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Bayesian estimation of a multilevel
multidimensional item response model using
auxiliary variables method: an exploration
of the correlation between multiple latent
variables and covariates in hierarchical data
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Within the framework of Bayesian analysis, we present
a multilevel multidimensional item response modeling and
estimation method to study the relations among multiple
abilities and covariates in a hierarchical data structure. The
proposed method is well suited to examining a scenario in
which a test measures multidimensional latent traits (e.g.,
reading ability, cognitive ability, and computing ability) and
in which students are nested within classes or schools. The
developed Gibbs sampling algorithm based on auxiliary vari-
ables can accurately estimate the correlations among mul-
tidimensional latent traits, along with the correlation be-
tween person- and school-level covariates and latent traits.
Three information criteria and the pseudo-Bayes factor ap-
proach are used to evaluate model fit and make model com-
parison. Simulation studies show that the proposed method
works well in estimating all model parameters across a broad
spectrum of scenarios. A case study on an educational as-
sessment data is investigated to demonstrate the practical
application of the proposed procedure.

Keywords and phrases: Bayesian inference, Gibbs sam-
pling algorithm, Information criteria, Cross-validation log-
likelihood, Pseudo-Bayes factor.

1. INTRODUCTION

Item response theory (IRT) is widely used in the analysis
of educational and psychological tests for measuring the ex-
aminees’ latent traits based on their responses to test items.
Modern tests often consist of several subtests each aiming on
one or more latent traits. Analyses of such tests require mul-
tidimensional IRT models [10, 11, 32, 40] to achieve more
precise measurement by accurately quantifying the exam-
inee/item interaction and utilizing the dependency among
subtests. In addition, large-scale modern tests often involve
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hierarchical structure in the design. For example, the Pro-
gram for International Student Assessment (PISA) has an
important goal in better understanding cross-cultural dif-
ferences both in science achievement and attitudes towards
science, and hence involves students from different schools
in multiple countries. To elucidate the effects at the school
and country level in this hierarchical design, a standard
thought is to use multilevel models [16, 33], which inspires
the need of multilevel multidimensional IRT (MMIRT) mod-
els [7, 18, 19, 20, 26, 28, 37].

The MMIRT is often needed in school effectiveness re-
search in education. The objective of a school effectiveness
study is to investigate the relationship between outcome fac-
tors (student’s latent traits) and student characteristics (so-
cial background), teacher characteristics and school (such
as teachers’ attitude, class size, and school climate). The
typical nested structure on student/class/teacher requires
a multilevel model. Meanwhile, most administered tests in
such studies contain various subtest components measur-
ing different latent traits, which requires a multidimensional
IRT. For example, an English test usually consists of sev-
eral subscales and each subscale is used to measure a sub-
dimensional latent trait (such as vocabulary cognitive ability
and the ability to diagnose grammar structure). Sometimes,
one can consider a simplification by arguing a general abil-
ity (e.g. a linear combination of multiple latent traits [37])
is adequate in describing the item responses and then adopt
a unidimensional IRT. However, such an approach is lack of
generality as individual latent trait often possesses different
between- and within-cluster (e.g. school) variations.

Compared with the existing MMIRT works, the problem
to be solved and the viewpoint of modeling in this study are
very different. [37] developed multidimensional IRT models
with a hierarchical structural relationship between specific
ability and general ability. That is, each specific ability is
a linear function of the general ability or the general abil-
ity is a linear combination of all the specific abilities. For
more similar modeling methods, see [19, 20]. In addition, [28]
proposed an MMIRT model to analyze students’ aggressive-
disruptive behavior in elementary school classrooms. In the
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multilevel modeling process, the ability (factor) of each di-
mension has between- and within-cluster variations. How-
ever, the source of the between- and within-cluster vari-
ations — whether the between-cluster (school) covariates
and within-cluster individual background variables have ef-
fects on two part variations — was not considered further.
For a similar modeling method, see [18, 26]. Furthermore,
[7] presented an extended mixed-effect IRT model to ana-
lyze PISA data, where the individual background covariates
(level-1 predictors) and level-2 school predictors are used
to model the fixed effects rather than to directly explain
multiple dimensional abilities. [12, 21, 25] proposed multi-
level IRT models to represent the interactions between uni-
dimensional ability and individual- and school-level covari-
ates where the ability parameters have a hierarchical nested
structure. Our study can be conceived of as a multidimen-
sional extension of the model developed by [12, 21, 25],
replacing their unidimensional IRT model with a multidi-
mensional two-parameter logistic model. The advantage of
this modeling method is that it can better reflect hierarchi-
cal structural data and provide simultaneous estimation of
item parameters and person measures as well as accurate
inference about higher-level measures where covariates are
introduced to explain the relationship between predictors
and multiple latent traits.

Due to its model complexity, estimation of an MMIRT
model is often computationally costly. Finding the marginal
maximum likelihood estimation (MMLE) requires numeri-
cal evaluation of the marginal likelihood, and it soon be-
comes infeasible as the dimensionality increases. On the
other hand, Bayesian approaches either use the Metropolis-
Hastings algorithm [8, 17, 27], which is prone to slow mix-
ing or non-convergence for high-dimensional data, or require
rigid prior distributions (e.g. the conjugate distribution in
the normal ogive framework) to perform Gibbs sampling
[2, 4, 12]. In this article, we propose a novel and effec-
tive Gibbs sampling algorithm for estimating the MMIRT
model based on some cleverly designed auxiliary variables.
We demonstrate the approach via the multilevel multidi-
mensional two-parameter logistic model (MM2PLM) and
expect it to work in general. Due to its Bayesian nature, our
approach avoids numerical evaluation of the marginal like-
lihood. Meanwhile, its Gibbs sampling structure often leads
to fast convergence, and more importantly, it allows the use
of flexible prior distributions which can adequately quantify
various prior information. Besides parameter estimation, we
further develop information criteria and Bayes factors for
our method, and provide tools for model assessment.

We demonstrate our approach through a case study
on large-scale English achievement tests with a three-level
nested structure. The merit of our approach is manifested
by answering the following questions important to field re-
searchers. (1) Conditionally on the individual-level gender
(GD), school-level teacher satisfaction (ST ) and school cli-
mate (CT ), how will students with high socioeconomic-
status (SES ) scores perform compared to low SES scores, in

terms of English performances as measured by four types of
latent traits? (2) Are the performances between males and
females identical for the different latent traits when control-
ling for SES , ST and CT? (3) Do the teachers’ or schools’
effects (covariates) affect the individuals’ performances? If
so, what are the effects? (4) Can a measurement tool (items
of subtest) be used to test whether items’ factor patterns
reflect the subscales of the test battery? That is, can the
four subtests of the test battery be traced in the discrim-
ination parameters on the four dimensions? (5) According
to the model selection results, which model is the best to fit
the data and how can judge the individual-level regression
coefficients be judged as fixed effect or random effect?

The rest of the article is organized as follows. Section 2
presents the detailed development of the proposed general
MMIRT and procedure for hierarchical data. Section 3 pro-
vides a new computational strategy based on auxiliary vari-
ables to meet computational challenges for the proposed
model. Bayesian model comparison criteria are discussed in
Section 4. In Section 5, simulation studies are conducted
to examine the performance of parameter recovery using
the Gibbs sampling algorithm based on auxiliary variables
and to assess model fit using the information criteria and
pseudo-Bayes factor. In addition, a real data analysis of the
education quality assessment is given in Section 6. We con-
clude this article with a brief discussion and suggestions for
further research in Section 7.

2. MODEL AND MODEL IDENTIFICATION

2.1 Multilevel multidimensional IRT model

The model contains three levels. At the first level, a mul-
tidimensional two-parameter logistic model is used to model
the relationship between items, persons, and responses. At
the second level, person parameters are predicted by person-
level covariates, such as an individual’s SES . At the third
level, persons are nested within schools, and school-level co-
variates (such as school climate) are included.

• Measurement model at level 1 (Multidimensional two-
parameter logistic model):
(1)

pijk = p (Yijk = 1 |θij ,ak, bk ) =

exp

[
Q∑

q=1
akqθijq − bk

]

1 + exp

[
Q∑

q=1
akqθijq − bk

] ,

where j = 1, · · · , J represent J schools, and within school
j, there are i = 1, · · · , nj persons. k = 1, · · · ,K indicate
the items. Let yijk denote the response of the ith examinee
in the jth group answering the kth item. Then, the correct
response probability can be expressed as pijk, and θij de-
notes a Q-dimensional vector of ability parameters for the
ith person in the jth group, i.e., θij = (θij1, · · · , θijQ)′. Let
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ξk = (ak1, · · · , akQ, bk)′ denote the vector of item parame-
ters for the kth item, where ak = (ak1, · · · , akQ)′ is a vector
of discrimination or slope parameters and bk is the difficulty
or intercept parameter.

• Multilevel structural model at level 2 (individual level):

(2) θijq = β0jq + x1ijβ1jq + · · ·+ xhijβhjq + eijq,

where x’s represent student-level covariates, such as an indi-
vidual’s GD and SES . h denotes the number of student co-
variates at level 2. The residual term eij = (eij1, · · · , eijQ)′
is assumed to follow a multivariate normal distribution
N (0,Σe), whereΣe is aQ-by-Q covariance matrix. The stu-
dent’s latent traits are considered to be the latent outcome
variables of the multilevel regression model. Differences in
latent traits among individuals within the same school are
modeled given student-level characteristics. Therefore, the
explanatory information x at the individual level explains
variability in the latent traits within school.

• Level 3 (school level):

βhjq = γh0q + w1jγh1q + · · ·+ wsjγhsq + uhjq,

where s denotes the number of school covariates at level
3. Each level-2 random regression coefficient parameter is
βhjq, which can be interpreted by school-level covariates.
The residual vector (u0jq, · · · , uhjq)

′
is assumed to follow

a multivariate normal distribution with mean vector 0 and
covariance matrix T q, where T q is an (h+1)-by-(h+1) co-
variance matrix, q = 1, · · · , Q. The variation across schools
is modeled given background information at the school level.
To control the model complexity, we assume that the level-3
residual covariance between different dimensions is 0; that
is,

(3)
Cov (uhjq1 , uhjq2) = 0, q1 �= q2, j = 1, · · · , J, h = 0, 1, 2, · · ·

2.2 Model identification

A common approach to ensure identification of the single-
level two-parameter IRT model [6, 24, 39] is to set the mean
and variance of the ability distribution to zero and one,
respectively. Alternatively, one can impose constraints of∏

k ak = 1 and
∑

k bk = 1 for model item parameters; the
equivalent form is to anchor one discrimination parameter
to one, and one difficulty parameter to zero. In our hierar-
chical model, we impose some constraints on discrimination
and difficulty parameters to identify the MM2PLMs. For
the discrimination and difficulty parameters, we set Q item
parameters bk equal to zero if k = q, imposing the restric-
tions akq = 1, in which k = 1, · · · , Q, and q = 1, · · · , Q. If
k �= q, akq = 0. If k > q, bk and akq are free parameters to
estimate (For details see [4], page 545). Another potential
identification method is to rescale the latent trait estimates
to make them having zero mean and unity variance, please
see [31] for more details.

3. MODEL ESTIMATION USING GIBBS
SAMPLING ALGORITHM BASED ON

AUXILIARY VARIABLES

3.1 Computational development

Let Ω = (θ, ξ,β,Σe,γ,T ), where ξ represents the set of
all the item parameters. The joint posterior distribution of
the parameters given the data can be written as follows:

P (Ω |Y ,X,W ) ∝
∏

i,j,q,k

p (yijk |θijq, ξk ) p
(
θij

∣∣βj ,Σe,Xij

)
× p
(
βj

∣∣γq,T q,W j

)
p
(
γq |T q

)
p (ξk)

× p (Σe) p (T q) .(4)

To implement the Gibbs sampling algorithm based on auxil-
iary variables, we introduce two mutually independent ran-
dom variables λijk and ηijk. The auxiliary variables λijk and
ηijk are assumed to follow the uniform distribution U (0, 1).
The motivation for the algorithm is that the inferred sam-
ples can easily be drawn from the full conditional distribu-
tion by introducing the auxiliary variables [5, 9, 13, 29]. The
following two cases must be satisfied.

• Case 1: When yijk = 1, an equivalent condi-
tion for yijk = 1 is that the indicator function
I (0 < λijk ≤ pijk) must be equal to 1, as opposed to
0 < ηijk ≤ ψijk being set to 0. In addition, if the aux-
iliary variable λijk is integrated out of the joint distri-
bution of λijk and pijk, the obtained marginal distri-
bution is just equal to the correct response probability
of the ith individual answering the jth item, pijk. Here
ψijk = 1− pijk.

• Case 2: Similarly, when yijk = 0, an equivalent con-
dition for yijk = 0 is that the indicator function
I (0 < ηijk ≤ ψijk) must be equal to 1, as opposed to
I (0 < λijk ≤ pijk) being set to 0.

The joint posterior distribution after introducing the auxil-
iary variables λijk and ηijk can be written as:

P (Ω,η,λ |Y ,X ,W ) ∝
∏

i,j,q,k

[I (yijk = 1) I (0 < λijk ≤ pijk)

+I (yijk = 0) I (0 < ηijk ≤ ψijk)]

× p
(
θij

∣∣βj ,Σe,X ij

)
p
(
βj

∣∣γq,T q,W j

)
× p
(
γq |T q

)
p (ξk) p (Σe) p (T q) .(5)

The Gibbs sampling algorithm based on auxiliary variables
requires sampling from full conditional distributions in turn:

〈1〉 [λijk |Y ,Ω ] , [ηijk |Y ,Ω ] ;

〈2〉 [bk |Y ,λ,η,Ω ] ;

〈3〉
[
akq
∣∣Y ,λ,η,θ,a(−kq), b

]
;

〈4〉
[
θijq
∣∣Y ,λ,η,θij(−q), ξ,β,Σe

]
;
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〈5〉 [T |θij ,Σe,γ,T ] ;

〈6〉
[
γ
∣∣βj ,T

]
;

〈7〉 [Σe |θ,β ] ;

〈8〉
[
T q

∣∣βjq,γq

]
.

For 〈2〉, we can get a constraint interval about the difficulty

parameter by solving the inequality which is constructed by

introducing the auxiliary variables. The samples are thus

drawn from a truncated prior distribution. Suppose that the

prior of the difficulty parameters is bk ∼ N
(
μb, σ

2
b

)
. Accord-

ing to case 1, given item k, ∀i, j, when yijk = 1, we have

0 < λijk ≤ pijk, and the following inequalities are estab-

lished:

Q∑
q=1

akqθijq − bk ≥ log

(
λijk

1− λijk

)
or equivalently

bk ≤
Q∑

q=1

akqθijq − log

(
λijk

1− λijk

)
.(6)

In the same way, for case 2, when yijk = 0, we have 0 <

ηijk ≤ ψijk, and the inequalities are established:

Q∑
q=1

akqθijq − bk ≤ log

(
1− ηijk
ηijk

)
or equivalently

bk ≥
Q∑

q=1

akqθijq − log

(
1− ηijk
ηijk

)
.(7)

Let Dk = {(i, j)|yijk = 1, λijk ≤ pijk} and Ek =

{(i, j)|yijk = 0, ηijk ≤ ψijk}. Given the response variable

Y , the auxiliary variables λ and η, and the parameters Ω,

the full conditional distribution can be written as:

(8) bk |Y ,λ,η,Ω ∼ N
(
μb, σ

2
b

)
I
(
bLk ≤ bk ≤ bUk

)
.

where

bLk = max
(i,j)∈Ek

{
Q∑

q=1

akqθijq − log

(
1− ηijk
ηijk

)}
,

bUk = min
(i,j)∈Dk

{
Q∑

q=1

akqθijq − log

(
λijk

1− λijk

)}
.

For 〈3〉 and 〈4〉, we can apply the identity technique to

draw samples. The details of the above Gibbs sampling al-

gorithm based on auxiliary variables and its corresponding

Matlab code are provided as online supplementary mate-

rials (http://intlpress.com/site/pub/pages/journals/items/

sii/content/vols/0012/0001/s001).

4. MODEL SELECTION

4.1 Pseudo-Bayes factor based on cross
validation to assess MMIRT models

Within the Bayesian framework, the Bayes factor has
played a major role in assessing the goodness of fit of com-
peting models [22]. It is a good choice to compare two fitted
models after the model parameters have been estimated.
The best-fitting model is chosen based on the largest value
of marginal likelihood among a set of candidate models.
However, one of the obstacles to use the Bayes factors is
the difficulty associated with calculating them. As is well-
known, while the candidate models with high-dimensional
parameters are used to fit the data, it is impossible to in-
tegrate out all the model parameters to obtain the closed-
form expression of marginal distribution. In addition, it is
acutely sensitive to the choice of prior distributions. The use
of improper priors for the parameters in alternative models
results in Bayes factors that are not well defined. There-
fore, numerous approaches have been proposed to solve the
above-mentioned problems ranging from the use of various
pseudo-Bayes factor (PsBF) approaches [15]. In this study,
the PsBF approach on the basis of the cross-validation pre-
dictive density (CVPD) is used to compare the MM2PLMs.
Considering the ith individual within the jth school re-
sponse to the kth item, the CVPD is defined as:

(9)

p
(
yijk

∣∣∣y−(ijk)

)
=

∫
p
(
yijk

∣∣∣y−(ijk),Ω
)
p
(
Ω
∣∣∣y−(ijk)

)
dΩ,

where y−(ijk) denotes the observed data without the ijkth
observation. Ω = (θ, ξ,β,Σe,γ,T ) indicates the model pa-
rameters. According to the conditional independence hy-

pothesis, the equation p
(
yijk

∣∣∣y−(ijk),Ω
)
= p (yijk |Ω ) can

be established, and the responses on the different items are
independent given that the latent traits and the responses
of students are independent of one another. Therefore, the
CVPD can be rewritten as

(10) p
(
yijk

∣∣∣y−(ijk)

)
=

∫
p (yijk |Ω ) p

(
Ω
∣∣∣y−(ijk)

)
dΩ.

The PsBF for comparing two models (say, Ξ1 and Ξ2) is
expressed in terms of the CVPDs, that is,

(11) PsBF =
∏
i,j,k

p
(
yijk

∣∣∣y−(ijk),Ξ1

)
p
(
yijk

∣∣∣y−(ijk),Ξ2

) .
In practice, we often calculate the logarithms of the numera-
tor and denominator of the PsBF to compare different com-
peting models. [14, 30] proposed an importance sampling
method to evaluate the marginal likelihood of the data. For
m = 1, · · · ,M , the samples Ω(m) from the posterior dis-

tribution p
(
Ω
∣∣∣y−(ijk)

)
are easily obtained via an MCMC
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sampler, where m indicates the index of the MCMC sam-
ples. The estimated CVPD result can be written as follows:

(12) p̂
(
yijk

∣∣∣y−(ijk)

)
=

⎡⎣ 1

M

M∑
m=1

1

p
(m)
ijk

(
1− p

(m)
ijk

)
⎤⎦−1

.

4.2 Information criteria to assess structural
multilevel models

As is known, the natural logarithm transform (abbrevi-
ated to log) of the complete-data likelihood of the MM2PLM
consists of two parts, one part from the multidimensional
item response model and the other part from structural mul-
tilevel model. It can be written as follows:

log p (Y ,X,W ,θ,β |ξ,Σe,γ,T )

=
J∑

j=1

nj∑
i=1

⎛⎜⎝ K∑
k=1

log p (yijk |θij , ξk )︸ ︷︷ ︸
Multidimensional item response part

+ log p
(
θij

∣∣βj ,Σe,Xij

)
+ log p

(
βj |γ,T ,W j

)︸ ︷︷ ︸
)

Structural multilevel part

.

(13)

The aim is to make it possible for the changes of the struc-
tural multilevel part to be tested conditional on the item
response part such that relatively small changes in the log-
likelihood of the multilevel part can be detected. In practice,
we mainly focus on comparing the MM2PLMs with differ-
ent multilevel parts and equivalent multidimensional item
response parts. Hence, the likelihood of a multilevel struc-
ture that has integrated out the random effect β is defined as

p(θ |γ,Σe,T ,X,W ) =

∫
p(θ |β,Σe,X ) p (β |γ,T ,W )dβ.

Therefore, the deviance can be defined as

D (Ω∗) = N ·Q log (2π) +N log |Σe| −
J∑

j=1

log
∣∣Σβj

∣∣+ J log |T |

+
J∑

j=1

nj∑
i=1

(
θij −X ijβ̃j

)′
Σ−1

e

(
θij −X ijβ̃j

)
+

J∑
j=1

(
β̃j −wjγ

)′
A−1

(
β̃j −wjγ

)
,

where Ω∗ = (γ,Σe,T ), and A = Σβ̃j
+ T with Σβ̃j

=(
nj∑
i=1

X ′
ijΣ

−1
e Xij

)−1

. The posterior mean and covariance of

random regression coefficient are β̃j = Σβ̃j

nj∑
i=1

X ′
ijΣ

−1
e θij

and Σβj
=
(
Σ−1

β̃j

+ T−1
)
. Three information criteria are

widely used for model assessment, that is, the Aikaike in-
formation criteria (AIC; ‘Akaike’, 1973), the Bayesian in-
formation criteria (BIC; ‘Schwarz’, 1978) and the deviance
information criteria (DIC; ‘Spiegelhalter’ et al., 2002), the
forms can be shown as follows.

AIC=D (Ω∗) + 2ρ,

BIC=D (Ω∗) + ρ logN,

DIC=2D (Ω∗)−D
(
Ω̂∗
)
,

where D (Ω∗) is the estimated posterior mean deviance [3,

38]. D
(
Ω̂∗
)

is the deviance for the posterior mean of the

parameter values. They can be computed using the output
from an MCMC sampling scheme. ρ is the total number of
parameters. N is the total number of individuals.

5. SIMULATION

5.1 Simulation study 1

This simulation study is performed to validate the model
specification (such as the selection of prior distributions)
and evaluate the parameter recovery with Gibbs sampling
algorithm based on auxiliary variables. For illustration, we
only consider one explanatory variable on both levels, and
the number of dimensions is fixed at 2 (q = 2). The true
model is the following structural multilevel model.

The individual-level model:

(14) θijq = β0jq + xijβ1jq + eijq,

where

(15) e =

(
eij1
eij2

)
∼ N

((
0
0

)
,

(
σ2
e1 σe1e2

σe2e1 σ2
e2

))
.

The school-level model:

β0jq = γ00q + γ01qwj + u0jq,(16)

β1jq = γ10q + γ11qwj + u1jq,

where

(17)(
u0jq

u1jq

)
∼ N

((
0
0

)
,T

)
, T =

(
τ00q τ01q
τ10q τ11q

)
.

The multidimensional two-parameter logistic model is used
to generate responses. The test length is set to 30. The
true values of the discrimination and difficulty parameters
are generated from truncated normal distribution and stan-
dard normal distribution, i.e. akq ∼ N (1.5, 1) I (akq > 0),
q = 1, 2, and bk ∼ N (0, 1), respectively. The ability param-
eters of 2,000 students from population N

(
Xijβj ,Σe

)
are

divided into J = 10 groups, with nj students in each group.
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Figure 1. Trace plots of fixed effects for simulation study 1.

The fixed effect γ is chosen as an arbitrary value between
−1 and 1. For simplicity, we suppose that at level 3, each
of the dimensional covariances τ01q and τ10q is equal to 0
for q = 1, 2, which means that the level-3 residuals between
random coefficients βq = (β0jq, β01jq) are independent of
each other. The level-3 variances τ00q and τ11q are respec-
tively set equal to 0.250 and 0.200, for q = 1, 2 such that
they have very low stochastic volatility in the vicinity of the
level-3 mean. The level-2 residual variance-covariance (VC)
are set to 0.300, 0.500, and 0.075. The explanatory variables
X and W are drawn from N (0.25, 1) and N (0.5, 1), respec-
tively. The priors to the discrimination parameters and diffi-
culty parameters are set as the non-informative priors ak ∼

N

((
0
0

)
,

(
100 0
0 100

))
I (ak |ak1 > 0, ak2 > 0) and

N (0, 100). The fixed effect γ follows a uniform distribu-
tion U (−2, 2). The prior to the VC matrix of the level-2
ability dimensions is a 2-by-2 identity matrix. As used in
many educational and psychological research studies (see,
e.g., [12, 23, 36]), and the priors to the VC matrices of the
level-3, T 1 and T 2, are set to the non-informative priors
based on Fox (2001)’s paper (see, [12]), where p (T q) ∝ 1,
q = 1, 2.

The convergence of Gibbs sampler based on auxiliary
variables is checked by monitoring the trace plots of the
parameters for consecutive sequences of 10,000 iterations.
Figure 1 represents the trace plots of the fixed-effect pa-
rameters. The trace plots show that all parameter estimates
stabilize after 5,000 iterations and then converge quickly.
Thus, we set the first 5,000 iterations as the burn-in period.
500 replicas were generated. The true values, the averaged
estimated values and the coverage probabilities (CPs) based
on the 95% highest posterior density intervals (HPDIs) for
item parameters are shown in Table 1. Table 2 presents the
true values and the estimated values of fixed effects γ, level-
2 covariance components, and level-3 variance components
T 1 and T 2.

The accuracy of the parameter estimates is measured by
two evaluation indexes, namely, Bias and root mean squared
error (RMSE). The recovery results are based on 500 times
MCMC repeated iterations. The results of the accuracy of
the parameter estimates are displayed in Tables 3 and 4.
From Tables 3 and 4, we see that Gibbs sampling algorithm
based on auxiliary variables provides accurate estimates of
the structural parameters in the sense of having small Bias
and RMSE values.

5.2 Simulation study 2

The aim of this simulation is twofold. First, we test the
changes of the structural multilevel part conditional on the
item response part such that relatively small changes in the
log-likelihood of the multilevel part can be detected. Second,
we evaluate different MM2PLMs by their prediction power,
specifically using the PsBF approach based on the CVPDs.
We simulate data from the same multilevel IRT model used
in simulation study 1. First, two competing models are esti-
mated using the simulated data sets to investigate the per-
formance of the information criteria of the structural mul-
tilevel model comparison, where the observed sum scores of
1,000 students on 30 items are imputed for two-dimensional
latent trait. The first alternative model (model 1) is the
structural multilevel model with a level-2 explanatory vari-
able, that is,

(18) Model 1.

⎧⎪⎨⎪⎩
θijq = β0jq + xijβ1jq + eijq,

β0jq = γ00q + u0jq,

β1jq = γ10q + u1jq.

Model 2 is an extension of model 1. Considering one ex-
planatory variable on both levels, that is,

(19) Model 2.

⎧⎪⎨⎪⎩
θijq = β0jq + xijβ1jq + eijq,

β0jq = γ00q + γ01qwj + u0jq,

β1jq = γ10q + γ11qwj + u1jq.
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Table 1. Estimation of simulated item parameters using Gibbs sampling algorithm based on auxiliary variables

ak1 ak2 bk

Item True Estimated CP True Estimated CP True Estimated CP

1 1∗ 1∗ − 0∗ 0∗ − 0∗ 0∗ −
2 0∗ 0∗ − 1∗ 1∗ − 0∗ 0∗ −
3 1.203 1.149 0.980 0.974 1.001 0.962 0.855 0.879 0.964
4 0.529 0.561 0.970 0.744 0.787 0.952 −0.297 −0.316 0.950
5 1.010 0.936 0.980 0.833 0.854 0.940 1.537 1.488 0.976
6 0.981 0.954 0.958 0.682 0.665 0.940 0.021 −0.015 0.966
7 0.602 0.599 0.972 1.059 0.973 0.956 −0.392 −0.361 0.950
8 1.205 1.184 0.942 0.687 0.667 0.940 −0.644 −0.583 0.910
9 0.922 0.944 0.970 1.338 1.319 0.948 −0.523 −0.551 0.984
10 0.788 0.754 0.988 0.556 0.480 0.930 −0.079 −0.143 0.950
11 0.625 0.617 0.942 0.536 0.553 0.960 −0.122 −0.105 0.940
12 0.568 0.621 0.950 0.735 0.692 0.960 −0.215 −0.186 0.950
13 1.067 1.083 0.934 0.790 0.718 0.924 0.971 0.904 0.952
14 0.806 0.785 0.940 1.207 1.188 0.926 0.313 0.399 0.942
15 0.872 0.830 0.960 0.964 0.879 0.950 0.150 0.056 0.946
16 1.078 1.096 0.962 0.615 0.630 0.972 0.489 0.543 0.940
17 0.762 0.794 0.960 1.436 1.480 0.970 −1.089 −1.110 0.978
18 1.332 1.367 0.980 1.308 1.289 0.960 0.898 0.849 0.970
19 1.194 1.213 0.974 0.680 0.656 0.920 0.138 0.201 0.948
20 1.418 1.408 0.976 1.213 1.131 0.950 −0.383 −0.372 0.960
21 1.063 1.027 0.996 1.466 1.483 0.956 −0.619 −0.739 0.940
22 0.429 0.443 0.962 0.619 0.570 0.940 −0.728 −0.762 0.946
23 0.644 0.591 0.920 1.317 1.388 0.976 −0.792 −0.753 0.912
24 1.181 1.139 0.978 0.698 0.723 0.978 −1.982 −1.996 0.950
25 0.947 0.917 0.976 1.038 0.980 0.962 0.149 0.175 0.964
26 1.544 1.582 0.960 0.780 0.863 0.960 −1.714 −1.679 0.982
27 1.380 1.357 0.924 0.631 0.641 0.960 −1.450 −1.387 0.980
28 0.771 0.759 0.932 1.040 1.113 0.932 0.274 0.246 0.970
29 1.129 1.218 0.952 1.338 1.432 0.962 −1.084 −1.178 0.978
30 0.736 0.807 0.940 0.924 0.871 0.950 0.639 0.655 0.940

Note: Asterisks (*) indicate the constraints for model identification. CP denotes the coverage probability computed from the 500
95% highest posterior density intervals.

Table 2. Parameter estimates of the two-dimensional fixed effects using Gibbs sampling algorithm based on auxiliary variables
in simulation study 1

Fixed effect True Estimated CP Fixed effect True Estimated CP

γ001 1.000 1.037 0.970 γ002 −0.350 −0.371 0.942
γ011 0.300 0.315 0.940 γ012 0.300 0.282 0.960
γ101 0.500 0.546 0.940 γ102 0.500 0.562 0.926
γ111 0.350 0.339 0.952 γ112 −1.000 −1.017 0.946

Level-2 random effect True Estimated CP

σ2
e1 0.300 0.304 0.964

σe1e2 0.075 0.056 0.970
σe2e1 0.075 0.056 0.970
σ2
e2 0.500 0.472 0.948

Level-3 T1 True Estimated CP Level-3 T2 True Estimated CP

τ001 0.250 0.274 0.964 τ002 0.250 0.232 0.966
τ011 0 0.039 0.942 τ012 0 0.011 0.970
τ101 0 0.039 0.942 τ102 0 0.011 0.970
τ111 0.200 0.212 0.930 τ112 0.200 0.208 0.968
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Table 3. Evaluating the accuracy of item parameter estimation

ak1 ak2 bk

Item True Bias RMSE True Bias RMSE True Bias RMSE

1 1∗ 0 0 0∗ 0 0 0∗ 0 0

2 0∗ 0 0 1∗ 0 0 0∗ 0 0

3 1.203 −0.054 0.115 0.974 0.027 0.114 0.855 0.024 0.125

4 0.529 0.032 0.108 0.744 0.043 0.121 −0.297 −0.019 0.118

5 1.010 −0.074 0.129 0.833 0.021 0.137 1.537 −0.049 0.024

6 0.981 −0.027 0.137 0.682 −0.017 0.052 0.021 −0.036 0.132

7 0.602 −0.003 0.109 1.059 −0.086 0.207 −0.392 0.031 0.101

8 1.205 −0.021 0.125 0.687 −0.020 0.137 −0.644 0.061 0.081

9 0.922 0.022 0.126 1.338 −0.019 0.105 −0.523 −0.028 0.065

10 0.788 −0.034 0.210 0.556 −0.076 0.149 −0.079 −0.064 0.136

11 0.625 −0.008 0.136 0.536 0.017 0.082 −0.122 0.017 0.023

12 0.568 0.053 0.143 0.735 −0.043 0.168 −0.215 0.029 0.143

13 1.067 0.016 0.142 0.790 −0.072 0.126 0.971 −0.067 0.148

14 0.806 −0.021 0.083 1.207 −0.019 0.099 0.313 0.086 0.130

15 0.872 −0.042 0.213 0.964 −0.085 0.107 0.150 −0.094 0.119

16 1.078 0.018 0.024 0.615 0.015 0.139 0.489 0.054 0.175

17 0.762 0.032 0.104 1.436 0.044 0.154 −1.089 −0.021 0.039

18 1.332 0.035 0.111 1.308 −0.019 0.048 0.898 −0.049 0.125

19 1.194 0.019 0.085 0.680 −0.024 0.059 0.138 0.063 0.124

20 1.418 −0.010 0.128 1.213 −0.082 0.174 −0.383 0.011 0.086

21 1.063 −0.036 0.087 1.466 0.017 0.123 −0.619 −0.120 0.096

22 0.429 0.014 0.128 0.619 −0.049 0.121 −0.728 −0.034 0.123

23 0.644 −0.053 0.187 1.317 0.071 0.164 −0.792 0.039 0.138

24 1.181 −0.042 0.151 0.698 0.025 0.126 −1.982 −0.014 0.104

25 0.947 −0.030 0.175 1.038 −0.058 0.072 0.149 0.026 0.137

26 1.544 0.038 0.129 0.780 0.083 0.192 −1.714 0.035 0.130

27 1.380 −0.023 0.156 0.631 0.010 0.125 −1.450 0.063 0.131

28 0.771 −0.012 0.076 1.040 0.073 0.250 0.274 −0.028 0.084

29 1.129 0.089 0.217 1.338 0.094 0.118 −1.084 −0.094 0.107

30 0.736 0.071 0.123 0.924 −0.053 0.137 0.639 0.016 0.162

Table 4. Evaluating the accuracy of the two-dimensional fixed effects and variance-covariance components

Fixed effect True Bias RMSE Fixed effect True Bias RMSE

γ001 1.000 0.027 0.140 γ002 −0.350 −0.021 0.108
γ011 0.300 0.015 0.124 γ012 0.300 −0.018 0.152
γ101 0.500 0.046 0.109 γ102 0.500 0.062 0.131
γ111 0.350 −0.011 0.101 γ112 −1.000 −0.017 0.116

Level-2 random effect True Bias RMSE

σ2
e1 0.300 0.004 0.043

σe1e2 0.075 −0.019 0.119
σe2e1 0.075 −0.019 0.119
σ2
e2 0.500 −0.028 0.161

Level-3 T1 True Bias RMSE Level-3 T2 True Bias RMSE

τ001 0.250 0.024 0.146 τ002 0.250 −0.018 0.105
τ011 0 0.039 0.179 τ012 0 0.011 0.118
τ101 0 0.039 0.179 τ102 0 0.011 0.118
τ111 0.200 0.012 0.046 τ112 0.200 0.008 0.039
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Table 5 presents the results of a model comparison with
the averaged AIC, BIC and DIC values across 500 repli-
cations. Both AIC and DIC choose model 2 as the better-
fitting model compared with model 1. The difference in the
averaged AIC is 886.443 between model 1 and model 2. The
difference in the averaged DIC is 964.271 between model
1 and model 2. However, BIC prefers the simpler model
(model 1). The difference in the averaged BIC is 863.421 be-
tween model 2 and model 1. Relatively speaking, the com-
plex multilevel structural model better fits the simulated
data than the simple one. Moreover, the cross-validation log-
likelihoods across 500 replications are used to assess overall
MM2PLMs. From Table 6, we find that Model 2⊕M2PLM is
better-fitting than Model 1⊕M2PLM. The difference in the
averaged cross-validation log-likelihood (which is equivalent
to the log-PsBF) is 4,148.132.
Note: Model 1⊕M2PLM denotes model 1 with a multidi-
mensional two-parameter logistic model.

Table 5. Multilevel structural model comparison using
information criteria for the simulated data

Model AIC BIC DIC

Model 1 34,847.759 34,063.242 35,152.568
Model 2 33,961.316 34,926.663 34,188.297

Table 6. Overall evaluation of the multilevel IRT model based
on the cross-validation (CV) log-likelihood method

Model CV log-likelihood (log-PsBF)

Model 1⊕M2PLM −66,867.386
Model 2⊕M2PLM −62,719.254

5.3 Simulation study 3

The purpose of this simulation study is to verify whether
the algorithm can guarantee the accuracy of parameter es-
timation for the various numbers of individuals and items.
The simulation design is as follows: The number of dimen-
sions is fixed at 4. The multidimensional two-parameter
logistic model is used to generate responses. Two factors
and their varied conditions are considered: (a) three dif-
ferent numbers of individuals N = 1,000, 2,000, or 3,000;
(b) number of items, K = 40,100 or 200, and for per sub-
test number of items 10, 25 or 50. Fully crossing the differ-
ent levels of these two factors yields 9 conditions. Individ-
uals (N = 1,000, 2,000, 3,000) are equally distributed to 10
schools (J = 10). True values of item parameters and pri-
ors of all parameters are generated as in simulation study
1. The true values of the fixed effects are 1.000 (γ00q), 0.300
(γ01q), 0.500 (γ10q) and 0.350 (γ11q), q = 1, · · · , 4, respec-
tively, and the level-2 variances are 0.300

(
σ2
e1

)
, 0.500

(
σ2
e2

)
,

0.750
(
σ2
e3

)
and 1.000

(
σ2
e4

)
, and the covariances are set to

0.075. The level-3 variances are respectively 0.250 and 0.200
(τ00q, τ11q), and the covariances are 0 (τ01q, τ10q). The mul-
tilevel structural model (Equation 19) in simulation study 2
are used, but the dimensions are fixed at 4.

The accuracy of the parameter estimates is measured by
two evaluation indexes, namely, Bias and RMSE. The recov-
ery results are based on the MCMC iterations repeated 500
times. The biases are −0.097∼0.103 for the fixed effect pa-
rameters, −0.032∼0.093 for the level-2 variance-covariance
component parameters, and −0.064∼0.108 for the level-3
variance-covariance component parameters. The RMSEs are
0.169∼0.273 for the fixed effect parameters, 0.128∼0.267
for the level-2 variance-covariance component parameters,
and 0.153∼0.231 for the level-3 variance-covariance compo-
nent parameters. Furthermore, the Bias and RMSE have a
smaller trend with the increase in the number of individuals
and items; in other words, increasing the number of indi-
viduals and items helps to improve the estimation accuracy
of the structural parameters. In summary, the sampling al-
gorithm is effective for various numbers of individuals and
items.

6. ANALYSIS OF THE EDUCATION
QUALITY ASSESSMENT DATA

6.1 Purpose

To illustrate the applicability of the MM2PLM method in
operational large-scale assessments, we consider a data set
about students’ English achievement test for junior middle
schools conducted by NENU Branch, Collaborative Innova-
tion Center of Assessment toward Basic Education Quality
at Beijing Normal University. The analysis of the test data
will help us to gain a better understanding of the practical
situation of students’ English academic latent traits and to
explore the factors that affect their English academic latent
traits. The results of this analysis will be potentially very
valuable for development and improvement of educational
quality monitoring mechanism in China.

6.2 Sampling design

The test data contain a two-stage cluster sample of 2,108
students in grade 2 of junior middle school. These students
are from 16 schools, with 121 to 139 students in each school.
In the first stage, the sampling population is classified ac-
cording to district, and schools are selected at random. In
the second stage, students are selected at random from each
school. The English test battery consists of four subscales:
vocabulary (40 items), grammar (24 items), comprehensive
reading (40 items), and table computing (20 items). All 124
multiple-choice items were scored using a dichotomous scale.
The Cronbach’s alpha coefficients for vocabulary, grammar,
reading comprehension and table computing items are 0.942,
0.875, 0.843, and 0.816, respectively. Level-2 and level-3
background covariates of individuals, teacher satisfaction,
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and school climate (teachers and schools constitute level 3)
are measured. At the individual level, gender (0 = male, 1 =
female) and socioeconomic status are measured; the latter
is measured by the average of two indicators: the father’s
and mother’s educational levels, which are five-point Likert
items; scores range from 0 to 8. At the teacher and school
levels, teacher satisfaction is measured by 20 five-point Lik-
ert items, and school environment from the principal’s per-
spective is measured by 23 five-point Likert items. A de-
scription of the sampling procedure and the questionnaires
can be found in [35]. The Gibbs sampling runs 20,000 itera-
tions for real data, with a burn-in period of 5,000 iterations.
The average over the drawn parameters is calculated after
the burn-in period.

6.3 Model assessment

We consider four dimensions of latent trait: vocabu-
lary cognitive ability, grammar structure diagnosing ability,
reading comprehension ability, and table computing abil-
ity. These latent traits are affected by individual covari-
ates such as socioeconomic status (SES ) and gender (GD).
The individual can be nested into higher group levels (such
as schools), which are affected by group covariates such as
teacher satisfaction (ST ) and school climate (CT ) from the
teachers’ perspective. According to the two model assess-
ment methods mentioned above, three models are consid-
ered for fitting the real data. The best-fitting model is even-
tually used to analyze the data.

At the first level, a multidimensional two-parameter lo-
gistic model (IRT model) is used to model the relationship
between items, persons, and responses. The different struc-
tural multilevel models are represented as follows:

The following model 3 (i.e., structural multilevel model)
consists of two level-2 background variables SES and GD
and the level-2 random intercept. The effect of level-2 back-
ground variables SES and GD are allowed to fix across
school. The structural multilevel part is given by

(20)

Model 3.

⎧⎪⎪⎨⎪⎪⎩
θijq = β0jq+SESijβ1jq+GDijβ2jq + eijq,

β0jq = γ00q + u0jq,
β1jq = γ10q,
β2jq = γ20q.

Model 4 is an extended version by including two latent pre-
dictors at level 3: ST and CT . The structural multilevel
part is given by

(21)

Model 4.

⎧⎪⎪⎨⎪⎪⎩
θijq = β0jq+SESijβ1jq+GDijβ2jq + eijq,
β0jq = γ00q+STjγ01q+CTjγ02q + u0jq,

β1jq = γ10q,
β2jq = γ20q.

When the effects of level-2 background variables SES and
GD are allowed to vary across school, we extend model 4 to

model 5 with the following structural multilevel part:

(22)

Model 5.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θijq = β0jq+SESijβ1jq+GDijβ2jq + eijq,

β0jq = γ00q+STjγ01q+CTjγ02q + u0jq,

β1jq = γ10q + u1jq,

β2jq = γ20q + u2jq.

First, we focus on which is the best structural multi-
level model (model 3, 4, or 5) to fit the real data. The
standardized item response total scores are imputed for
four-dimensional latent trait. The information criteria can
be formulated for choosing between models that differ in
the fixed and/or random part of the structural multi-
level model. From Table 7, the AIC, BIC, and DIC con-
sistently choose model 3 as the worst-fitting model. The
AIC (75,036.875) and DIC (79,527.306) prefer model 5.
Model 4 is ranked second by the AIC (79,580.306) and DIC
(83,816.179). The BIC (76,386.563) prefers the more parsi-
monious model 4 to model 5. In addition, the results for se-
lecting the optimal multilevel IRT model based on the cross-
validation log-likelihood are presented in Table 8. It can
be found that Model 5⊕M2PLM is the best-fitting model
compared to the other models, and Model 4⊕M2PLM is
ranked second. The differences are 333.738 between Model
5⊕M2PLM and Model 4⊕M2PLM, and 4,216.043 between
Model 4⊕2MPLM and Model 3⊕2MPLM. The reason that
Model 5⊕M2PLM and Model 4⊕M2PLM are markedly bet-
ter than Model 3⊕M2PLM can be attributed to the addi-
tional latent predictors at level 3, i.e., ST and CT . In sum-
mary, model 5 is preferred based on the values of both AIC
and DIC for linear multilevel models given the outcome vari-
ables. In addition, the log-PsBFs of MM2PLMs show that
Model 5⊕M2PLM is preferred under both model assessment
methods.

Table 7. Multilevel structural model comparison using the
information criteria for real data

Model AIC BIC DIC

Model 1 90,155.324 91,282.027 94,541.657
Model 2 79,580.619 76,386.563 83,816.179
Model 3 75,036.875 79,843.457 79,527.306

Table 8. Selecting the optimal multilevel IRT model using the
cross-validation (CV) log-likelihood for real data

Model CV log-likelihood (log-PsBF)

Model 3⊕M2PLM −1,161, 982.168
Model 4⊕M2PLM −1,157, 865.125
Model 5⊕M2PLM −1,157, 522.387
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Figure 2. Parameter estimation of ak1, ak2, ak3, and ak4 for subscale 1 (item 1-40), subscale 2 (item 41-64), subscale 3 (item
65-104), and subscale 4 (item 105-124).

6.4 Item test dimension evaluation

A test battery contains four subtests, which consists of
items that measure four dimensions of latent traits, and the
dimension of a latent trait can be measured mainly by a
subtest. The expected a posteriori (EAP) estimates of the
discrimination parameters are plotted to reveal whether the
items’ factor patterns reflect the subtest of the test battery
in Figure 2. In the left panel of Figure 2, the discrimina-
tion parameters of the first two dimensions are plotted for
subtest 1 (items marked by a dot) and subtest 2 (items
marked by a cross), and the other items are marked by a
diamond. The items of subtest 1 (item 1-40) have a high
factor loading on the first dimension on average and a low
factor loading on the second dimension on average, and the
items of subtest 2 (item 41-64) have a high factor loading
on the second dimension on average and a low factor load-
ing on the first dimension on average. The other items do
not vary appreciably between the two dimensions. The right
panel of Figure 2 shows the pattern of the discrimination pa-
rameters of the third and fourth subtests on the third and
fourth dimensions. By and large, the items of subtest 3 (item
65-104) have a high factor loading on the third dimension
and a low factor loading on the fourth dimension, and the
items of subtest 4 (item 105-124) have a high factor load-
ing on the fourth dimension and a low factor loading on the
third dimension. The overall pattern of the discrimination
parameters are used to fit the test battery, demonstrating
that each dimension is generally identified by the items of
one subtest.

6.5 Estimation of structural parameters

From Tables 9 and 10, we can find that parents’ educa-
tional level differs by one unit for the male students from the
same class and school. The vocabulary cognitive ability, the
ability to diagnose grammar structure, reading comprehen-
sion ability, and table computing ability have the differences

of 0.661, 0.483, 0.562 and 0.393, respectively. In comparison
with male students, the differences in the four dimensions
of female ability are 1.034, 0.919, 0.806 and 0.106, respec-
tively. The educational level of parents has an effect on the
English learning ability of their kids. The parents with a
high SES values may have more prospective English learn-
ing awareness based on their own learning experiences, pro-
vide more diversified learning ways, and know how to create
a better English learning environment for their kids. In ad-
dition, parents with a higher educational level are able to
provide learning guidance in English. In general, the higher
educational level of parents, the more ability of tutoring the
English learning activities of their kids.

For both male and female students from the same class
and school with the same SES scores, the performance of
female students in vocabulary cognitive ability, the ability
to diagnose grammar structure, and reading comprehension
ability are higher than the performance of male students by
0.373, 0.436, and 0.244, respectively. However, male students
have scored higher than female students in table computing
ability by 0.287. From the previous comparison, it concludes
that female students have the advantage over male students
at vivid memory and mechanical memory but not at logical
reasoning, deductive induction, and computing ability.

For male students who have the same SES scores from
different schools, if the difference in teacher satisfaction is
taken as a baseline unit, the differences at the levels of
vocabulary cognitive ability, the ability to diagnose gram-
mar structure, and reading comprehension ability are 0.562,
0.375 and 0.332, respectively. However, the difference at
computing ability’s level is very small. Through further anal-
ysis, we can find out that teachers’ factor has an important
impact on students’ cognitive ability, the ability to diag-
nose grammar structure, and reading ability, except for the
table computing ability. From this study, we conclude the
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Table 9. Parameter estimation of the MMIRT model for vocabulary cognitive ability and grammar structure diagnosing ability

Vocabulary cognitive ability Grammar structure diagnosing ability
Fixed effect Coefficient SD HPDI Fixed effect Coefficient SD HPDI

γ001 0.775 0.199 [0.453, 1.101] γ002 0.654 0.155 [0.401, 0.934]
γ011 (ST ) 0.562 0.151 [0.326, 0.827] γ012 (ST ) 0.375 0.127 [0.171, 0.649]
γ021 (CT ) 0.271 0.158 [0.028, 0.539] γ022 (CT ) 0.104 0.136 [−0.096, 0.343]
γ101 (SES) 0.661 0.140 [0.437, 0.914] γ102 (SES) 0.483 0.161 [0.218, 0.751]
γ201 (GD) 0.373 0.184 [0.079, 0.675] γ202 (GD) 0.436 0.191 [0.122, 0.765]

Random effect Covariance SD HPDI Random effect Covariance SD HPDI

τ001 0.534 0.108 [0.209, 1.102] τ002 0.370 0.181 [0.174, 0.704]
τ011 −0.019 0.142 [−0.238, 0.195] τ012 −0.024 0.121 [−0.215, 0.161]
τ021 −0.242 0.196 [−0.592,−0.001] τ022 0.055 0.154 [−0.174, 0.309]

τ111 (SES) 0.275 0.144 [0.117, 0.534] τ112 (SES) 0.232 0.196 [0.021, 0.584]
τ121 −0.082 0.127 [−0.299, 0.094] τ122 −0.026 0.151 [−0.266, 0.203]

τ221 (GD) 0.128 0.135 [−0.135, 0.569] τ222 (GD) 0.167 0.162 [−0.116, 0.627]

Table 10. Parameter estimation of the MMIRT model for reading comprehension ability and table computing ability

Reading comprehension ability Table computing ability
Fixed effect Coefficient SD HPDI Fixed effect Coefficient SD HPDI

γ003 0.763 0.207 [0.410, 1.116] γ004 0.319 0.138 [0.090, 0.543]
γ013 (ST ) 0.332 0.172 [0.041, 0.628] γ014 (ST ) 0.077 0.118 [−0.131, 0.287]
γ023 (CT ) 0.083 0.197 [−0.292, 0.401] γ024 (CT ) 0.255 0.108 [0.068, 0.491]
γ103 (SES) 0.562 0.128 [0.355, 0.791] γ104 (SES) 0.393 0.135 [0.176, 0.627]
γ203 (GD) 0.244 0.190 [−0.049, 0.573] γ204 (GD) −0.287 0.123 [−0.488,−0.083]

Random effect Covariance SD HPDI Random effect Covariance SD HPDI

τ003 0.529 0.160 [0.149, 1.181] τ004 0.294 0.146 [0.138, 0.562]
τ013 −0.024 0.135 [−0.227, 0.186] τ014 0.100 0.098 [−0.026, 0.269]
τ023 0.014 0.212 [−0.308, 0.345] τ024 −0.065 0.094 [−0.244, 0.063]

τ113 (SES) 0.261 0.115 [0.131, 0.475] τ114 (SES) −0.025 0.131 [0.144, 0.533]
τ123 −0.040 0.118 [−0.233, 0.135] τ124 −0.026 0.081 [−0.156, 0.093]

τ223 (GD) 0.173 0.156 [−0.121, 0.652] τ224 (GD) 0.128 0.105 [0.014, 0.325]

existence of strong relation between teacher satisfaction fac-
tor and sense of responsibility factor at junior middle school,
and it can be explained by the work environment that main-
tains enthusiasm of education and teaching, and inspire stu-
dents’ learning motivation. This has a great improvement at
level of the students’ vocabulary cognitive ability, the ability
to grammatical structure analysis, and reading comprehen-
sion ability owing to teachers’ teaching attitude and respon-
sibility. However, the improvement for the table computing
ability is small. It is possible to play a decisive role in the
students’ internal factors as compared with the teachers’
external factors.

Tables 9 and 10 present the estimated results of the
correlations between ability type for the latent dimensions
and the covariates of different levels. The estimated values
for school climate effects γ02q are 0.271, 0.104, 0.083, and
0.255 for q = 1, · · · , 4, respectively. The performances as-
sociated with vocabulary cognitive ability, the ability to di-
agnose grammar structure and table computing ability are
markedly affected by the level-3 school climate covariates,
whereas reading comprehension ability is not markedly af-
fected when controlling for the level-2 SES and GD individ-

ual covariates and the level-3 (school-level) teacher satisfac-
tion covariates. Analysis of the level-3 variance components
reveals that the values of τ11q(SES ) are markedly different
from 0, and their estimates are 0.275, 0.232, 0.261 and 0.289
for q = 1, · · · , 4, respectively. This result illustrates that the
effect of SES varies from school to school. In addition, the
τ22q(GD) values are also markedly different from 0. Accord-
ing to the information criteria and PsBF model selection
results, Model 5⊕M2PLM shows the best fit with the real
data when β1jq and β2jq are included as random effects.
The estimation results show that the proportion of females
to males varies among schools. None of the estimated co-
variances between the random effects τ01q, τ02q, and τ12q
are markedly different from 0. It can be concluded that the
random effects are independent of each other for each type
of ability.

7. CONCLUDING REMARKS

To explore the relations between multiple latent traits
and covariates in a hierarchical data structure, this study
presented a Bayesian MMIRT modeling and estimation pro-
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cedure. An improved Gibbs sampling algorithm based on
auxiliary variables for estimating MMIRT models is devel-
oped. The new algorithm overcomes the traditional Gibbs
sampling algorithm’s dependence on the conjugate prior for
complex IRT model, and avoids some shortcomings of the
Metropolis algorithm (such as sensitivity to step size, severe
dependency on the candidate function or tuning parameter).
Based on the simulation results, we see that the new algo-
rithm provides accurate estimates of the structural param-
eters in the sense of having small Bias and RMSE values,
and the coverage probability of the 95% highest posterior
density interval is around 0.950 for each structural parame-
ter. Therefore, the algorithm is effective and can be used to
analyze the real data.

However, the computational burden of the new algorithm
becomes intensive especially when a large number of ex-
aminees or the items is considered, or a large number of
the MCMC sample size is used. Therefore, it is desirable to
develop a standing-alone R package associated with C++ or
Fortran software for more extensive large-scale assessment
program.

In addition, the new algorithm based on auxiliary vari-
ables can be extended to estimate some more complex item
response and response time models, e.g., graded response
model, Weibull response time model and so on.
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