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Two asymptotic approaches for the exponential
signal and harmonic noise in Singular Spectrum
Analysis

Elizaveta Ivanova and Vladimir Nekrutkin
∗

The general theoretical approach to the asymptotic ex-
traction of the signal series from the perturbed signal with
the help of Singular Spectrum Analysis (briefly, SSA) was
already outlined in Nekrutkin 2010, SII, v. 3, 297–319.

In this paper we consider the example of such an analysis
applied to the increasing exponential signal and the sinu-
soidal noise. It is proved that if the signal rapidly tends to
infinity, then the so-called reconstruction errors of SSA do
not uniformly tend to zero as the series length tends to in-
finity. More precisely, in this case any finite number of last
terms of the error series does not tend to any finite or infinite
values.

On the contrary, for the “discretization” scheme with the
exponential signal bounded from above, all elements of the
error series tend to zero. This effect shows that the dis-
cretization model can be an effective tool in the theoretical
SSA considerations with increasing signals.
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1. INTRODUCTION

Let us start with the general construction described in [2].
Consider the real-valued “signal” series FN = (x0, . . . ,
xN−1) and choose 1 < L < N − 1. Transfer the series
FN into the Hankel “trajectory” L×K-matrix H with en-
tries

(
H
)
i,j

= xi+j−2, where 1 ≤ j ≤ L, 1 ≤ j ≤ K and

L+K = N + 1.

It is supposed that d
def
= rankH < min(K,L). Denote

U0 the eigenspace corresponding to the zero eigenvalue of

the matrix A
def
= HHT. Then d = dimU

⊥
0 and dimU0 =

K − d > 0.
Let FN (δ) = FN + δEN be the perturbed signal, where

EN = (e0, . . . , eN−1) is a certain “noise” series and δ stands
for a formal perturbation parameter. Then we come to the
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perturbed matrix H(δ)=H+δE with the Hankel matrix E
produced from the noise series EN .

If δ is sufficiently small, then the linear space U
⊥
0 (δ)

spanned by d main left singular vectors of the matrix
H(δ) can serve as an approximation to U

⊥
0 . The quality of

this approximation can be measured by the spectral norm∥∥P⊥
0 (δ) − P⊥

0

∥∥, where P⊥
0 and P⊥

0 (δ) are orthogonal pro-
jections on the linear spaces U⊥

0 and U
⊥
0 (δ) correspondingly.

Note that
∥∥P⊥

0 (δ)−P⊥
0

∥∥ is nothing but the sine of the largest
principal angle between unperturbed and perturbed signal
subspaces U⊥

0 and U
⊥
0 (δ).

It is well-known that a lot of subspace-based methods
of signal processing are relying on the close proximity of
U

⊥
0 and U

⊥
0 (δ). Still the main goal of Singular Spectrum

Analysis (briefly, SSA) is the approximate extraction (or
“reconstruction”) of the signal FN from the perturbed signal
FN (δ), see [1] for a detailed description.

As it is mentioned in [2, sect. 5], the analysis of the errors
of this approximation can be expressed in such a manner.
First of all, the “hankelization” (in other terms, “diagonal
averaging”) operator S is defined.

If the hankelization operator S is applied to some L×K
matrix Y = {yk,�}L,K

k=1,�=1, then the resulting L×K matrix
SY has equal values denoted by (SY)j on its anti-diagonals
{(k, �) : such that k + � − 2 = j}, where j = 0, . . . , N − 1,
k = 1, . . . , L and � = 1, . . . ,K. Besides, (SY)j equals to the
average of inputs yk,� on this anti-diagonal.

Then, under denotation

Δδ(H) =
(
P⊥

0 (δ)−P⊥
0

)
H(δ) + δP⊥

0 E,(1.1)

the series r0, . . . , rN−1 with

rj = rj(N,L, δ) =
(
SΔδ(H)

)
j

(1.2)

is the series of the reconstruction SSA errors.
The peculiarity of the approach introduced in [2] can be

explained as follows. The standard way is to fix N and to
consider the small perturbation parameter δ. (See for ex-
ample [3]–[6], where this method is used for several signal-
subspace methods including SSA.) Thus the problem be-
comes linearized.

As it is shown in [2], the general perturbation theory,
going back to [7], allows to consider fixed δ and big N . Since
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Figure 1. Gasoline demand, monthly Jan 1960 – Dec 1975,
gallon millions, Ontario.

SSA mainly deals with long signals, this approach seems to
be more close to practice.

This paper is devoted to the example of such an analysis
applied to the exponentially growing signal and the har-
monic noise. This model is not so far from real-life series.
For example, the series “Gasoline demand” (see Fig. 1, data
is taken from [8]) can be approximated by the sum of two
addends: the increasing trend of the exponential form and
the annual periodicity.

Note that both trend and periodicity in Fig. 1 are pro-
duced by SSA with L = N/2 = 96. Naturally, the trend is
reconstructed by the first eigentriple of the decomposition,
while the periodicity is produced with the help of eigen-
triples 2 and 3.

In this paper we deal with the following construction.
A certain interval [0, T ] is divided into N intervals of length
Δ = T/N , and we consider the signal xn = eθΔn and the
noise en = cos(ξn+ϕ), so that the perturbed signal has the
form

fn = eθΔn + δ cos(ξn+ ϕ), n = 0, . . . , N − 1,(1.3)

where θ > 0, ξ = 2πω with ω ∈ (0, 1/2), and ϕ ∈ [0, 2π).

As in [2], we are interested in the behavior of the re-
construction SSA errors for long signals. For this goal we
consider two asymptotic schemes as N → ∞.

1. The parameter Δ is fixed, further we put Δ = 1. Then
T = N → ∞ and (1.3) has the form

fn = an + δ cos(ξn+ ϕ), n = 0, . . . , N − 1(1.4)

with a = eθ > 1.

2. The parameter T is fixed and Δ = T/N → 0. Then we
come to the triangle array of the series

fn = aTn/N + δ cos(ξn+ ϕ), n = 0, . . . N − 1(1.5)

with N ≥ 1 and the same a. Further we apply the term
“discretization” for this scheme.

Note that in both cases d = dimU
⊥
0 = rankH = 1 for

any L,K > 1. Yet there are considerable differences between
(1.4) and (1.5). In particular, the signal of the series (1.4)
tends to infinity as N → ∞, while aTn/N < aT = const
for (1.5). The discussion on the theoretical results for both
models as well as on their relation to real-life SSA problems
can be found in Section 4 at the end of the paper.

For both models, our interest lies in the asymptotic be-
havior, as N → ∞, of both

∥∥P⊥
0 (δ) − P⊥

0

∥∥ and the recon-
struction SSA errors. Since the model (1.4) corresponds to
the style of all examples in [2], several results about this
series can be borrowed from this paper.

In particular, see [2, sect. 3.2.1], it is already shown for
the model (1.4), that under the conditions N → ∞ and
min(L,K) → ∞,

∥∥P⊥
0 (δ)−P⊥

0

∥∥ = O(Na−N ) and

∥∥P⊥
0 (δ)−P⊥

0 − δV
(1)
0

∥∥ = O(N2a−2N )(1.6)

for any δ ∈ R, where

V
(1)
0 = P0EHTS0 + S0HETP0(1.7)

is the linear term of the expansion of P⊥
0 (δ)−P⊥

0 into power
series (see [2, theor. 2.1]), P0 is the orthogonal projector on
the space U0, and S0 stands for the pseudoinverse of HHT.

Besides,
∥∥V(1)

0 ‖ = O
(
Na−N

)
.

Note that in the case L ∼ αN with α ∈ (0, 1) (see [9] for
the discussion on this choice), more careful calculations lead
to the precise asymptotic

(1.8)

aN√
N

∥∥P⊥
0 (δ)−P⊥

0

∥∥ →

|δ| a
2 − 1

a

√
α(a2 − 1)

2(a2 + 1− 2a cos ξ)

as well as to more precise inequality∥∥P⊥
0 (δ)−P⊥

0 − δV
(1)
0

∥∥ = O(N3/2a−2N )(1.9)

instead of (1.6). Since we omit here proofs of both (1.8) and
(1.9), we use the inequality (1.6) for the series (1.4) in all
further considerations.

Section 2 of the paper is devoted to the reconstruction
errors rj = rj(N) for the model (1.4). Proposition 2.1 shows
that rj → 0 as N → ∞ if, roughly speaking, j is separated
from N .

On the contrary, if j = j(N) is close to N , then rj does
not converge to zero. Moreover, the asymptotic behavior of
rj in this case depends on the rationality/irrationality of the
frequency ω = ξ/2π, see propositions 2.3 and 2.4.

The model (1.5) is studied in Section 3. It is proved in
Proposition 3.1 that in this case

∥∥P⊥
0 (δ)−P⊥

0

∥∥ = O(N−1)
as N → ∞ for the sufficiently small δ.
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Unlike the model (1.4), the reconstruction errors rj in the
discretization scheme tend to zero for all j, see Proposition
3.2. Thus the model (1.5) seems to be more practical than
(1.4).

In what follows, we always assume the regular behavior
of the parameter L = L(N) as N → ∞. This means that
L ∼ αN with α ∈ (0, 1). Still several inequalities below are
valid under less restrictive condition min(L,K) → ∞.

2. RECONSTRUCTION ERRORS FOR THE
MODEL (1.4)

Consider the series (1.4) and suppose that L ∼ αN with
α ∈ (0, 1) as N → ∞. Our aim is to study the asymptotic
properties of the reconstruction errors (1.1), (1.2) for the
perturbed series (1.4). Since the result of the reconstruction
does not change if we put HT instead of H, we assume that
L ≤ K.

The base of the approach is the well-known inequality
‖A‖max ≤ ‖A‖, where ‖A‖ stands for the spectral norm
of the matrix A and ‖A‖max = max |aij | for the matrix A
with entries

(
A
)
i,j

= aij . Therefore, if ‖A‖ is small, then

‖SA‖max is small as well.

Thus we rewrite (1.1) in the form

(2.1)
Δδ(H) =

(
P⊥

0 (δ)−P⊥
0 − δV

(1)
0

)
H(δ)+

δP⊥
0 E+ δV

(1)
0

(
H+ δE

)
.

It is easy to check that ‖E‖ = O(N), ‖H‖ = O(aN ) and

‖V(1)
0 E‖ = O(N2a−N ). Applying (1.6), we see that

∥∥(P⊥
0 (δ)−P⊥

0 − δV
(1)
0

)
H(δ)

∥∥ = O(N2a−N ).

This means that the reconstruction errors have the form

rj = rj(N) = δ
(
S(V(1)

0 H+P⊥
0 E)

)
j
+O(N2a−N )(2.2)

with j = 0, . . . , N − 1.

2.1 Reconstruction errors rj(N) in the case
N − j → ∞

Let us start with the case when j = j(N) is not close
to N .

Proposition 2.1. Let rj = rj(N) be defined by (2.2). If
L ∼ αN as N → ∞ with α ∈ (0, 1) and N − j → ∞, then
rj(N) → 0.

Proof. All we need is to investigate the asymptotical behav-
ior of the series

(2.3)
ρj = ρj(N)

def
=

(
S(V(1)

0 H+P⊥
0 E)

)
j
=(

S(P0EHTS0H
)
j
+

(
S(P⊥

0 E)
)
j
.

As it was already mentioned, it is sufficient to consider
the case L ≤ K. First of all, for fixed ξ ∈ (0, π), b > 1,
ψ ∈ [0, 2π) and integer M ≥ 1 denote

ΦM (b, ψ) =

M−1∑
j=0

bj cos(ξj + ψ)(2.4)

and

ΥT,M (b, ψ) =

T−1∑
j=0

bjΦM (b, ξj + ψ).(2.5)

Evidently,

|ΦM (b, ψ)| ≤ (bM − 1)/(b− 1) and

|ΥT,M (b, ψ)| ≤ (bM − 1)(bT − 1)

(b− 1)2
.(2.6)

Under the denotation WM = (1, a, . . . , aM−1)T,

P⊥
0 =

WLW
T
L

‖WL‖2
and S0 =

WLW
T
L

‖WL‖4‖WK‖2 ,(2.7)

and therefore

(2.8)

P⊥
0 E+V

(1)
0 H =

WLW
T
L

‖WL‖2
E+(

I− WLW
T
L

‖WL‖2
)
EHT WLW

T
L

‖WL‖4‖WK‖2 H =

WLW
T
LE

‖WL‖2
+
EWKWT

K

‖WK‖2 −ΥL,K(a, ϕ)
WLW

T
K

‖WL‖2‖WK‖2 =

J1 + J2 + J3.

Since
(
S(WLW

T
K)

)
j
= aj and

‖WM‖2 = (a2M − 1)/(a2 − 1),

then

∣∣∣(S(J3)
)
j

∣∣∣ = |ΥL,K(a, ϕ)| aj(a2 − 1)2

(a2L − 1)(a2K − 1)
≤

(aL − 1)(aK − 1)

(a− 1)2
aj(a2 − 1)2

(a2L − 1)(a2K − 1)
=

aj(a+ 1)2

(aL + 1)(aK + 1)
.

Let us now check J1 and J2. In view of the equalities

EWK =
(
ΦK(a, ϕ), . . . , ΦK(a, (L− 1)ξ + ϕ)

)T
(2.9)

and ETWL =
(
ΦL(a, ϕ), . . . , ΦL(a, (K − 1)ξ + ϕ)

)T
, we get
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that

(2.10)

(
S(WLW

T
LE)

)
j
=⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

j + 1
Y (0, j) for 0 ≤ j < L,

1

L
Y (0, L) for L ≤ j < K,

1

N−j
Y (j −K + 1, N −K) for K ≤ j < N,

with Y (i, j) =
∑j

k=i a
kΦL(a, (j − k)ξ + ϕ). In the same

manner, (
S(EWKWT

K)
)
j
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

j + 1

j∑
k=0

aj−kΦK(a, kξ + ϕ) for 0 ≤ j < L,

1

L

L−1∑
k=0

aj−kΦK(a, kξ + ϕ) for L ≤ j < K,

1

N − j

N−K∑
k=j−K+1

aj−kΦK(a, kξ + ϕ) for K ≤ j < N.

Due to (2.6), ∣∣∣(S(WLW
T
LE)

)
j

∣∣∣ ≤⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

j + 1

aj+1 − 1

a− 1

aL − 1

a− 1
for 0 ≤ j < L,

1

L

(
aL − 1

a− 1

)2

for L ≤ j < K,

aj−K+1

N−j

aN−j − 1

a− 1

aL − 1

a− 1
for K ≤ j < N.

and ∣∣∣(S(EWKWT
K)

)
j

∣∣∣ ≤⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

j + 1

aj+1 − 1

a− 1

aK − 1

a− 1
for 0 ≤ j < L,

aj

L

aL − 1

aL
1

a− 1

aK − 1

a− 1
for L ≤ j < K,

aj−N+K

N − j

aN−j − 1

a− 1

aK − 1

a− 1
for K ≤ j < N.

Therefore,

|ρj | ≤
1

j + 1

a+ 1

a− 1

aj+1 − 1

aL + 1
+

1

j + 1

a+ 1

a− 1

aj+1 − 1

aK + 1
+

aj(a+ 1)2

(aL + 1)(aK + 1)

for 0 ≤ j < L,

|ρj | ≤
1

L

a+ 1

a− 1

aL − 1

aL + 1
+

1

L

a+ 1

a− 1

aL − 1

aL
aj

aK + 1
+

aj(a+ 1)2

(aL + 1)(aK + 1)

for L ≤ j < K, and

|ρj | ≤
a+ 1

a− 1

1

N − j

aL − aj−N+L

aL + 1
+

a+ 1

a− 1

1

N − j

aK − aj−N+K

aK + 1
+

aj(a+ 1)2

(aL + 1)(aK + 1)

if K ≤ j < N . Thus there exists a constant C such that for
N big enough

|ρj | ≤ C

⎧⎪⎨
⎪⎩
a−(L−j)/(j + 1) for 0 ≤ j < L,

1/L for L ≤ j < K,

1/(N − j) + a−(N−j) for K ≤ j < N.

(2.11)

The proof is complete.

2.2 Reconstruction errors rj(N) in the case
N − j = O(1)

Consider now the case j = N − 1 − � with � = O(1).
Denote cosk(φ) = cos(kξ + φ), sink(φ) = sin(kξ + φ),

G(a, ξ) =
a2 − 1

a(a2 + 1− 2a cos ξ)
,

and

ZN (a, ξ, ϕ, �) = C1(�) cosN−1(ϕ) + C2(�) sinN−1(ϕ)

with

(2.12)

C1(�) =
2

1 + �

(
a cos(�ξ)− a−�cos ξ

)
−

(a2 + 1− 2a cos ξ − 2 sin2 ξ)G(a, ξ)a−� and

C2(�) =
2

1 + �

(
a sin(�ξ) + a−�sin ξ

)
−

2 sin ξ(a− cos ξ) G(a, ξ)a−� .

Proposition 2.2. If � = O(1) then under the conditions of
Proposition 2.1,

rN−1−� = δ G(a, ξ)ZN (a, ξ, ϕ, �) +O(a−L).(2.13)

Proof. The proof is based on formulas (2.3) and (2.8) pre-
sented in Proposition 2.1.

For fixed ξ put P (a, n, ψ) = a cosn−1(ψ) − cosn(ψ).
Straightforward calculations show that

ΦM (b, ψ) =
bMP (b,M,ψ)

b2 + 1− 2b cos ξ
+O(1)(2.14)

for fixed b and M → ∞. (Note that ΦM is defined in (2.4).)
Denote ψn = (K − � − n − 1)ξ + ϕ, then P (a, L, ψn) =

P (a,N − n− �, ϕ) and

�∑
n=0

a−nP (a,N − n− �, ϕ) = a cosN−1−�(ϕ)− cosN (ϕ)a−�.
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Therefore, taking into account that K ≤ j = N − 1 − �
and applying (2.14) with b = a, M = L and ψ = ψn, we get
from (2.10) (

S(WLW
T
L E)

)
N−1−�

‖WL‖2
=

1

‖WL‖2
1

�+ 1

N−K∑
k=N−K−�

akΦL(a, (N − 1− �− k)ξ + ϕ) =

�∑
n=0

ΦL(a, (K − �− n− 1)ξ + ϕ)
aN−K−n(a2 − 1)

(�+ 1)(a2L + 1)
=

a2 − 1

�+ 1

�∑
n=0

aL−1−n
(

aLP (a, L, ψn)

a2+1−2a cos ξ
+OL(1)

)
1

a2L − 1
=

G(a, ξ)

a(�+ 1)

�∑
n=0

a−nP (a,N − n− �, ϕ) +O(a−L) =

=
G(a, ξ)

1 + �

(
a cosN−�(ϕ)− cosN (ϕ)a−�

)
+O(a−L).

In the same manner,

(SEWKWT
K)N−1−�

‖WK‖2 =

G(a, ξ)

1 + �

(
a cosN−1−�(ϕ)− cosN (ϕ)a−�

)
+O(a−K).

Now we pass to ΥL,K(a, ϕ) which is defined in (2.5). It is
easy to check that if b > 1 and T,M → ∞, then

ΥT,M (b, ψ) =
(bS+1)C(b, S, ψ)

(b2 + 1− 2b cos ξ)2
+O(bmin{T,M}),

where S = T +M − 1 and

C(b, S, ψ) = b2 cosS−1(ψ)− 2b cosS(ψ) + cosS+1(ψ).

Therefore,

aN−1−�ΥL,K(a, ϕ)

‖WL‖2‖WK‖2 =

a2N−�C(a,N, ϕ)

(a2+1−2a cos ξ)2
(a2−1)2

a2N+2(1−a−2L)(1−a−2K)
+O(a−L) =

G2(a, ξ)

a�
C(a,N, ϕ) +O(a−L).

Since

a cosN−1−�(ϕ)− cosN (ϕ)a−� =(
a cos(�ξ)−a−� cos ξ

)
cosN−1(ϕ)+(

a sin(�ξ) + a−� sin ξ
)
sinN (ϕ)

and

C(a,N, ϕ) = (a2 − 2a cos ξ + cos(2ξ)) cosN−1(ϕ)+

2 sin ξ(a− cos ξ) sinN−1(ϕ),

we get the result in view of (2.2).

To analyze the behavior of the right-hand side of (2.13)
more precisely, we need some more considerations.

First of all, it is worth mentioning that C1(�)C2(�) 
= 0
for any fixed �. Thus we can rewrite the result of Proposition
2.2 in the form

rN−1−� = δFN (�) +O(a−L),(2.15)

where

FN (�) = D(�) sin
(
(N − 1)ξ + ϕ1(�)

)
(2.16)

with

D(�) =
a2 − 1

a(a2 + 1− 2a cos ξ)

√
C2

1 (�) + C2
2 (�)(2.17)

and

ϕ1(�) = arccos

(
C2(�)√

C2
1 (�) + C2

2 (�)

)
+ ϕ.

Remind that ξ = 2πω with ω ∈ (0, 1/2). It is natural that
the asymptotic behavior of rN−1−� depends on the proper-
ties of the frequency ω.

Suppose that ω = p/q, where p and q are coprime nat-
ural numbers. For fixed 0 ≤ k < q and � ≥ 0 consider the

sequence N
(k)
m = mq + k + 1, m ≥ 1. Since

sin
(
2π(N (k)

m − 1)p/q + ϕ1(�)
)
= sin

(
2πkp/q + ϕ1(�)

)
,

then

r
N

(k)
m −1−�

→ D(�) sin
(
2πkp/q + ϕ1(�)

)
(2.18)

as m → ∞.

Proposition 2.3. Let the conditions of Proposition 2.2 be
fulfilled. Assume that � is fixed and that ω is a rational num-
ber. Denote τ the number of limit points of the series rN−1−�

as N → ∞. Then τ ≥ 2.

Proof. Since D(�) > 0, it is sufficient to examine the ex-
pressions S(k) = sin(2πkp/q + ϕ1(�)) with 0 ≤ k < q. If
S(k) = s = const for all k, then there exist integers mk such
that

2πkp/q + ϕ1(�) = (−1)mk arcsin s+mkπ, k = 0, . . . , q − 1.

Therefore, for 0 ≤ k < q − 1

2πp/q =
(
(−1)mk+1 − (−1)mk

)
arcsin s+

(
mk+1 −mk

)
π ={

2 arcsin s+ (mk+1−mk)π for even mk+1 and odd mk,

−2 arcsin s+ (mk+1−mk)π for odd mk+1 and even mk.
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Figure 2. Reconstruction errors rN−5 and their limit values

r
(as)
N−5 for ω = 2/9, L = �0.35N�, a = 1.05, δ = 0.1, ϕ = 0

and 10 ≤ N ≤ 300.

If mk+1,mk are both odd or even, then

2πp/q = (mk+1 −mk)π.

Since 0 < 2πp/q < π, then we immediately come to the
inequality s 
= 0. Suppose now that arcsin s > 0. (The case
of arcsin s < 0 can be treated in the same manner.) Then
2πp/q ∈ (0, π) iff mk+1 −mk = 1 and mk+1 is odd.

Therefore, for any sequence {mk}q−1
k=0 with q > 2 there ex-

ist a pair (mk+1,mk) with 2πp/q /∈ (0, π), and the assertion
is proved.

The convergence (2.18) and the result of Proposition 2.3
are illustrated by Fig. 2. To investigate the case of the irra-
tional ω we use the equidistribution theorem going back to
P. Bohl [10] and W. Sierpinski [11].

Theorem 2.1. If α ∈ (0, 1) is irrational, then the sequence
zn = {nα} is uniformly distributed on [0, 1] in the sense that
for any 0 ≤ a < b ≤ 1

1

n

n∑
i=1

1[a,b)(zi) → b− a, n → ∞.(2.19)

Proposition 2.4. Let ω ∈ (0, 1/2) be the irrational num-
ber and assume � ≥ 0 to be fixed. Then for any (a, b) ⊂
[D(−�), D(�)] and any δ 
= 0

1

N

N+�∑
n=�+1

1(a,b)(rn−1−�/δ) →
∫ b

a

1

π
√

D2(�)− u2
du

as N → ∞, where D(�) is defined in (2.17).

Proof. In terms of the weak convergence of distributions (see
[12] for the entire theory), the convergence (2.19) means

Figure 3. Reconstruction errors rN−1 for ω =
√
2/6,

L = �0.35N�, a = 1.05, δ = 0.1, ϕ = 0 and 103 ≤ N ≤ 106.
The histogram and the theoretical density (2.20).

that Pn ⇒ U(0, 1) as n → ∞, where Pn stands for the
uniform distribution on the set {z1, . . . , zn}, U(0, 1) is the
uniform distribution on [0, 1], and “ ⇒′′ is the sign of the
weak convergence.

Now let us consider the sequence {βn}n≥1 of random vari-
ables defined on a certain probability space (Ω,F ,P) and
suppose L(βn) = Pn for any n. (Note that here and further
L(β) stands for the distribution of the random variable β.)
Then (2.19) can be rewritten as L(βn) ⇒ L(υ) as n → ∞,
where υ ∈ U(0, 1).

According to the Mapping Theorem [12, theor. 2.7], if
n → ∞ then

L
(
h(βn)

)
⇒ L

(
h(υ)

)
with h(z) = D(�) sin

(
2πz + ϕ1(�)

)
. Standard calculations

show that the random variable η = h(υ) has the probability
density

pη(z) =
1[−D(�),D(�)](z)

π
√

D(�)2 − z2
,(2.20)

where 1A(x) stands for the indicator function of the set A.
Since sin(2πjω + φ) = sin

(
2π{jω} + φ

)
for any integer

j ≥ 1, this means that for any a < b

1

N

N+�∑
n=�+1

1(a,b)

(
Fn(�)

)
→

∫ b

a

pη(u)du,

where FN (�) is defined in (2.16) and N → ∞. In view of
(2.15) the assertion is proved.

The result of Proposition 2.4 is illustrated by Fig. 3.

Remark 2.1. Propositions 2.3 and 2.4 show that for fixed
� and any ω ∈ (0, 1/2) the reconstruction error rN−1−� does
not converge to any limit value as L/N → α ∈ (0, 1). The
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case ω = 1/2 can be studied in the same manner and gives
the analogous result.

3. RECONSTRUCTION ERRORS FOR THE
MODEL (1.5)

Now we deal with the discretization of the exponential
signal, described in the Introduction. More precisely, we con-
sider the constant T > 0 and the triangular array of the
series

fn = f (N)
n = anT/N + δ cos(ξn+ ϕ)(3.1)

with n = 0, . . . , N−1 andN = 1, 2, . . . under the assumption
thatN → ∞ and L ∼ αN with α ∈ (0, 1). As in the previous
section, we suppose that a > 1, ξ ∈ (0, π) and ϕ ∈ [0, 2π).

Of course, we can apply all general formulas of Section
2 if we use ajT/N instead of aj . For example, now we put

WM =
(
1, aT/N , . . . , a(M−1)T/N

)T
instead of the denotation

WM =
(
1, a, . . . , aM−1

)T
that was used in Section 2.

In particular, since rankH = 1, then the unique positive
eigenvalue μ of the matrix HHT has the form

μ =
∥∥WL

∥∥2 ∥∥WK

∥∥2 =
(a2LT/N − 1)(a2KT/N − 1)

(a2T/N − 1)2
.(3.2)

To study the discretization model (3.1), we apply two
general inequalities demonstrated in [2]. Here we put these
statements in the form adapted to our problem. Denote

(3.3) B(δ) = δ
(
HET +EHT

)
+ δ2EET = δA(1) + δ2A(2)

and let μ be defined by (3.2).

Theorem 3.1. ([2, theor. 2.3]). If δ0 > 0 and
∥∥B(δ)

∥∥/μ <
1/4 for any δ ∈ (−δ0, δ0), then

∥∥P⊥
0 (δ)−P⊥

0

∥∥ ≤ 4C
‖S0B(δ)P0‖

1− 4‖B(δ)‖/μ with C = e1/6/
√
π.

Theorem 3.2. ([2, theor. 2.5]) Put

B(δ) = |δ| ‖A(1)‖+ δ2‖A(2)‖

and assume that δ0 > 0, B(δ0) = μ/4 and |δ| < δ0. Denote

A
(2)
0 = P0A

(2)P0.

Then ‖δA(2)
0 ‖ < 1 and the matrix I− δA

(2)
0 is invertible.

Besides, under denotation L(δ) = L1(δ) + LT
1 (δ) with

L1(δ) =
P⊥

0 B(δ)P0

μ

(
I− δA

(2)
0 /μ

)−1

,(3.4)

the inequality

(3.5)
∥∥P⊥

0 (δ)−P⊥
0 − L(δ)

∥∥ ≤ 16C
‖S0B(δ)‖‖S0B(δ)P0‖

1− 4‖B(δ)‖/μ

is valid with the same C as in Theorem 3.1.

3.1 The convergence of
∥∥P⊥

0 (δ) − P⊥
0

∥∥
We start with the norm of the operator (3.3) for the series

(3.1).

Lemma 3.1. Assume that N → ∞ and L ∼ αN with α ∈
(0, 1). Then there exist δ0 > 0, N0 and C such that

‖B(δ)‖/μ ≤ B(δ)/μ ≤ Cδ2 < 1/4

for any δ with |δ| ≤ δ0 and N > N0.

Proof. First of all, EET = O(N2) as N → ∞. Applying
(2.9) we get that

(3.6)

‖HET +EHT‖ ≤ 2‖EWK‖ ‖WL‖ ≤

2

√√√√L−1∑
�=0

Φ2
K(aT/N , ξ�+ ϕ)

a2LT/N − 1

a2T/N − 1
.

It can be checked that |ΦK(aT/N , ψ)| ≤ C with a certain
constant C = C(a, T, α, ξ) that does not depend on ψ. For
the further use we denote

C1 = max
(
C(a, T, α, ξ), C(a, T, 1− α, ξ)

)
.(3.7)

Since

a2LT/N − 1

a2T/N − 1
∼ a2αT − 1

2T ln a
N

as N → ∞, then it follows from (3.6) that

‖B(δ)‖ ≤ B(δ) ≤ O(N2).

In view of the asymptotic

μ =
(a2αT − 1)(a2(1−α)T − 1)

4T 2 ln2 a
N2 + o(N2),(3.8)

the proof is complete.

Proposition 3.1. Under the conditions of Lemma 3.1,∥∥P⊥
0 (δ)−P⊥

0

∥∥ = O(N−1) as N → ∞.

Proof. Due to Theorem 3.1 and Lemma 3.1, it is sufficient
to proof that

‖S0B(δ)‖ = O(1/N).(3.9)

By (2.7),

(3.10)

S0B(δ) = δ
D1

‖WL‖2‖WK‖2 + δ
D2

‖WL‖4‖WK‖2 +

δ2
D3

‖WL‖4‖WK‖2

with

(3.11)
D1 = WLW

T
KET, D2 = WLW

T
LEWKWT

L , and

D3 = WLW
T
LEET.
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Consider summands in the righthand side of (3.10) sep-
arately. First of all,

D3D
T
3 = WLW

T
LEETEETWLW

T
L ≤

WLW
T
L

L−1∑
i=0

⎛
⎝L−1∑

j=0

ajT/NΨK(ϕ, i, j)

⎞
⎠

2

,

where

ΨM (ψ, k, �) =

M−1∑
j=0

cosj+k(ψ) cosj+�(ψ).(3.12)

Since

(3.13)

L−1∑
j=0

ajT/NΨK(ϕ, i, j) =
K

2
ΦL(a

T/N ,−iξ)+

sin(Kξ)

2 sin ξ
ΦL(a

T/N , iξ + (K − 1)ξ + 2ϕ),

we get

‖D3‖2≤
a2TL/N−1

a2T/N − 1

(
C2

1

K2L

4
+O(LK)

)
=

a2αT − 1

2T ln a
C2

1

(1− α)2α

4
N4 + o(N4)

with C1 defined in (3.7).

Thus ‖D3‖
(
‖WL‖4‖WK‖2

)−1
= O(1/N). In the same

manner,

D2 = WLW
T
L

L−1∑
i=0

aiT/NΦK(aT/N , iξ + ϕ)

and

‖D2‖ ≤ C1

√
a2αT − 1

2

aαT − 1

(T ln a)3/2
N3/2 + o(N3/2).

Therefore, ‖D2‖
(
‖WL‖4‖WK‖2

)−1
= O(1/N). Lastly,

D1D
T
1 = WLW

T
KETEWKWT

L =

WLW
T
L

L−1∑
i=0

Φ2
K(aT/N , iξ + ϕ).

Since
∑L−1

i=0 Φ2
K(aT/N , iξ + ϕ) ≤ LC2

1 , then

‖D1‖2 ≤ a2T0L/N−1

a2T0/N−1
C2

1L = α
a2αT − 1

2T ln a
C2

1 N
2+ o(N2),

‖D1‖
(
‖WL‖2‖WK‖2

)−1
= O(1/N) and the proof is com-

plete.

3.2 Reconstruction errors

To investigate the reconstruction errors we use the same
idea as in Section 2 but deal with the inequality (3.5) instead
of (1.6) and use the expression

(3.14)
Δδ(H) =

(
P⊥

0 (δ)−P⊥
0 − L(δ)

)
H(δ)+

δP⊥
0 E+ L(δ)H+ δL(δ)E .

instead of (2.1). For this goal, we need the following supple-
mentary assertions.

Lemma 3.2. Denote Z = δA
(2)
0 /μ = δP0EETP0/μ. Then

there exists a constant C2 such that

‖Z‖max ≤ |δ|C2/N.(3.15)

Proof. First of all,

(
A

(2)
0

)
m,�

=
(
EET

)
m,�

−
(
EETWLW

T
L

)
m,�

‖WL‖2
−(

WLW
T
L EET

)
m,�

‖WL‖2
+

(
WLW

T
LEETWLW

T
L

)
m,�

‖WL‖4
.

Note that
(
EET

)
m,�

= ΨK(ϕ,m, �), where ΨM (ψ, k, �) is

defined in (3.12). Analogously,

(
EETWLW

T
L

)
m,�

= a�T/N
L−1∑
j=0

ajT/NΨK(ϕ,m, j),

(
WLW

T
LEET

)
m,�

= amT/N
L−1∑
j=0

ajT/NΨK(ϕ, j, �), and

(
WLW

T
LEETWLW

T
L

)
m,�

=

a(�+m)T/N
L−1∑
k,j=0

a(j+k)T/NΨK(ϕ, k, j).

In view of (3.13),(
EETWLW

T
L

)
m,�

‖WL‖2
+

(
WLW

T
LEET

)
m,�

‖WL‖2
+(

WLW
T
L EETWLW

T
L

)
m,�

‖WL‖4
= O(1).

Since ΨK(ϕ,m, �) = K cos(ξ(m − �))/2 + O(1) as K → ∞,
then

(
A

(2)
0

)
m,�

=
cos((m− �)ξ)

2
K + o(1)

uniformly in 0 ≤ m, � ≤ L− 1. Therefore, see (3.8),

(
Z
)
m,�

∼ δ cos((m− �)ξ)
2(1− α)T 2 ln2 a

(a2αT − 1)(a2(1−α)T − 1)

1

N

as N → ∞ and the assertion proved.
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Remark 3.1. As a consequence of the inequality (3.15) we
get that for any n ≥ 1

‖Zn‖max ≤ |δ|nCn
2 /N.

Since ‖Zn‖max ≤ L‖Zn−1‖max‖Z‖max and L‖Z‖max ≤
|δ|C2, this fact can be proved with the help of a simple
induction. Therefore, if |δ| < 1/C2, then∥∥∥∑

n≥1

Zn
∥∥∥
max

≤
∑
n≥1

‖Zn‖max ≤ |δ|C2

1− |δ|C2

1

N
.(3.16)

Lemma 3.3. If the series fn = f
(N)
n is defined by (3.1),

N → ∞ and L ∼ αN with α ∈ (0, 1), then
1) ‖B(δ)H‖max = O(N);
2) ‖S0B(δ)‖max = O(1/N2);
3) ‖B(δ)S0E‖max = O(1/N2) and
4) ‖P⊥

0 E‖max = O(1/N).

Proof. 1) The matrix B(δ)H can be rewritten as follows:

B(δ)H = δ‖WL‖2J1 + δJ2 + δ2J3

with J1 = EWKWT
K , J2 = WLW

T
KETWLW

T
K and J3 =

EETWLW
T
K .

Applying the equalities (2.5) and (3.12), (3.13) we get
that

‖J1‖max = max
k<L, �<K

∣∣ΦK(aT/N , kξ + ϕ)a�T/N
∣∣ ≤

C1 a
(1−α)T + o(1),

‖J2‖max =
∣∣ΥL,K(aT/N , ϕ)

∣∣ max
k<L;�<K

a(k+�)T/N ≤

C1
aT (aαT − 1)

T ln a
N + o(N),

‖J3‖max = max
k<L, �<K

∣∣∣∣∣
L−1∑
j=0

ajΨK(ϕ, k, j)a�T/N

∣∣∣∣∣ ≤
C1

(1− α)a(1−α)T

2
N + o(N)

with C1 defined in (3.7). Thus the first assertion is proved.
2) The expression for S0B(δ) is presented in (3.10),

(3.11). It can be checked that

‖D1‖max = max
k<L;�<L

∣∣ΦK(aT/N , kξ + ϕ)a�T/N
∣∣ ≤

C1 a
αT + o(1),

‖D2‖max =
∣∣ΥL,K(aT/N, ϕ)

∣∣ max
k,�<L

a(k+�)T/N ≤

C1
a2αT (aαT − 1)

T ln a
N + o(N), and

‖D3‖max = max
k,�<L

∣∣∣∣∣
L−1∑
j=0

ajΨK(ϕ, k, j)a�T/N

∣∣∣∣∣ ≤
C1

(1− α)aαT

2
N + o(N).

Applying (3.10) we see that ‖S0B(δ)‖max = O(1/N2).
3) In the same manner,

B(δ)S0E = δEHTS0E+ δHES0E+ δ2EETS0E =

=
1

‖WL‖4‖WK‖2
(
δ‖WL‖2EWKWT

LE

+δWLW
T
KETWLW

T
L E+ δ2EETWLW

T
LE

)
with ∥∥EWKWT

LE
∥∥
max

=

max
k<L;�<K

∣∣ΦK(aT/N , kξ + ϕ)ΦL(a
T/N , �ξ + ϕ)

∣∣ = O(1),∥∥WLW
T
KETWLW

T
LE

∥∥
max

=∣∣ΥL,K(aT/N, ϕ)
∣∣ max
k<L;�<K

∣∣akT/NΦL(a
T/N , �ξ + ϕ)

∣∣ ≤
≤ C2

1

aαT (aαT − 1)

T ln a
N + o(N), and∥∥EETWLW
T
LE

∥∥
max

=

max
k<L;�<K

∣∣∣∣∣
L−1∑
j=0

ajΨK(ϕ, k, j)ΦL(a
T/N , �ξ + ϕ)

∣∣∣∣∣ ≤
NC2

1 (1− α)/2 + o(N).

Therefore, ‖B(δ)S0E‖max = O(1/N2).
4) Since P⊥

0 E = WLW
T
L E/‖WL‖2, then

‖P⊥
0 E‖max =

1

‖WL‖2
max

k<K;�<L

∣∣ΦL(a
T/N , kξ + ϕ)a�T/N

∣∣ ≤
C1

2T ln a

a2αT − 1
aαT

1

N
+ o(1/N),

and the proof is complete.

Proposition 3.2. Denote rj = rj(N, δ) the reconstruction
error for the term xj = ajT/N of the perturbed series fj =
xj + δ cos(ξj + ϕ) with a > 1, ξ ∈ (0, π) and ϕ ∈ [0, 2π).

If N → ∞ and L = αN + o(N) with 0 < α < 1, then
there exists δ∗ > 0 such that rj = O(1/N) uniformly in
0 ≤ j < N for any δ with |δ| < δ∗.

Proof. First of all, due to (3.14),

(3.17)
P⊥

0 (δ)H(δ)−P⊥
0 H =

(
P⊥

0 (δ)−P⊥
0 − L(δ)

)
H(δ)+

L(δ)H+ δL(δ)E+ δP⊥
0 E.

Then, see Lemma 3.1, the inequality (3.5) holds for any
δ such that |δ| < δ0. It follows from (3.5) and (3.9) that
‖
(
P⊥

0 (δ)−P⊥
0 − L(δ)

)
‖ = O(1/N2) for |δ| < δ0, and there-

fore ∥∥(P⊥
0 (δ)−P⊥

0 − L(δ)
)
H(δ)

∥∥ ≤∥∥(P⊥
0 (δ)−P⊥

0 − L(δ)
)∥∥ ‖H(δ)‖ = O(1/N).

Thus we must check the three last terms in the righthand
side of (3.17).
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Note that ‖P⊥
0 E‖max = O(1/N), see Lemma 3.3. Let us

consider operators L(δ)H and L(δ)E. As in Lemma 3.2, put

Z = δA
(2)
0 /μ. Since P0H = 0, then ZH = 0 and

L1(δ)H = S0B(δ)P0

(
I− Z

)−1
H =

S0B(δ)P0

∑
m≥0

ZmH = 0.

Therefore,

L(δ)H = LT
1 (δ)H =

(
I− Z

)−1

P0B(δ)H
/
μ =

1

μ

⎛
⎝I+

∑
m≥1

Zm

⎞
⎠P0B(δ)H =

1

μ
P0B(δ)H+

1

μ

∑
m≥1

ZmP0B(δ)H =

1

μ
P0B(δ)H+

1

μ

⎛
⎝∑

m≥1

Zm

⎞
⎠B(δ)H.

Remind that P⊥
0 = WLW

T
L /‖WL‖2 and ‖WLW

T
L ‖max ≤

a2T . Thus ‖P⊥
0 ‖max = O(1/N) and, in view of Lemma 3.3,∥∥P0B(δ)H/μ

∥∥
max

=
∥∥(I−P⊥

0

)
B(δ)H/μ

∥∥
max

≤
‖B(δ)H‖max

/
μ+

∥∥P⊥
0 B(δ)H

∥∥
max

/
μ ≤

‖B(δ)H‖max

/
μ+ L

∥∥P⊥
0

∥∥
max

‖B(δ)H‖max

/
μ = O(1/N).

Besides, if additionally |δ|C2 < 1, then, due to (3.8) and
(3.16), ∥∥∥ 1

μ

( ∑
m≥1

Zm
)
B(δ)H

∥∥∥
max

≤

L

μ

∥∥∥ ∑
m≥1

Zm
∥∥∥
max

∥∥∥B(δ)H
∥∥∥
max

≤

L

μ

|δ|C2

1− |δ|C2

1

N

∥∥∥B(δ)H
∥∥∥
max

= O(1/N).

As the result, ‖L(δ)H‖max = O(1/N).
By definition, L(δ)E = L1(δ)E+ LT

1 (δ)E with

L1(δ)E = S0B(δ)P0

(
I− Z)−1E and

LT
1 (δ)E =

(
I− Z)−1P0B(δ)S0E.

The equality ‖LT
1 (δ)E‖max = O(1/N2) can be proved

in the same manner as ‖LT
1 (δ)H‖max = O(1/N), but with

the help of the equality ‖B(δ)S0E‖max = O(1/N2), see
Lemma 3.3. Now note that

L1(δ)E = S0B(δ)P0E+ S0B(δ)P0

( ∑
m≥1

Zm

)
E =

S0B(δ)P0E+ S0B(δ)

( ∑
m≥1

Zm

)
E.

Taking into account (3.16) and the equalities ‖E‖max =
O(1), ‖S0B(δ)‖max = O(1/N2), we get∥∥∥∥S0B(δ)

( ∑
m≥1

Zm
)
E

∥∥∥∥
max

≤

L2 ‖S0B(δ)‖max

∥∥∥ ∑
m≥1

Zm
∥∥∥
max

‖E‖max = O(1/N).

Lastly,

‖S0B(δ)P0E‖max ≤
‖S0B(δ)E‖max + ‖S0B(δ)P⊥

0 E‖max ≤
L‖S0B(δ)‖max‖E‖max+

L2‖S0B(δ)‖max ‖P⊥
0 ‖max ‖E‖max = O(1/N).

Therefore, ‖L(δ)E‖max = O(1/N). Finally, the uniform
norm ‖ · ‖max of each addend in the sum (3.14) has the order
O(1/N). Since ‖SC‖max ≤ ‖C‖max for any matrix C, the
proof is complete.

4. COMMENTS AND REMARKS

Let us discuss the results of the paper and their relation
to SSA problems.

Of course, the general model “exponential signal plus har-
monic noise” corresponds to simply structured cases of time
series. Still this model is not far from some real-life time
series such as the “gasoline demand” series.

Our goal is to extract the signal from this sum with the
help of Singular Spectrum Analysis and to study the preci-
sion of this extraction. As a rule (see [1] or [9] for details),
SSA needs a big number N of observations, therefore the
corresponding theoretical approach must be asymptotical
as N → ∞. Thus we come to the problem of the asymptotic
analysis of reconstruction errors rj(N), 0 ≤ j < N .

Here we consider two analytical models for “exponen-
tial signal plus harmonic noise” series. The first, see (1.4),
is rather straightforward and corresponds to the general
scheme of [1] and [2]: the signal tends to infinity as N → ∞
while the frequency of the harmonic noise does not depend
on N .

Then (see propositions 2.1 and 2.2–2.4) for any amplitude
of the noise series, rj(N) → 0 if N−j → ∞ and rj(N) � 0
if N − j −O(1).

This means that ‖RN‖max
def
= maxj |rj(N)| does not tend

to zero as N → ∞. Of course, the max-norm ‖·‖max applied
to the series RN of reconstruction errors can be considered
as a too strong measure of the SSA accuracy. (Note that

more usual ‖RN‖2 =
√∑

j r
2
N (j)/N tends to zero here.)

Still the last terms of the reconstructed signal are of special
interest, since just these terms are used in many forecasting
algorithms.

The second model is more complicated. The goal of this
model is to describe the situation when the range of the
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increasing signal is relatively small while the number of pe-
riods of the additive harmonic is big. As it was already men-
tioned, the second condition is usual in SSA. The first seems
to be more or less adequate for real-life series if we consider
big N . (Naturally, it is difficult to expect that the trend of
a real-life series can rapidly increase for a very long period
of time.)

Note that both conditions seem to be fulfilled for the
“gasoline demand” series: the trend of this series grows
rather slowly over the period of observations, while the num-
ber of periods of the annual harmonic is relatively big.

The model (1.5) is the attempt to formalize these condi-
tions. Here we deal with the triangle array of the perturbed
signals, where all exponential signals are uniformly bounded
from above while the harmonic noises are the same as in
(1.4). In other words, the “discretization” is applied only to
the exponential trend.

It is remarkable, that the accuracy of the standard model
(1.4) fails for last terms of the series, while the second model
(1.5) shows asymptotically good results for all terms, pro-
vided that the amplitude of the noise component is suffi-
ciently small.
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