the estimator, and an HIV survival data is
analyzed using the proposed method.
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1. INTRODUCTION

Residual lifetime has attracted more and more attention
in recent years. It is defined as the remaining time of life
provided that individual has survived over some time and it
has been studied by investigators in various fields. In study
of survival in HIV patients, for example, both patient and
doctor wish to know how much one’s lifetime could be left
after one had already survived two years since one’s initial
diagnosis. Residual lifetime is such an index that is very re-
vealing about the information of the remaining life. And it is
important to make statistical inference for residual lifetime.

There are two well-known existing measurements related
to residual lifetime. One is the Kaplan-Meier(Kaplan and
Meier 1958) estimate of the survival function, which pro-
vides the probability that a patient will survive beyond
any given specified time. For example, by referring to the
Kaplan-Meier plot, physicians can tell the probability of
the HIV patient who has survived over 2 years since ini-
tial diagnosis. However, if the patient wants to know more
information, such as the longevity of the rest of lifetime,
given that one has survived over 2 years since the diagnosis,
physicians will fail to make an answer directly from the plot.
Furthermore, it is difficult to estimate residual life time by
the Kaplan-Meier method when the residual life time of an
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individual depends on some covariates or the environmen-
tal backgrounds. Another measurement is the hazard func-
tion, which is defined as conditioning on that subject has
survived over some time t, the instantaneous failure rate
of the subject at the following moment. The higher value
of hazard function shows a higher risk of failure. And the
most frequently used hazard function is the Cox propor-
tional hazards model (Cox 1972, 1975), which assumes a
form of a baseline hazard function, multiplied by an expo-
nential function specifying the effect of covariates on the fail-
ure risk. Whereas the model assumption is often challenged
and questioned. Moreover, the Cox model which describes
“instantaneous rate of failure” is conceptually difficult to
understand and it is not easy to explain when the residual
life time needs to be evaluated in the middle of an obser-
vation period. Thus, it is better to estimate residual time
directly.

Several ways have been proposed to characterize the
residual lifetime directly, including mean, median and quan-
tile residual lifetime. To study the mean residual lifetime,
both nonparametric methods (Yang 1977; Chaubey and Sen
1999, 2008; Abdous and Berred 2005; McLain and Ghosh
2011) and semi-parametric models (Oakes and Dasu 1990,
2003; Maguluri and Zhang 1994; Chen and Cheng 2005,
2006; Chen et al. 2005; Sun, Song and Zhang 2012) have
been investigated by many authors. The semi-parametric
models, such as proportional mean residual lifetime model,
additive expectancy regression model and semi-parametric
transformation model, are convenient to consider the effects
of covariates; however, it is difficult to judge which one of
these models fits the real data. Meanwhile, mean residual
life function has a one-to-one relationship with the survival
function and there needs some restrictions to ensure this
correspondence. Moreover, it is not robust enough when the
distribution of residual lifetime is highly skewed or heavy-
tailed.

Median residual lifetime, by contrast, is a more robust
way to assess the remaining lifetime and less restrictive
than the model based on the mean residual, because it
doesn’t uniquely determine the survival function (Gupta
and Langford 1984). Besides median, we can offer a more
complete analysis of the remaining lifetime by modelling a
broad range of quantiles of the residual lifetime, i.e., quan-
tile residual lifetime, which has been extensively studied in
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recent contexts. For example, without considering the ef-
fects of covariates, Jeong, Jung and Costantino (2008) pro-
posed a nonparametric estimation for the median residual
life function by using the Kaplan-Meier estimator, which
can be easily extended to the quantiles residual lifetime.
To compare two quantile residual life functions, Franco-
Pereira, Lillo and Romo (2012) presented a nonparamet-
ric method for constructing confidence bands for the differ-
ence of two quantile residual life functions, and Jeong and
Fine (2013) proposed a two-sample test statistic and asso-
ciated confidence interval for inference on the ratio of two
cause-specific quantile residual life functions under compet-
ing risks. Sometimes, the residual lifetimes can be different
among subjects with different covariates or backgrounds.
For example, the HIV patients with different ages may
have different residual lifetimes, indicating that the quan-
tile residual lifetime depends on some covariates. And the
patients are more interested in the quantile residual life-
time of the patients like one’s, for instance, patients of
the same age. To take into account the effects of covari-
ates, Jung, Jeong and Bandos (2009) proposed a linear re-
gression model for quantile residual lifetime, while Ma and
Wei (2012) considered a time-varying coefficient quantile
residual life model and estimated the varying coefficients
via spline approximation. Recently, Lin, Zhang and Zhou
(2015) studied the conditional quantile residual lifetime un-
der different covariates effects by means of an auxiliary
model which is specified for the conditional survival func-
tion. But this method is not universal for all cases because
different auxiliary models need diversified estimation meth-
ods.

In this paper, we develop a nonparametric inference on
quantile residual lifetime which incorporates covariates but
leave the form of the covariates unspecified. This can be
achieved by employing the local Kaplan-Meier estimator
(Gonzalez-Manteiga and Cadarso-Suarez 1994) and its con-
sistency and asymptotic normality guarantee the asymp-
totic properties of the proposed estimate of the conditional
quantile residual lifetime. The adoption of local Kaplan-
Meier estimator makes the method have a flexible applica-
bility, but it also brings challenge to estimate the asymp-
totic variance of the estimator. In this paper, we adopt
the resampling method for nonsmooth estimating func-
tions proposed by Zeng and Lin (2008) to settle this prob-
lem.

The rest of the paper is organized as follows. In Section 2,
we introduce the conditional quantile residual lifetime model
and present the estimation procedure. In Section 3, we de-
rive the asymptotic properties of the proposed estimator and
propose the resamping method to estimate the variance. In
Section 4, we conduct simulation studies to examine the fi-
nite sample properties of the proposed estimators and we
also illustrate the proposed methods with a real data exam-
ple. And we give some concluding remarks in Section 5. All
proofs of results are postponed in Appendix.

2. CONDITIONAL QUANTILE RESIDUAL
LIFETIME AND INFERENCE

PROCEDURES

Let Ti and Ci be the failure time and potential censoring
time for subject i, respectively, and Xi = min(Ti, Ci) be the
observed survival time. Let δi = I(Ti ≤ Ci) be the censor-
ing indicator, where I(·) is the indictor function. Suppose
that the failure time Ti depends on a p-dimensional covari-
ate Zi = (Zi1, · · · , Zip)

T and assume that Ci is indepen-
dent of Ti given covariates Zi. In addition, the observations
(Xi, δi,Zi) are assumed to be independent and identically
distributed for i = 1, · · · , n. Let F (t|z) and G(t|z) be the
distribution functions of Ti and Ci, respectively, given co-
variate Z = z. And S(t|z) = 1 − F (t|z) is the conditional
survival distribution. Then Xi(i = 1, 2, · · · , n) are i.i.d. ran-
dom variables given Zi with distribution function H(t|z)
satisfying 1 − H(t|z) = (1 − F (t|z))(1 − G(t|z)). For any
distribution function L, denote τL = argmaxt L(t). Hence
τH = τF ∧ τG, in which a ∧ b denotes min(a, b). We assume
that τ ≤ τH is the largest follow-up time of the study.

Our goal is to infer the conditional quantile residual life-
time at a time point t0 given covariate z, which is defined
as

θα(t0|z) = α-quantile(T − t0|T ≥ t0,Z = z).(1)

Often, the covariate is modeled through a particular form,
but we don’t specify it here. Definition (1) means that the
αth quantile of remaining lifetime among survivors beyond
time t0 given covariate z equals to θα(t0|z). This can be
equivalently expressed as

P{T − t0 ≥ θα(t0|z)|T ≥ t0, z} = 1− α,

which implies that

P{T − t0 ≥ θα(t0|z)|z} = (1− α)P (T ≥ t0|z).

Given a time point t0 and covariate z, let θα0(t0|z) be the
solution of the following equation

U(θα(t0|z)) = S(t0 + θα(t0|z)|z)− (1− α)S(t0|z)(2)

= 0.

And the conditional quantile residual lifetime can be esti-
mated by solving the following estimating equation

Û(θα(t0|z)) = Ŝ(t0 + θα(t0|z)|z)− (1− α)Ŝ(t0|z)(3)

= 0,

where Ŝ(t|z) is a consistent estimate of the conditional
survival distribution function S(t|z). Note that there may
exist several solutions to (2), and the definition of the
solution can be modified by θα0(t0|z) = inf{θα(t0|z) :
S(t0 + θα(t0|z)|z) ≤ (1− α)S(t0|z)}, which is equivalent to
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θα0(t0|z) = S−1((1 − α)S(t0|z)|z) − t0, where S−1(θα|z) =
inf{t : S(t|z) ≤ 1 − α}. Similarly, we can define the unique

solution to (3) as θ̂α(t0|z) = Ŝ−1((1− α)Ŝ(t0|z)|z)− t0.
In this paper, we use the local Kaplan-Meier estimator

(Gonzalez-Manteiga and Cadarso-Suarez 1994) to replace
S(·|z) and it is defined as

Ŝ(t|z) =
n∏

i=1

{
1− Bi(z)∑n

j=1 Bj(z)I(Xj ≥ Xi)

}I(Xi≤t,δi=1)

if t < X(n) and Ŝ(t|z) = 0 otherwise, where the weights
Bi(z) (i = 1, 2 · · · , n) are nonnegative and add up to 1, and
X(n) = max1≤i≤n Xi. When Bi(z) = 1/n for all i, Ŝ(t|z)
reduces to the classical Kaplan-Meier estimator (Kaplan
and Meier 1985). There are two types of weights discussed
in the literature, Gasser-Müller type of weights (Van Kei-
legom and Veraverbeke 1996) and Nadaraya-Watson type
weights (Dabrowska 1989). Here, we adopt the second type
of weights, defined by the following form when z is continu-
ous

Bi(z) =

⎡⎣ n∑
j=1

K

(
z− Zj

hn

)⎤⎦−1

K

(
z− Zi

hn

)
, i = 1, · · · , n,

where K(·) is a kernel function and hn is the bandwidth
converging to zero as n goes to infinity. The choice of ker-
nel function for nonparametric estimates is not crucial to
the performance of the nonparametric estimator and we
use the product kernel for the multidimensional covariates.
For example, when p = 2, we can use kernel K(z1, z2) =
K1(z1)K2(z2), where both K1(·) and K2(·) are univariate
kernel functions with higher orders. In this paper, we adopt
the kernel K(z) = (15/32)(3−10z2+7z4)I(|z| ≤ 1) for each
covariate when p = 2, which is also used by Leng and Tong
(2014).

Remark 1. In this study, although we focused on continu-
ous covariates, an extension to discrete covaraites is possible
by taking the kernel function as an indictor function and the
weights can be defined as

Bi(z) =

⎡⎣ n∑
j=1

I(Zj = z)

⎤⎦−1

I(Zi = z), i = 1, · · · , n.

For the case of mixture covariates, for example, Z =
(VT ,WT )T , where V is a continuous vector and W is a
discrete vector. Then weights Bi(z) can be modified as

B̃i(z) =

⎡⎣ n∑
j=1

φ(zj)

⎤⎦−1

φ(zi), i = 1, · · · , n,

where φ(zi) = K
(
v−Vi

hn

)
I(Wi = w). Furthermore, for the

discrete and mixture covariates cases, the asymptotic prop-

erties of estimators should be made corresponding adjust-
ments.

3. ASYMPTOTIC PROPERTIES AND
RESAMPLING PROCEDURE

According to the definition of θ̂α(t0|z), we can prove that
it is consistent and asymptotically normal. Let fz(z) be the
marginal density function of Z. Here, we will treat z as uni-
variate and discuss the multidimensional case in Appendix.
To derive the asymptotic properties, we need the following
regularity conditions.

(C1) T and C are conditionally independent given the co-
variate Z.

(C2) The functions F (·|z) and G(·|z) have first-order
derivatives with respect to t, denoted as f(t|z) and
g(t|z), which are uniformly bounded away from in-
finity and have bounded (uniformly in t) first-order
derivatives with respect to z.

(C3) The first-order derivative of kernel function K(·) is
Lipschitz-continuous with compact support and K(·)
satisfies

∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
K2(u)du <

∞ and
∫
u2K(u)du < ∞.

(C4) The bandwidth hn satisfies hn = O(n−v), where 1/4 <
v < 1/2.

The following theorems state the consistency and asymp-
totic normality of θ̂α(t0|z), respectively.

Theorem 1. Under conditions (C1)–(C4), θ̂α(t0|z) con-
verges to θα0(t0|z) in probability for any 0 < t0 < τ .

Theorem 2. Under conditions (C1)–(C4) and 1/4 < v <

1/3, we have
√
nhn{θ̂α(t0|z)−θα0(t0|z)} converges to a nor-

mal distribution with mean 0 and covariance σ2 for a given
time point t0 and covariate z, where

σ2 =
(1− α)2S2(t0|z)

f2(t0 + θα0(t0|z)|z)
fz(z)ν

2ϕ(t0, θα0(t0|z)),

ϕ(t0, θα0(t0|z)) =
∫ t0+θα0(t0|z)

t0

−dS(u|z)
S2(u|z)(1−G(u|z))

and ν2 =
∫
K2(u)du.

It is natural to estimate the variance directly by plug-
in method, that is, replacing all the unknown quantities in
σ2 with the corresponding estimated ones. However, σ2 has
a complicated expression involving both density functions
and distribution functions. From Appendix, we note that,
uniformly in a neighborhood of θα0(t0|z),√

nhnÛ(θα(t0|z))

=
1√
nhn

n∑
i=1

Si +A
√
nhn{θα(t0|z)− θα0(t0|z)}+ op(1),

where
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Table 1. Simulation results for Cox model

Local Kaplan-Meier Cox model
CR α θα0 Bias SE SD CP Bias SE SD CP

20% 0.1 0.6634 -0.0050 0.0737 0.0763 94.4 0.0049 0.0576 0.0590 95.2

t0 = 0.1

0.3 1.2961 -0.0104 0.0855 0.0857 94.0 0.0077 0.0658 0.0663 93.8
0.5 1.8438 -0.0094 0.1011 0.0978 93.2 0.0051 0.0773 0.0748 94.6
0.7 2.4604 0.0087 0.1260 0.1181 94.4 0.0029 0.0928 0.0903 95.3
0.9 3.4395 0.0768 0.1877 0.1776 94.2 0.0021 0.1355 0.1352 93.4

40% 0.1 0.6634 -0.0063 0.0702 0.0805 96.5 0.0037 0.0557 0.0628 94.0

t0 = 0.1

0.3 1.2961 -0.0083 0.0935 0.0928 93.4 0.0099 0.0706 0.0725 94.1
0.5 1.8438 -0.0029 0.1107 0.1095 94.8 0.0104 0.0866 0.0850 93.9
0.7 2.4604 0.0220 0.1449 0.1370 93.7 0.0075 0.1094 0.1035 93.5
0.9 3.4395 0.0838 0.2245 0.2338 92.6 0.0148 0.2067 0.2180 93.9

20% 0.1 0.4071 -0.0040 0.0587 0.0672 95.0 0.0018 0.0442 0.0521 94.6

t0 = 0.5

0.3 0.9796 -0.0081 0.0881 0.0836 93.3 0.0054 0.0669 0.0652 93.9
0.5 1.5046 -0.0050 0.1007 0.0982 93.8 0.0047 0.0776 0.0748 93.9
0.7 2.1068 0.0155 0.1210 0.1196 94.2 0.0048 0.0905 0.0893 93.4
0.9 3.0733 0.0861 0.1870 0.1855 94.8 -0.0005 0.1390 0.1466 95.2

40% 0.1 0.4071 -0.0051 0.0568 0.0708 96.0 0.0015 0.0423 0.0562 95.8

t0 = 0.5

0.3 0.9796 -0.0095 0.0907 0.0909 93.9 0.0053 0.0700 0.0697 94.4
0.5 1.5046 -0.0017 0.1146 0.1094 93.8 0.0046 0.0871 0.0842 93.1
0.7 2.1068 0.0192 0.1449 0.1400 94.7 0.0106 0.1114 0.2034 94.4
0.9 3.0733 0.0817 0.2233 0.2380 94.1 0.0154 0.2190 0.2255 93.7

Note: CR is the censoring ratios; Bias, SE and SD are the bias, standard error and standard deviation of the parameter estimator; CP is the
coverage probability of the 95% confidence interval.

Si = −(1− α)S(t0|z)K
(
z − Zi

hn

)
×
[∫ t0+θα0(t0|z)

t0

I(u ≤ Xi)dS(u|z)
S2(u|z)(1−G(u|z))

+
I(t0 < Xi ≤ t0 + θα0(t0|z), δi = 1)

S(Xi|z)(1−G(Xi|z))

]
,

and A = −f(t0+ θα0(t0|z)|z). Note that σ2 = A−2V , where
V = limn→∞

1
nhn

∑n
i=1 S

2
i . Thus we can adopt the resam-

pling method proposed by Zeng and Lin (2008) to estimate
A. Meanwhile, to avoid estimating Si directly, we use the
bootstrap sample. We sketch the modified resampling pro-
cedure as follows.

Step 1 Generate B realizations of ζ which is a zero-mean
random variable independent of the data, denoted
by ζ1, · · · , ζB . Let x = (ζ1, · · · , ζB)T .

Step 2 Calculate yb =
√
nhnÛ(θ̂α(t0|z) +

√
nhnζb) for b =

1, · · · , B and denote Y = (y1, · · · , yB)T , then the
estimate of A is Â = (xTx)−1xTY .

Step 3 The variance σ2 can be estimated by Â−2V̂ and V̂
is the sample variance of

√
nhnU

∗(θ̂α(t0|z)). Here,
we draw with replacement {X∗

i , δ
∗
i , Z

∗
i }ni=1 from

the original data set {(Xi, δi, Zi)}ni=1 and calcu-

late the estimating equations
√
nhnÛ(θ̂α(t0|z)) as√

nhnU
∗(θ̂α(t0|z)). This process is repeated B times

and the sample variance of
√
nhnU

∗(θ̂α(t0|z)) can be
used to approximate V .

4. NUMERICAL STUDIES

4.1 Simulations

In this section, we conduct simulation studies to assess
the finite sample properties of the proposed estimator and
the effectiveness of the resampling procedure. We also make
a comparison between the proposed method and the method
based on auxiliary model (Lin, Zhang and Zhou, 2015).

Lin, Zhang and Zhou (2015) specified a Cox proportional
hazards model for the survival time. Thus in this simulation,
we generate the failure times from the following Cox model

λ(t|Z1, Z2) = λ0(t) exp{β1Z1 + β2Z2},

where λ0(t) = t and β1 = −0.5, β2 = 1. The covariates Z1

and Z2 are generated from normal distribution N(1, 0.52)
and uniform distribution between −1 and 0, respectively.
The censoring time follows the exponential distribution with
mean c0, which is set to be 9.4 and 3.8 and the corresponding
censoring ratios are 20% and 40%, respectively. We use both
the proposed method and the method based on Cox model
(Lin, Zhang and Zhou, 2015) to estimate different quantiles
of the residual lifetime at different time points t0 = 0.1 and
t0 = 0.5 given the covariates z0 = [1,−0.5]T . In all simula-
tions, we conduct 1,000 replicates with sample size n = 400
and resampling times B = 500. The bandwidth of the lo-
cal Kaplan-Meier estimator is h1 = h2 = n−1/6+0.01. The
results are presented in Table 1. From Table 1, we can see
that both of the methods are consistent and the resampling
method performs well because SEs and SDs are very close
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Table 2. Simulation results for additive hazards model

Local Kaplan-Meier Cox model
CR α θα0 Bias SE SD CP Bias SE SD CP

20% 0.1 0.1160 0.0003 0.0163 0.0267 95.9 0.0023 0.0128 0.0188 97.9

t0 = 0.1

0.3 0.3483 0.0017 0.0365 0.0391 95.2 0.0092 0.0288 0.0303 94.5
0.5 0.6022 0.0053 0.0494 0.0503 95.8 0.0152 0.0399 0.0392 93.1
0.7 0.9193 0.0088 0.0647 0.0646 94.6 0.0150 0.0505 0.0501 92.7
0.9 1.4582 0.0099 0.1042 0.1016 93.3 0.0128 0.0790 0.0800 93.9

40% 0.1 0.1160 0.0001 0.0170 0.0275 95.1 0.0020 0.0131 0.0195 97.4

t0 = 0.1

0.3 0.3483 0.0047 0.0393 0.0420 96.9 0.0122 0.0316 0.0325 94.7
0.5 0.6022 0.0079 0.0534 0.0558 95.5 0.0170 0.0415 0.0439 93.8
0.7 0.9193 0.0099 0.0743 0.0756 95.6 0.0178 0.0566 0.0604 94.5
0.9 1.4582 0.0031 0.1084 0.1349 93.3 0.0049 0.0870 0.0993 93.9

20% 0.1 0.0816 0.0003 0.0088 0.0225 96.9 0.0003 0.0073 0.0178 96.4

t0 = 0.5

0.3 0.2586 0.0053 0.0347 0.0401 97.0 0.0067 0.0281 0.0314 95.6
0.5 0.4672 0.0083 0.0505 0.0541 96.3 0.0085 0.0410 0.0419 92.7
0.7 0.7426 0.0078 0.0693 0.0723 95.4 0.0111 0.0573 0.0566 93.7
0.9 1.2335 0.0017 0.1041 0.1153 93.5 0.0064 0.0866 0.1135 93.6

40% 0.1 0.0816 -0.0004 0.0085 0.0103 96.7 -0.0004 0.0068 0.0101 96.2

t0 = 0.5

0.3 0.2586 0.0015 0.0319 0.0360 96.3 0.0039 0.0270 0.0363 96.7
0.5 0.4672 0.0037 0.0569 0.0645 95.2 0.0055 0.0433 0.0512 95.3
0.7 0.7426 0.0047 0.0756 0.0922 95.0 0.0072 0.0578 0.0773 94.8
0.9 1.2335 0.0031 0.0850 0.0794 96.7 0.0052 0.0721 0.0827 95.6

for all estimates and the empirical coverage probabilities of
the 95% confidence intervals are all around 95%. The es-
timates based on the Cox model have better properties in
terms of smaller biases and SDs(SEs), and this is reasonable
since it uses the right model while the local Kaplan-Meier
estimator doesn’t make use of the information of the model.
However, the estimates based on local Kaplan-Meier esti-
mator are also considered acceptable.

In the second simulation, we consider the additive haz-
ards model for the failure time

λ(t|Z1, Z2) = t+ β1Z1 + β2Z2,(4)

where β1 = 0.5 and β2 = −0.5. The covariates Z1 and Z2 are
generated using the same methods as above. We also gen-
erate the censoring variable from exponential distribution
with mean 3.2 or 1.3. We use the two methods to estimate
the quantiles residual lifetime but we still take model (4) as
a Cox model while we apply the method of Lin, Zhang and
Zhou (2015). We summarize the results in Table 2. This
table shows that the biases of the proposed estimates are
much smaller than that of the estimates based on the Cox
model because of model misspecification, which means that
the proposed method provides more accurate estimates un-
der such circumstances. Thus we propose to use the local
Kaplan-Meier estimator if the underlying model is unknown.

In the third simulation, we consider the case with more
covariates. The failure times are generated from the follow-
ing Cox model

λ(t|Z1, Z2) = λ0(t) exp{β1Z1 + β2Z2 + β3Z3},

where λ0(t) = t and β1 = −1, β2 = 1.5, β3 = −0.5. The
covariates Z1 and Z2 are generated from normal distribu-
tion N(1, 0.52) and uniform distribution between 0 and 1,
respectively. And the covariate Z3 is generated from ex-
ponential distribution with mean 0.5. The censoring vari-
able is also generated form the exponential distribution
with mean 7.5 and 3, and the corresponding censoring
ratios are 20% and 40%, respectively. We use the pro-
posed method to estimate different quantiles of the resid-
ual lifetime at the time point t0 = 0.5 given the covariates
z0 = [1, 0.5, 0.5]T . And the true values of θα(t0|z0) for α =
0.1, 0.3, 0.5, 0.7, 0.9 are 0.2729, 0.6942, 1.0924, 1.5543, 2.3005,
respectively. In this simulation, the sample size is n = 400.
The bandwidth is h1 = h2 = h3 = n−1/9+0.01 for the local
Kaplan-Meier estimator. And we plot the empirical distri-
bution for the estimates of quantile residual lifetime based
on 1,000 replications in Figure 1. From this figure, we can
see that the empirical distribution of the estimates is nor-
mal distribution and the estimates are all unbiased because
the mean of the normal distribution and the true value of
θα(t0|z0) are very close. This indicates that the proposed
method performs well for the case with more covariates.

4.2 Real data analysis

We illustrate the proposed method by analyzing HIV data
(Hosmer and Lemeshow, 1998). This dataset collected infor-
mation of 100 HIV positive subjects using a follow-up study.
The subjects were enrolled in the study at different time
from January 1, 1989 to December 31, 1991 and they were
followed until death from AIDS or AIDS-related complica-
tions, until the subject was lost to follow-up or to the end
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Figure 1. Empirical distribution of the estimates, the
censoring ratios of the two figures are 20% and 40%,

respectively.

of the study on December 31, 1995. Information recorded
for the subjects included the follow-up time (the number
of months between the entry date and the end date) and
covariates such as Age (in years) and Drug indicating prior
drug use (D=1=Yes, D=0=No). There were 20 subjects cen-
sored and the censoring indicators were also recorded. In this
study, we are interested in the trend of the quantile resid-
ual lifetime over quantile and time. We use the proposed
method and Cox model-based method to estimate θα(t|z0).
To apply the proposed method, we use the Gaussian kernel
for the covariate Age and the bandwidth h = n−1/3+0.01 for
the local Kaplan-Meier estimator.

First, we plot the curve of quantile residual lifetime func-
tion over quantile given time point t0 = 1 or 5 and covariate
Age = 36 for D = 0 or 1 in Figure 2. Here, the sample
mode and median of the survival time are 1 and 5, respec-

Figure 2. Quantile residual lifetime for HIV data.

tively, and the mean of Age is 36. From Figure 2 we can
see that the estimates using the two methods almost agree
with each other. For a given time point and covariates, the
quantile residual lifetime function increases monotonically
with increasing quantiles. Another interesting phenomena
is that the quantile residual lifetime function curve for no-
drug group is above that of drug group given other informa-
tion, which means that the residual lifetime for the subjects
without drug history is longer than that for the patients
with drug history, which also coincides with the results of
Lin, Zhang and Zhou (2015). Moreover, the difference tends
to be more marked among big quantiles. Second, we study
the trend of the quantile residual lifetime over time point
by plotting the median residual lifetime curve over t given
covariates, see Figure 3. From this figure we find that the
median residual lifetime is not a monotonic function over
time and it indicates that subjects who suffered from AIDS
for a short or long time have a relatively shorter residual
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Figure 3. Median residual lifetime for HIV data.

lifetime. Figure 3 also shows that drug experience is adverse
to the residual lifetime.

5. DISCUSSION

In studies of time to an event, quantile residual lifetime
is often of interest in virtue of its advantages over mean
and median residual lifetime. In presence of covariates, the
conditional quantile residual lifetime is proposed to describe
the effect of covaraites on the quantile residual lifetimes at a
given time point. In this study, we propose a nonparametric
method to infer the conditional quantile residual lifetime by
solving an estimating equation, which involves estimating
the conditional survival time. To get rid of the constraint of
modeling the survival time, the loacl Kaplan-Meier estima-
tor is employed and leads to a wider application. We also es-
tablish the asymptotic properties including both consistency
and asymptotic normality of the proposed estimator. How-
ever, the asymptotic variance involves the value of density

of covariates, which is computationally demanding, and we
adopt resampling method proposed by Zeng and Lin (2008)
to estimate it. At last, we conduct some simulations to assess
the finite-sample performance of the estimator and apply the
proposed method to HIV survival data. For future research,
it is interesting to generalize the corresponding problems
with discrete or mixture covariates. In addition, as we did
not consider the case with high dimensional covariates, it
deserves further study to develop appropriate dimension re-
duction methods for the conditional survival function before
estimating quantile residual lifetime. Besides, we focus on
the case of right-censored data, but lifetime data sometimes
are length-biased or left-truncated besides right-censored.
So it is also worth for further investigation to apply this
approach to the case with more complex data structure.

APPENDIX

In this section, we prove the main results in section 3.
First, we present a lemma for the local Kaplan-Meier es-
timator which is also presented in Gonzalez-Manteiga and
Cadarso-Suarez (1994).

Lemma 1. If conditions (C2)–(C4) hold and p = 1, then
we have

sup
t

sup
z

|Ŝ(t|z)− S(t|z)|

= Op{(logn)1/2n−1/2+v/2 + n−2v},
Ŝ(t|z)− S(t|z)

=
1

nhn

n∑
i=1

K

(
z − Zi

hn

)
ξ(Xi, δi, t, z)

+Op

{(
logn

nhn

)3/4

+ h2
n

}
,(A.1)

where for i = 1, 2, · · · , n,

ξ(Xi, δi, t, z) = −S(t|z)
[∫ Xi∧t

0

dS(u|z)
S2(u|z)(1−G(u|z))

+
I(Xi ≤ t, δi = 1)

S(Xi|z)(1−G(Xi|z))

]
,

for t < τ(z) with infz(1−H(τ(z)|z)) > 0.

Proof of Theorem 1. Lemma 1 shows that supt |Ŝ(t|z) −
S(t|z)| P→ 0 for any given covariate z, and it yields that

supθα(t0|z) |Û(θα(t0|z))−U(θα(t0|z))| P→ 0. For a given time
point and covariate z, there is an unique solution θα0(t0|z)
such that U(θα(t0|z)) = 0. Thus θ̂α(t0|z) is the unique solu-
tion of Û(θ̂α(t0|z) = 0 as n → ∞. If there exists δ > 0 such

that |θ̂α(t0|z)− θα0(t0|z)| > δ, we have |U(θ̂α(t0|z))| > c0 >

0 for a constant c0. But |Û(θ̂α(t0|z))−U(θ̂α(t0|z))| = op(1),

thus |Û(θ̂α(t0|z))| > c0, which is contradictory with the def-

inition of estimate. Thus θ̂α(t0|z) is consistent.
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Proof of Theorem 2. First, we show that

sup
|θα(t0|z)−θα0(t0|z)|≤ε

|Û(θα(t0|z))− U(θα(t0|z))

−Û(θα0(t0|z)) + U(θα0(t|z))|
= op(1/

√
nhn).(A.2)

To simplify the notations, we use θ and θ0 to denote the
parameter and true parameter, respectively. The estimate is
consistent and we just need to focus on θ in Θε = {θ : |θ −
θ0| ≤ ε}. According to the definition of estimating equation
(2) and (3), we get that |Û(θ) − U(θ) − Û(θ0) + U(θ0)| =
|Ŝ(t0+θ|z)−S(t0+θ|z)−Ŝ(t0+θ0|z)+S(t0+θ0|z)|. By (A.1)
and some calculation, we have the following expression

Ŝ(t0 + θ|z)− S(t0 + θ|z)− Ŝ(t0 + θ0|z)
+S(t0 + θ0|z)

= S(t0 + θ0|z)
1

nhn

n∑
i=1

K

(
z − Zi

hn

)
×[η(Xi, δi, t0 + θ0, z)− η(Xi, δi, t0 + θ, z)]

+ {S(t0 + θ0|z)− S(t0 + θ|z)} 1

nhn

×
n∑

i=1

K

(
z − Zi

hn

)
η(Xi, δi, t0 + θ, z)

+Op

{(
log n

nhn

)3/4

+ h2
n

}

=: I1 + I2 +Op

{(
logn

nhn

)3/4

+ h2
n

}
,

where η(Xi, δi, t, z) =
∫Xi∧t

0
dS(u|z)

S2(u|z)(1−G(u|z)) +
I(Xi≤t,δi=1)

S(Xi|z)(1−G(Xi|z)) and it is easy to show that

E(η(Xi, δi, t, z)) = 0. Thus we have E(I1) = 0. Next, we
calculate the variance of I1. Without loss of generality, we
assume that θ ≤ θ0 and denote that ψ(t0+θ, t0+θ0, z, Zi) =

E

{[∫ t0+θ0
t0+θ

I(u≤Xi)dS(u|z)
S2(u|z)(1−G(u|z)) +

I(t0+θ<Xi≤t0+θ0,δi=1)
S(Xi|z)(1−G(Xi|z))

]2∣∣∣Zi

}
,

which is continuous with respect to θ. And it is easy to
show that

ψ(t0 + θ, t0 + θ0, z, z) =

∫ t0+θ0

t0+θ

−dS(u|z)
S2(u|z)(1−G(u|z)) ,

which is o(1) when θ is near θ0. By some calculation, we get
that

V ar(I1)

= S2(t0 + θ0|z)
1

nh2
n

E

{
K2

(
z − Zi

hn

)
×[η(Xi, δi, t0 + θ0, z)− η(Xi, δi, t0 + θ, z)]2

}
= S2(t0 + θ0|z)

1

nh2
n

E

{
K2

(
z − Zi

hn

)

×ψ(t0 + θ, t0 + θ0, z, Zi)}

= S2(t0 + θ0|z)
1

nh2
n

∫
K2

(
z − u

hn

)
×ψ(t0 + θ, t0 + θ0, z, u)fz(u)du

=
1

nhn
S2(t0 + θ0|z)ψ(t0 + θ, t0 + θ0, z, z)fz(z)ν

2

+op(1)

= op(1/nhn),

for |θ − θ0| ≤ ε, where ν2 =
∫
K2(u)du. Thus, we get that

I1 = op(1/
√
nhn).

Now, we prove that I2 = op(1/
√
nhn). As F (·|z) is con-

tinuous, we have

|S(t0 + θ0|z)− S(t0 + θ|z)| = o(1),

for θ ∈ Θε. In addition, Corollary 2.1 of Gonzalez-Manteiga
and Cadarso-Suarez (1994) yields that

1

nhn

n∑
i=1

K

(
z − Zi

hn

)
η(Xi, δi, t0 + θ, z) = Op(1/

√
nhn),

which means that I2 = op(1/
√
nhn). Finally, we proved

(A.2).

By (A.2) and the fact that θ̂α(t0|z) is consistent, we get
that √

nhnÛ(θ̂α(t0|z))
=

√
nhn(U(θ̂α(t0|z))− U(θ0)) +

√
nhnÛ(θ0) + op(1)

= −f(t0 + θ0|z)
√

nhn(θ̂α(t0|z)− θ0) +
√

nhnÛ(θ0)

+op(1),

thus √
nhn(θ̂α(t0|z)− θ0)

=
1

f(t0 + θ0|z)
√

nhnÛ(θ0) + op(1),

where √
nhnÛ(θ0)

=
√
nhn{Ŝ(t0 + θ0|z)− S(t0 + θ0|z)}

−(1− α)
√

nhn{Ŝ(t0|z)− S(t0|z)}

=
1√
nhn

n∑
i=1

K

(
z − Zi

hn

)
[ξ(Xi, δi, t0 + θ0, z)

−(1− α)ξ(Xi, δi, t0, z)] + op(1)

= −(1− α)S(t0|z)
1√
nhn

n∑
i=1

K

(
z − Zi

hn

)

×
[ ∫ t0+θ0

t0

I(u ≤ Xi)dS(u|z)
S2(u|z)(1−G(u|z))

+
I(t0 < Xi ≤ t0 + θ0, δi = 1)

S(Xi|z)(1−G(Xi|z))

]
+ op(1).
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By the central limit theorem,
√
nhn(θ̂α(t0|z)−θ0) converges

to a normal distribution with mean zero and variance σ2,
where

σ2 =
(1− α)2S2(t0|z)
f2(t0 + θ0|z)

ψ(t0, t0 + θ0, z, z)fz(z)ν
2,

in which

ψ(t0, t0 + θ0, z, z) =

∫ t0+θ0

t0

−dS(u|z)
S2(u|z)(1−G(u|z)) .

For the multidimensional covariates, the local Kaplan-
Meier estimate Ŝ(·|z) may have slower convergence rate.
Here, we apply the results in Leng and Tong (2014). To

prove the consistency of θ̂α(t0|z), we need the uniform con-
sistency of Ŝ(·|z), and the conditions need to be modified as
follows:

(C3’) The kernel fucntion K has a bounded compact sup-
port and total variation. For j = 1, 2, · · · , p, K satis-
fies

∫
zjK(z)dz = 0

(C4’) The bandwidth hn satisfies hn = O(n−v), where 0 <
v < 1/p.

In the proof of Theorem 2, (A.1) is needed for the univariate
case, but it doesn’t hold for multidimensional case. If we
adopt the higher order kernels, we have the following results:

Ŝ(t|z)− S(t|z)

=
1

nhp
n

n∑
i=1

K

(
z− Zi

hn

)
ξ(Xi, δi, t, z) + rn(t, z),

where rn(t, z) = Op

{(
logn
nhp

n

)3/4

+ hq
n

}
= op(n

−1/2) if the

following conditions replace the original conditions (C2)–
(C4).

(C3”) The kernel function K(·) is bounded and has order
q with bounded compact support in Rp. It satisfies∫
K(z)dz = 1,

∫
zu1
1 · · · zup

p K(z1, · · · , zp)dz = 0 if
0 	=

∑p
j=1 uj < q and

∫
zu1
1 · · · zup

p K(z1, · · · , zp)dz 	=
0 if

∑p
j=1 uj = q.

(C2”) The first q partial derivatives with respect to z of
the density function fz(z) are uniformly bounded for
z ∈ Z, and f(t|z) and g(t|z) are uniformly bounded
away from infinity and have bounded (uniformly in
t) first q order partial derivatives with respect to z.

(C4”) The bandwidth hn satisfies hn = O(n−v), where
1/2q < v < 1/3p.

Theorem 3. Under conditions (C1), (C2), (C3’) and
(C4’), Theorem 1 still holds for multidimensional case. And

if conditions (C1) and (C2”)–(C4”) hold,
√
nhp

n(θ̂α(t0|z)−
θα0(t0|z)) converges to a normal distribution with mean zero
and variance σ2.
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