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Proportional mean residual life model with
censored survival data under case-cohort design

HunyuaN MA, JIANHUA SHI*, AND YONG ZHOU

Proportional mean residual life model is studied for
analysing survival data from the case-cohort design. To si-
multaneously estimate the regression parameters and the
baseline mean residual life function, weighted estimating
equations based on an inverse selection probability are pro-
posed. The resulting regression coefficients estimates are
shown to be consistent and asymptotically normal with eas-
ily estimated variance-covariance. Simulation studies show
that the proposed estimators perform very well. An appli-
cation to a real dataset from the South Welsh nickel refiners
study is also given to illustrate the methodology.

KEYWORDS AND PHRASES: Case-cohort design, Censored
survival data, Estimating equation, Mean residual life.

1. INTRODUCTION

When studying the natural history of a event, such as
the fields of survival analysis, medical study, actuarial sci-
ence and reliability research, the residual lifetime is often
regarded as a crucial index for investigators to make deci-
sions. The mean residual life function (MRLF) is one of the
most important quantitative measures for the residual life-
times that can describe the characteristics of the residual
life time more directly. The MRLF for a nonnegative sur-
vival time T with finite expectation at time ¢ > 0 is defined
as m(t) = E(T —t|T > t). It is often of interest to anal-
yse the mean residual life function in many applications.
For example, a driver may be interested in knowing how
much longer his or her car can be used, given that the car
has worked normally for ¢ years. Many early literatures on
MRLF studied its probability behaviours, statistical infer-
ence on testing procedures and the estimation in homoge-
neous cases. Apparently, the MRLF may vary due to differ-
ent covariates. To quantify and summarize the association
between the MRLF and its associated covariates, extensive
regression models are explored. [25] originally proposed the
proportional mean residual life model, which has been stud-
ied by many authors later. The proportional mean residual
life model, or the Oakes—Dasu model, is specified by

(1)
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m(t|Z) = mo(t) exp(B'Z),

where m(t|Z) is the mean residual life with the p-vector
covariate Z, B is the usual regression p-parameter vector,
and mg(t) is an unknown baseline mean residual life. [23]
developed estimation procedures for regression coefficients
mainly for uncensored survival data, which was later modi-
fied to accommodate right censoring setting in [11]. [9] used
counting process theory to develop another semiparametric
inference procedures for the proportional mean residual life
model. [10] and [8] proposed the additive mean residual life
model and discussed various estimation methodologies with
or without right censoring. [29] proposed a more general
family of transformed mean residual life model, including
the proportional mean residual life model and the additive
mean residual life model as special cases.

However, the above methods for mean residual life models
are not suitable when some covariates are missing. In large
cohort studies, the major effort and cost arise from the as-
sembling and analysing of covariate measurement. When the
disease rate is low, assembling all covariates for every sub-
ject may become redundant and expensive. [27] proposed
case-cohort design to provide a cost effective way of con-
ducting such cohort studies. Under this design, a random
sample from the entire cohort is selected, named the sub-
cohort. Covariate information is collected only for the sub-
jects in the subcohort and all the cases who experience the
event of interest. After the landmark article of [27], the case-
cohort design has been extensively studied in many statisti-
cal literatures. Standard analysis of the case-cohort design
are conducted using the Cox proportional hazards model
[12]. For example, a pseudo-likelihood procedure proposed
by [27] was later elaborated by [28], [18] and [22]. Several
authors studied other regression models such as the addi-
tive hazards model [15, 21, 17], the proportional odds model
[5] and the semiparametric transformation regression model
[4, 14, 19, 7, 20]. [1], [16] and [3] among others, extended
the classical case-cohort design to more complex sampling
schemes. Besides, [30] and [13] conducted quantile regres-
sion analysis of case-cohort data. All these models may be
adopted to indirectly make statistical inference for the mean
residual lifetime. But they are relatively cumbersome and
not straightforward to measure the residual life. Further,
the mean residual life function is appealing to understand
for practical use, and it provides an alternative to the haz-
ard function. Consequently, improving statistical methods
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for mean residual life models are needed under the case-
cohort design.

Just as mentioned before, existing methods for mean
residual life models are used for cohort data with complete
covariate information, they are not suitable for the case-
cohort data. To the best of our knowledge, there have been
no study about mean residual life model under case-cohort
design. In this paper, we focus on proportional mean residual
life model for the analysis of case-cohort data. Our research
is initially motivated by a nickel refiners study in the South
Welsh where the refiners are interested in knowing how long
they can still survive given their current situation. Thus,
the mean residual life model is an informative choice. Fur-
ther, the event rate for this study is quite low and hence
the case-cohort design is preferred. Our approach is moti-
vated by [9], who made use of the counting process theory
in constructing some estimating equations and does not re-
quire estimating or modelling the distribution of censoring.
The main difficulty here is that some covariates are miss-
ing and the subjects whether they should be selected in the
subcohort are not independent with each other.

The remainder of this paper is organized as follows. In
Section 2, several new weighted estimating equations are
proposed for simultaneous estimation of the regression pa-
rameters and the baseline mean residual life function. Some
large sample properties of the resulting regression coeffi-
cients estimates are also given in this Section. Section 3 is
devoted to simulation studies to examine the finite sample
properties of the regression parameter estimators. In Sec-
tion 4, a real dataset from the South Welsh nickel refiners
study is used to illustrate the proposed estimating proce-
dures. Section 5 contains some concluding remarks and the
outline of the proofs is provided in the Appendix finally.

2. ESTIMATING EQUATIONS AND
THEORETICAL RESULTS

The failure time and potential censoring time are de-
noted as T and C, respectively, which are assumed to
be independent given the p x 1 covariate vector Z. Let
T = min(7T,C) and § = I(T < C), then the usual count-
ing process and the at-risk process at time ¢ can be defined
as N(t) = 0I(T < t) and Y (t) = I(T > t), respectively.
Complete data on a sample of n individuals are modeled
as n independent and identically distributed random vec-
tors (T},ai,zi), where T; = min(7;,C;) and 6; = I(T; <
C;) for i = 1,2,--- /n. Consider the filtration defined by
Fi = U{NAU),YZ(U),ZZ 0<u<ti=1,2,--- 7”}7 then
M;(t; Bs, my) = N;(t) — ngi(s)dAi(s;,B*,m*) are martin-
gales with respect to F%, where A;(-) denotes the usual cu-
mulative hazard function for subject ¢, B, and m.(:) are
the true values of B and mg(-), respectively. The martin-
gale properties of M;(-) implies E[dM;(t; B.,m.)] = 0 for
t=1,...,n. Furthermore,

E [m.(t)dM;(t; By, m.)]
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= E[my(t)dN;(t) — m.(t)Y;(t)dA;(t; By, my)]
= E[m.(t)dN;(t) — Y;(t){exp(—B.Z)dt + dm.(t)}]
2) =

For simplicity, we assume that 0 < 7 = inf{t : Pr(T >
t) = 0} < oo. When the gathered data was complete, [9]
proposed the following two estimating equations to estimate

(B, mu(t)):
D [mo@ani(t) = Yi){ exp(-B"Z:)dt

(3) +dmo(t)}] =0 (0<t<7),

(4) + dmo(t)}} =0.

Under the case-cohort design, since Z; is not observed for
all subjects, the estimating equations (3) and (4) based on
the entire cohort data are no longer available. In this paper,
we assume that the subcohort with fixed size 7 is drawn from
the entire cohort by the simple random sampling. Let &; be
the subcohort indicator, taking the value 1 or 0, whether
the subject is included in the subcohort or not. Hence the
data can be summarised as {(T}, 6;, &, [0+ (1 — ;)& Zs), i =
1,2,--+ ,n}, which means that (ﬂ,&i) are available for all
individuals in the entire cohort, and Z; only for subjects
in the subcohort with &; = 1, and all the cases outside the
subcohort with 6; = 1 and & = 0. Here &; is independent
of (Ti,éi,zi),i = 1,2,---,n, while the &s are dependent
because of the sampling without replacement. Similar to [14]
and [19], for each individual in the full cohort, we define a
weight m; = 6; + (1 — 0;)&;/p by the idea of the inverse
selection probabilities, where p = 7/n.

Now we propose the estimator by two steps in the follow-
ing.

First, we develop a new estimator for mg(t) as if the true
regression coefficients B have been known. We propose the
estimating equation by incorporating the weight 7,

> mi[mo(t)dNi(t) — Yi(t){ exp(—B'Z:)dt
i=1

(5) +dmo(t)}] =0

iy midNi(t)
= { S YD) }mO“) ~ dmo(t)

(6) _ 2in Wi}g(t) eXP(*ﬁTZi)dt'

2 i1 miYi(t)
Equation (6) is in fact a first-order linear ordinary differ-

ential equation about mg(t), which possesses a closed form
solution

mo(t) = 1o(t; B)



(7) #(t) /t ’ S, () By (u; B)du,
where
— ex o midN; (u) .
Sn(t) = p{ / ST Vi )} d
1K
Bu(t:f) — s T2

Yim mYi(t)

Based on the mean-zero process N; (¢ fo i Yi(u)dA; (u; By,

m.), it is easy to show that S, () is a consistent estimator of
the survival function for the failure time T'. We can see that
(7) owns similar formula as m(t) = [ S(u)du/S(t) with
Sp(t) as an unbiased estimator of S ( ), Whlle the additional
term B,,(u; B) that involves 3 is caused by the proportional
assumption for the mean residual life model.

Next, we propose the estimating equations to estimate
B.. Define

U{/ga mO

Z/ i Zi [mo(t)dN; (t)

(8) (t){ exp(—B"Z;)dt + dmo(t) }].

Note that

vig.m.() = 23 [ " [ (£)dN, (1)
(9) t){ exp(—BLZ;)dt + dm., (t)}]
(10) = %Z /OT 7 Ly (8)dM; (85 By, ).

are mean-zero. To obtain a consistent estimator for [,
we replace mg(t) with rhg(¢;3) in U{B,mo(-)}, and de-
fine Z(t) = Y"1 | mZ;Yi(t)/ Y, mYi(t), then the resulting
equation is equivalent to

UB) = UB,mo(t;6))

_ %Z /0 "2 — 20} (1o (t: B)ANL (1)

(1) —Yilt) exp(—8'Z:)dt} = 0.

The resulting estimator is denoted by ,@, which has sev-
eral good properties such as consistency and asymptotic nor-
mality.

In order to derive the large sample properties of B,
some notations and regularity conditions are needed. De-
note H(t|Z) = Pr(T > t|Z) and C,,(t) = n~' S0, mYi(t).
Let

bt 30 (2 — Z(w)]dNj (u)
Sy (u) ’

and let ju,(t) and fi,(t) be the limits of Z(t) and Z(t), re-
spectively.
We give the following regularity conditions:

C1 sup supp(F) < sup supp(G), where F(-) and G(-) are
the distribution functions of 7" and C', respectively;
sup; ||Z;|| < oo, where ||u|| denote the Euclidean norm
of vector variable u;

m.(t) is continuously differentiable on [0, 7];
A=[TE [{z ~ g (1))%2 exp(—ﬁIZ)H(ﬂZ)} dt is non-
singular, where a®? denotes aa' for a vector a.

f/n converges to p as n — oo, where pg < p < 1 for
some po > 0.

C2

C3
C4

C5

Condition C1 is imposed to ensure that the mean resid-
ual life function is estimable; otherwise, the MRLF of T may
not be estimable at some points. From the technical argu-
ments, this assumption also saves us from lengthy technical
discussion of the tail behavior of the limiting distributions.
Such an assumption has been adopted by other investigators
in regression analysis of MRLF, see, for example, [9], [11],
[10] and [29]. This assumption may not hold if the survival
time has an extremely long tail. It may also fail when the
follow-up period is too short or when the tail is subject to
administrative censoring. However, in well-designed clinical
studies with a nonzero event rate and long follow-up, this
assumption is reasonable.

To introduce our results, let

X =31+ Yo,

; 2
5= E { | @ - a0 - iy mearnio)|
2= 122 [T 6 2 -l

p

- ﬂz(t)}

X2
. (1)dM, <t>]

2] [o-me
m. (t)dM, (t)]>®2.

Theorem 1. Suppose conditions C1-C5 hold, then

(i) B and 1o(t) always exist and are consistent.

(i) n'/2(B—B,) is asymptotic normal with mean zero and a
variance-covariance matriz A~ Y (A~ ) Moreover, A and
> can be consistently estimated by A and & respectively,
where

— pa(t) = 1 (8)}

A= 3o [ (7 2O exn(-B 2

=1
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Y;(t)1io(t; B){exp(—B"Z;)dt + ding(t; B)},

5= 2ly =08 {220 - 20)

B 1—@(;276 [/OT(l—éi)%{Zi_z(t)_Z<t)}

i=1

ot B)dMi(t)} ) ®2.

(iii) n'/?{mo(t) — m.()}(0 < t < T) converges weakly to
a mean zero Gaussian process with the covariance function
that will be given in the Appendiz.

The proof of Theorem 1 is given in the Appendix.

Although B has properties such as consistency and
asymptotic normality that can be used to make valid infer-
ences about G, the ad hoc nature of U(3) would not lead
to efficient estimators, however. Note that equation (11) is
constructed via the method of moments, one of the short-
comings for the method of moments is that it may not nec-
essarily be efficient. To improve the efficiency, we explore
the following approaches via two aspects.

One is that by adding proper weight functions. The fol-
lowing weighted version of the estimating equations can be
used to estimate 3,:

LY [ W12 - 2O ol v

(12) —Y;(t) exp(—B'Z;)dt} =0,

where W;(t) is a possibly data-dependent and JFi-
measurable weight function which converges uniformly to
some deterministic function w(t) almost surely. Denote the
solution to the equation (12) as B, by using the technique
in the Appendix, ﬁw is shown to be consistent and asymp-
totically normal with asymptotic variance n=tA 'S, AL,
where

Av = [ E[00) (2 - @) er(-plR) )] .
0
Ew = Ewl +Ew27
Bur = E| [ w0 (- nlt) - o)
®2
B el 5 Y AV ) — g
Bar = LE] [0 -6 (2 - ) - ule)

®2
. (1)dM, <t>}
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_1-p (E[/OT w(t)(1 = 61) {Z1 — pa(t) — fia(t)}

p
®2
m*(t)dMl(t)}> .
[9] has used the Cauchy—Schwarz inequality to prove that

exp(—B'Z;)
1o (t){exp(—BTZ;) + mf(t)}’

can improve the estimation efficiency. Hence we also suggest
this choice of W;(t), which actually decrease the estimated
variance in our simulation results.

The other is through the stratified case-cohort design.
For the stratified case-cohort design, the general idea is
the same with the classical one. That is, the covariate
Z; is observed only when subject ¢ is a failure or from
the subcohort. The observed data can be summarized as
{(TZ, 57;,52', [(S,L + (]. — 5Z)§Z]Zl)7z = ].7 . 7%}, where 51 is the
subcohort indicator. But the sampling scheme to choose the
subcohort is no longer simple random sampling. If an indi-
vidual characteristics Z* being highly correlated with Z is
available for all the subjects in the cohort, [24] suggested
that selecting the subcohort using stratified sampling based
on Z* can improve efficiency in hazard regression models.
We expect that a similar result holds for mean residual life
models, which have been supported by the simulation stud-
ies in next Section. Many sampling schemes can be designed
for selecting a stratified subcohort. In this paper, we allow
& to depend on Z7, which may involve T;, Z; and some
external variables correlated with 7; and Z;, and the s
are independent Bernoulli variables with possibly unequal
success probabilities. Let p; = Pr(¢§; = 1) = p(Z}) be the
probability to be chosen in the subcohort, where p(Z}) is a
function mapping the sample space of Z* to (pg, 1) for some
po > 0. Then the weight under the stratified case-cohort
design is defined as 77 = §; + (1 — 8;)&;/pi. The resulting
estimating equations are

(13)  Wi(t) =

> " wi [mo(t)dNi(t) — Yi(t){ exp(—BZ:)dt
i=1

(14) +dmo(t)}] =0 (0<t <),
> /0 ’ 78 Z; [mo(t)dN;(t) — Yi(t){ exp(—BZ;)dt
i=1

(15) +dmg(t)}] = 0.

Note that when there is only a single stratum, the inde-
pendent Bernoulli sampling proposed for selecting the sub-
cohort in the stratified case-cohort design does not reduce
to sampling without replacement. The size of the subco-
hort 7 = Y i, & is random, if %ZZL:I p; converges to the
limiting subcohort proportion p € (0,1] in probability, so
does n/n. The stratified case-cohort design keeps the inde-
pendent structure while the classical case-cohort study does



not, which results in the different proofs of their asymptotic
properties. In fact, following the arguments in the Appendix
and those in [15], we can prove that the resulting estimator
from (14) and (15), denote as (s, is a consistent and asymp-
totically normal estimator of 3., the asymptotic variance of
B is nTATIS (AT, where &, = By + X0 with

®2

S =E [ [ (= ) = it i)
S 1J’E[/()T(l 60 {2 — () — (1)}

p

®2
. (1)dM, (t)} |

3. SIMULATION STUDIES

In this section, we conduct simulation studies to examine
the finite sample properties of the proposed estimator.

In the first scenario of simulation studies, the event time
T is generated from the following proportional mean residual
life regression model

m(t|Z) = mo(t) exp(ﬂlZl + ﬁng),

where the covariate Z; is a Bernoulli random variable with
success probability 0.5, Z5 is a U(0,1) variable, the true
regression parameters (61*,52*)T is respectively set to be
(0,0)7, (0.2,0.2)" or (0.5,—0.5)" and the baseline function
mo(t) is taken from the Hall-Wellner family, in other words,
mo(t) = (Dit + Do)t where D1 > —1, Dy > 0, and d*
denotes d - I(d > 0) for any quantity d. Here we consider
two scenarios for the baseline function mg(t). One is that
Dy = —0.5 and Dy = 0.5, the other is under D; = —0.5 and
Dy = 1. The censoring time C' is generated from Exp(\),
where A is used to control the censoring proportion. We set
the censoring rate to be 70% or 80% to mimic the low event
rate where the case-cohort designs are more likely to be ap-
plied. Care is taken to ensure that the support of C' is larger
than the support of T for all Z.

Five hundred replications of full cohort data are gener-
ated with the sample size n = 1000. For each replication,
subcohorts of size 200 and size 300 are drawn by simple
random sampling, respectively. The empirical biases (Bias),
empirical standard deviations (SD), average robust standard
errors (SE), coverage probabilities of the 95% confidence in-
tervals (CP) and the empirical relative efficiency (RE) of
the proposed ,@ are reported in the study. We also report
the estimation and inference results based on full cohort for
comparison. The simulation results are summarized in Ta-
bles 1 and 2, when the censoring rates are approximately
70% and 80%, respectively.

It can be seen from the simulation results in Tables 1 and
2 that the proposed estimates are all essentially unbiased un-
der two different subcohorts. The means of estimated stan-
dard errors match the empirical standard errors quite well

and the 95% confidence intervals have reasonable coverage
rates. Compared to the full cohort analysis, the case-cohort
designs are less efficient in estimating the regression coeffi-
cients but the efficiency loss appears to be small. We also
find that the empirical relative efficiencies increase when the
size of the subcohort increases.

It would be informative to compare the proposed case-
cohort estimator with the estimator based on a simple
random sample of the same size as the case-cohort sam-
ple. For the sample size n, the subcohort size ni, and the
censoring rate ¢, the effective case-cohort sample size is
ny + (n—nq) - (1 —c¢). When n = 1000,¢ = 0.8, subco-
horts of size 200 and 300 correspond to the effective size 360
and 440, respectively. For the same data generation mech-
anism as in Table 2, we present the simulation comparison
results in Table 3. We can see from Table 3 that the relative
efficiencies are all larger than 1, showing the advantage of
using a case-cohort design instead of a random sampling de-
sign. Compared to the same size of random sampling design,
the estimated standard errors and the empirical deviations
of the case-cohort sample are much closer to each other.

In the second scenario of simulation studies, we explore
two efficiency improving approaches. One method is to use
the weighted function (13), the other method is to use the
stratified case-cohort design. Here the event time T is gen-
erated from

m(t|Z) = mo(t) exp(BoZ),

where the covariate Z = 2 - Bernoulli(p,) — 1 with p, = 0.3
or 0.5, the true regression parameter 3 is set to be 0, 0.2
or 0.5, the baseline function mg(¢) is taken from mg(t) =1
or mo(t) = 1+ ¢, respectively. C' is generated as described
in the first scenario of simulations, but the censoring rates
are set approximately 90% this time. The sample size and
the subcohort size are almost equal to the first ones. The
simulation results using the weighted estimating equations
are omitted here because the weighted estimators don’t show
significant efficiency improvement in many cases. Meanwhile
the weighted case-cohort estimators are still not efficient as
the full estimators, this is in accordance with our expecta-
tion since we only use the uncensored data and the subco-
hort data under the case-cohort design. Similar phenomenon
has also been founded in [19].

In the stratified case-cohort design simulation, we de-
fine the distribution of Z* by n = Pr(Z* = 1|Z = 1) and
v =Pr(Z* = -1|Z = —1), where (n,v) is chosen as (0.7,
0.7). Thus Z* = 2 - Bernoulli((1 — v)(1 —p,) +n-p.) — L.
The subcohort is a stratified sample selected by independent
Bernoulli sampling with selection probability p(Z*) chosen
so that approximately equal numbers of subjects are selected
from the two strata, i.e. {Z* = 1} and {Z* = —1}. Simu-
lation results comparing the full, classical, stratified cohort
are given in Table 4. In general, the stratified case-cohort
design behaves better than the classical one when the cor-
relation between Z and Z* exists. But when Z and Z* are
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Table 1. Simulation results when the censoring rate is approximately 70%

Full Subcohort:200 Subcohort:300
B1 B2 B1 B2 B1 B2
mo(t) = (—0.5t +0.5)4, 8 = (0,0)"

BIAS 0.005 0.001 0.004 0.007 0.006 —0.001
SD 0.057 0.100 0.097 0.148 0.083 0.138
SE 0.060 0.104 0.088 0.153 0.079 0.137
CcP 94.8 96.0 91.6 94.4 93.8 94.2
RE 1.00 1.00 0.35 0.46 0.48 0.53

mo(t) = (0.5t +0.5)1,8 = (0.2,0.2)"

BIAS 0.002 —0.002 0.005 —0.003 —0.004 —0.004
SD 0.044 0.077 0.067 0.109 0.060 0.103
SE 0.049 0.086 0.070 0.121 0.063 0.109
CP 98.0 97.0 96.0 97.6 97.0 97.2
RE 1.00 1.00 0.43 0.50 0.58 0.59

mo(t) = (=0.5t + 0.5)+, 8 = (0.5, —0.5)"

BIAS 0.002 0.007 0.002 —0.002 0.007 0.002
SD 0.058 0.104 0.086 0.160 0.079 0.142
SE 0.062 0.106 0.093 0.159 0.083 0.143
CP 97.2 95.8 96.4 95.4 97.6 95.2
RE 1.00 1.00 0.43 0.43 0.52 0.54

mo(t) = (—0.5t + 1)+, 8 = (0,0)"

BIAS 0.001 —0.003 —0.001 —0.014 0.005 0.003
SD 0.058 0.097 0.090 0.163 0.077 0.141
SE 0.060 0.104 0.089 0.154 0.080 0.138
CcP 94.8 96.6 93.6 92.6 96.0 93.0
RE 1.000 1.000 0.416 0.351 0.574 0.470

mo(t) = (—0.5t + 1)+, 8 = (0.2,0.2)"

BIAS —0.003 —0.001 —0.008 0.007 —0.003 0.003
SD 0.044 0.082 0.063 0.121 0.062 0.106
SE 0.050 0.086 0.070 0.120 0.063 0.109
CP 97.4 96.0 97.2 94.4 95.6 95.8
RE 1.00 1.00 0.49 0.46 0.50 0.60

mo(t) = (=0.5t +1)4,8 = (0.5,—0.5)"

BIAS 0.002 0.019 0.003 0.027 0.002 0.020
SD 0.058 0.102 0.088 0.156 0.080 0.147
SE 0.062 0.106 0.093 0.159 0.083 0.142
CcP 95.6 95.8 95.6 95.2 94.6 93.0
RE 1.00 1.00 0.43 0.42 0.51 0.47

BIAS, the empirical bias; SD, the empirical standard deviation; SE, the mean of estimated standard error; CP, the empirical coverage
probability of 95% confidence interval; RE, the empirical relative efficiencies, calculated by the ratio of sample variance with the
full estimators as a reference.

uncorrelated, the classical case-cohort design will do slightly to the South Welsh nickel refiners study. In this study, men
better than the stratified one. employed in a nickel refinery in South Welsh were investi-
gated to determine the risk of developing carcinoma of the

4. A REAL DATA EXAMPLE

In this section, we apply the proposed case-cohort analy- fining of nickel. The cohort was identified using the weekly
sis approach under the proportional mean residual life model payrolls of the company and followed from the year 1934

bronchi and nasal sinuses which is associated with the re-
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Table 2. Simulation results when the censoring rate is approximately 80%

Full Subcohort:200 Subcohort:300
B1 B2 B1 B2 B1 B2
mo(t) = (=0.5t +0.5)4, 8 = (0,0)"

BIAS 0.003 0.003 —0.003 0.010 0.006 —0.012
SD 0.066 0.118 0.104 0.186 0.093 0.171
SE 0.073 0.127 0.105 0.182 0.095 0.165
CcP 97.2 96.8 94.8 93.0 96.8 94.6
RE 1.00 1.00 0.40 0.40 0.50 0.48

mo(t) = (—0.5t +0.5)1,8 = (0.2,0.2)"

BIAS —0.004 —0.004 —0.007 0.003 —0.005 —0.008
SD 0.054 0.098 0.079 0.139 0.071 0.129
SE 0.059 0.102 0.083 0.143 0.075 0.129
CP 97.2 96.0 95.8 95.8 95.6 93.6
RE 1.00 1.00 0.47 0.50 0.58 0.57

mo(t) = (=0.5t + 0.5)+, 8 = (0.5, —0.5)"

BIAS —0.002 0.010 —0.011 0.015 —0.006 0.012
SD 0.069 0.126 0.107 0.196 0.093 0.174
SE 0.074 0.128 0.110 0.190 0.099 0.172
CP 96.2 94.8 93.8 93.0 95.2 94.0
RE 1.00 1.00 0.41 0.41 0.55 0.52

mo(t) = (=0.5t +1)4, 8 = (0,0)"

BIAS 0.002 —0.005 —0.002 0.001 0.002 —0.007
SD 0.069 0.115 0.111 0.179 0.094 0.158
SE 0.073 0.127 0.106 0.183 0.096 0.166
CcP 96.4 97.4 92.0 92.8 93.8 95.8
RE 1.00 1.00 0.38 0.41 0.54 0.53

mo(t) = (—0.5t + 1)+, 8 = (0.2,0.2)"

BIAS —0.001 —0.010 —0.004 —0.013 —0.003 —0.003
SD 0.056 0.096 0.085 0.147 0.072 0.123
SE 0.059 0.102 0.082 0.142 0.075 0.129
CP 96.8 96.0 94.0 93.0 94.4 95.6
RE 1.00 1.00 0.43 0.43 0.58 0.59

mo(t) = (—0.5t +1)4,8 = (0.5,—0.5)"

BIAS —0.003 0.001 —0.003 0.004 —0.009 0.002
SD 0.075 0.133 0.110 0.195 0.095 0.181
SE 0.074 0.129 0.111 0.191 0.099 0.172
CcP 94.8 93.8 92.6 91.0 94.4 92.8
RE 1.00 1.00 0.46 0.47 0.64 0.54

BIAS, the empirical bias; SD, the empirical standard deviation; SE, the mean of estimated standard error; CP, the empirical coverage
probability of 95% confidence interval; RE, the empirical relative efficiencies, calculated by the ratio of sample variance with the
full estimators as a reference.

until 1981. The complete records of 679 workers employed [2] used the Cox model to analyse the mortality data
before 1925 can be obtained from the Appendix VIII in [2]. on nasal sinus cancer. They considered the survival time
Among the full cohort, there were 56 deaths from cancer of to be years since first employment and found three signifi-
the nasal sinus until 1981. The event rate for this study is cant risk factors: AFE (age at first employment), YFE (year
quite low and hence the case-cohort design is more likely to at first employment) and EXP (exposure level). [18] fitted
be applied. the same model to the data obtained from a “hypothetical”
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Table 3. Simulation comparison when the censoring rate is approximately 80%

n = 1000, subcohort:200 n = 360 n = 1000, subcohort:300 n = 440
B B2 B B2 B1 B2 B B2
mo(t) = (—0.5t +0.5)4+, 8 = (0,0)"

BIAS 0.001 —0.011 —0.002 0.014 0.002 —0.008 0.002 —0.001
SD 0.110 0.181 0.117 0.212 0.102 0.166 0.106 0.193
SE 0.105 0.182 0.122 0.211 0.096 0.166 0.110 0.191
CP 92.2 92.6 95.4 94.0 92.6 95.0 95.6 96.0
RE 1.33 1.35 1.00 1.00 1.33 1.33 1.00 1.00

mo(t) = (0.5t +0.5)+,8 = (0.2,0.2)"

BIAS —0.001 0.005 —0.007 —0.001 —0.003 0.002 —0.003 —0.009
SD 0.082 0.140 0.092 0.157 0.071 0.133 0.082 0.145
SE 0.082 0.142 0.099 0.172 0.075 0.130 0.090 0.156
CP 94.8 95.4 95.0 95.0 95.2 94.6 97.2 95.8
RE 1.45 1.45 1.00 1.00 1.44 1.44 1.00 1.00

mo(t) = (0.5t + 0.5)4, 8 = (0.5,-0.5)"

BIAS —0.007 0.010 —0.022 0.018 —0.001 0.019 —0.012 0.010
SD 0.107 0.194 0.116 0.205 0.102 0.179 0.113 0.191
SE 0.109 0.190 0.122 0.212 0.098 0.171 0.111 0.193
CP 95.0 92.4 94.6 94.2 94.2 94.6 93.8 95.0
RE 1.26 1.25 1.00 1.00 1.29 1.28 1.00 1.00

mo(t) = (0.5t + 1)1, 8 = (0,0)"

BIAS —0.001 —0.001 —0.001 —0.013 —0.001 0.001 0.002 —0.005
SD 0.105 0.194 0.112 0.207 0.097 0.173 0.106 0.187
SE 0.105 0.181 0.122 0.212 0.095 0.164 0.111 0.192
CP 93.4 93.0 96.2 94.2 93.8 93.6 96.2 95.4
RE 1.36 1.37 1.00 1.00 1.37 1.38 1.00 1.00

mo(t) = (=05t + 1)+, 8 = (0.2,0.2)"

BIAS 0.002 0.001 0.003 —0.008 0.001 —0.004 —0.005 0.005
SD 0.083 0.139 0.097 0.156 0.074 0.124 0.085 0.147
SE 0.083 0.143 0.099 0.172 0.075 0.130 0.089 0.154
CP 95.2 93.4 94.6 95.4 93.4 96.2 95.2 93.8
RE 1.45 1.45 1.00 1.00 1.42 1.42 1.00 1.00

mo(t) = (=0.5t + 1)1, 8 = (0.5,-0.5)"

BIAS —0.014 0.017 —0.018 0.019 —0.004 0.017 —0.008 0.027
SD 0.112 0.192 0.116 0.215 0.101 0.176 0.113 0.178
SE 0.109 0.190 0.123 0.214 0.098 0.170 0.112 0.194
CP 92.0 92.4 96.0 94.0 94.4 94.8 93.6 96.0
RE 1.27 1.27 1.00 1.00 1.31 1.30 1.00 1.00

BIAS, the empirical bias; SD, the empirical standard deviation; SE, the mean of estimated standard error; CP, the empirical
coverage probability of 95% confidence interval; RE, the relative efficiencies, calculated by the ratio of estimated variance with the

full estimators as a reference.

case-cohort design which randomly selected 100 subcohort
members from the entire cohort. In this paper, we fit respec-
tively the mean residual life model to the full cohort and the
case-cohort in which a subcohort with size 100 is drawn by
simple random sampling. To avoid the random effects, we
repeat case-cohort analysis 100 times (choose the subcohort

28 H. Ma, J. Shi, and Y. Zhou

100 times), and name this as multiple case-cohort analysis.
The covariates transformations adopted by [2] are reserved
here. Specifically, we consider four covariates: log(AFE-10),
(YFE-1915)/10, (YFE-1915)2/100 and log(EXP+1). In Ta-
ble 5, we present estimates, standard errors, and p-values
of the regression coefficients under proportional mean resid-



Table 4. Comparison of classical and stratified case-cohort design

p. =0.5 p-=0.3
Full SRS STRAT Full SRS STRAT
mo(t) =1, Bo=0
BIAS 0.001 0.004 —0.001 —0.009 —0.011 —0.015
SD 0.094 0.110 0.094 0.103 0.125 0.127
SE 0.098 0.115 0.098 0.107 0.125 0.123
CP 96.0 96.4 96.0 95.2 95.4 94.4
mo(t) =1, Bo=0.2
BIAS 0.002 —0.002 —0.003 0.013 0.010 —0.001
SD 0.099 0.113 0.122 0.114 0.125 0.130
SE 0.100 0.118 0.117 0.118 0.137 0.134
CP 95.0 96.0 94.8 96.0 96.6 95.4
mo(t) =1, Bo=0.5
BIAS 0.003 —0.005 —0.007 0.051 0.034 0.031
SD 0.110 0.123 0.132 0.142 0.142 0.151
SE 0.107 0.128 0.128 0.141 0.162 0.161
CP 94.8 94.4 93.8 96.0 96.2 96.4
mo(t)=1+¢, Bo=0
BIAS 0.005 0.016 0.013 —0.006 —0.006 —0.017
SD 0.173 0.208 0.206 0.191 0.225 0.229
SE 0.170 0.200 0.202 0.184 0.218 0.213
CP 93.6 93.0 93.4 94.2 95.0 92.8
mo(t) =14+t Lo=0.2
BIAS —0.021 —0.025 —0.030 —0.014 —0.014 —0.022
SD 0.170 0.206 0.209 0.192 0.222 0.218
SE 0.169 0.200 0.201 0.199 0.235 0.229
CP 94.0 94.6 92.4 96.0 96.2 95.4
mo(t) =1+t po=0.5
BIAS —0.070 —0.081 —0.078 —0.027 —0.046 —0.053
SD 0.181 0.199 0.214 0.212 0.253 0.241
SE 0.178 0.202 0.210 0.218 0.255 0.252
CP 92.4 93.2 93.6 94.8 93.4 93.4

SRS, the simple random sampling;
STRAT, stratified case-cohort design with n = v = 0.7.

ual life model for the full-cohort and case-cohort analysis.
The average results for multiple case-cohort analysis are also
shown in Table 5.

In general, the proposed case-cohort estimates for each
covariate are close to the corresponding full-cohort esti-
mates, the multiple case-cohort estimates are closer. This
implies that the case-cohort analysis results are convincing.
Both the full cohort and case-cohort analysis results un-
der proportional mean residual life model indicate that the
covariates log(AFE-10), (YFE-1915)2/100 and log(EXP+1)
have significant influence on the survival time, which in ac-
cordance with the results indicated by the Cox model under
full cohort. The results of the estimated coefficients show two
different scenes: the mean residual life decreases with the in-

dividual’s AFE or EXP increasing, but has performance for
(YFE-1915)2/100 on the contrary. It is interesting that the
regression coeflicients for those significant covariates based
on the proportional mean residual life model have oppo-
site signs to their counterparts under the Cox model. This
phenomenon also appeared in the real data analysis of [9)
because of the different link between the proportional mean
residual life model and the Cox model.

5. CONCLUDING REMARKS

In this paper, we propose some new estimating functions
to deal with case-cohort data under proportional mean resid-
ual life model. Appropriate weighted availability indicators
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Table 5. Regression Analyses of Time from the First Employment to the Nasal Sinus Cancer Death for the South Welsh
Nickel Refiners Study

Parameter Full Cohort Case-cohort Multiple Case-cohort
log (AFE-10)
Est. —0.096 —0.060 —0.082
S.E. 0.007 0.014 0.016
P Value <0.0001 <0.0001 <0.0001
(YFE-1915)/10
Est. —0.009 —0.024 —0.007
S.E. 0.013 0.019 0.018
P Value 0.475 0.195 0.691
(YFE-1915)2/100
Est. 0.090 0.064 0.072
S.E. 0.026 0.035 0.036
P Value 0.0005 0.066 0.045
log(EXP+1)
Est. —0.057 —0.057 —0.050
S.E. 0.013 0.016 0.018
P Value <0.0001 0.0005 0.006
Est., Parameter Estimate; S.E., Standard Error.
are defined when the subcohort is drawn by simple random o 1 TE[S(U|Z)] J, S(ulz) exp(—p'z)dF,(z) du
sampling. The large sample properties of the proposed esti- - E[S(tZ)] J, E[S(u|Z))
mators are established. +o,(1)
For case-cohort analysis under the Cox model, [16] sug- P
gested estimating the sampling probability p with a weight Elexp(—B'Z) ftT S(u|Z)du]
estimator to achieve further efficiency. Inspired by the idea, - E[S(|Z)] +0p(1)

we can consider the weighted estimator proposed in [7] for
p by

Doig &i(l = 35)eq(t)
S (1= d)ei(t)

where ¢;(t) is possibly time-dependent and satisfy some reg-
ularity conditions. Under the Cox model, various versions of
the weight ¢;(¢) for estimating the sampling probability p, in-
cluding both time-constant and time-dependent weights, has
been suggested by [6], [1] and [16]. Two common choices for
ci(t) are ¢;(t) = 1 and ¢;(t) = Y;(t), where Y;(t) is defined in
Section 2. Similarly, in mean residual life model, a Horvitz-
Thompson type weighted function 7;(t) = 6;+(1—9;)&/p(t)
can be considered to replace ; in the estimating equations
(5) and (8).

pt) =

APPENDIX A

Proof of the Theorem 1:
(i) Note that

mo(t; B)
1 [ >y miYi(u) exp(=B'Z) "
@), S T M
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= m()(t; ,8) + Op(].),

where F,(z) is the distribution function of Z and S(t|Z)
is the survival function of T given Z. This implies that
mo(t; B) converges to mg(t;3) uniformly in ¢t € [0,7] and
B3 in a compact set which contains the true parameter 3.,
and mo(t; Bx) = m.(t). Therefore, to prove the existence of
B and mo(t), it suffices to show that there exists a solution
to U(B) = 0. By differentiating U(83) with respect to 3, we
have



+% Z/OT T {Z; — Z(t)} {Z; — pa(t)}

exp(—B1Z;)Yi(t)dt + 0,(1)
= A+ OP(1)7

this implies that fl(,@*) converges in probability to a nonran-
dom matrix A. Since U(3,) — 0 almost surely, and A is non-
singular by the regularity condition C4, the convergence of
A(ﬁ*) implies that we can find a small neighborhood of 3, in
which A(,B*) is nonsingular when n is large enough. Hence it
follows from the inverse function theorem that within a small
neighborhood of 3., there exists a solution B to U(,@) =0
for sufficiently large n. Notice that ,5' is strongly consistent to
B+, then it follows from the uniform convergence of 7 (t; 3)
to mo(t; B) that g (t) = 1o (t; B) — mo(t; By) = m.(t) al-
most surely in [0, 7].

(if) Write U(B) = U{Bx, mo(t; B«)}, since

U(Bem. 0} = 23 [ sl (i)

= Yi(t){ exp(—B1Zy)dt + dm.(t)}],

and

U{ﬁ*7 mo(t; ,6*)} - U{,B*, m*()}

% Z /O T Zi [ {o(t; B) — m.(t)} dNi(t)

—Yi(t)d {1no(t; B.) — ma(t)}]

1SS [T o |
E;/O 7 Zi [ {0 (t; Bi) — ma(t)} ANy (t)

v {% {0t B.) — m (1))

S

L3 [ i - 20N 0t )~ m )

+

o mZ(t)m. (M (1, B )

1y iz 7 )1 [T Sa(u)
n; /O :|Z; Z(t)]dNZ(t){ RO /t X

- i: i (u)AM, (s B, m*>}

_ % é /OT i Z(t)m. (t)dM;(t, By, M)

n

> /0 T Z(t) + Z(t))m. () dM;(t, B, m.),

=1

1
n
therefore
n'?U(B.)
= n'2U{B.,1ho(t; B.)}
= nl/QU{ﬁ*,m*(-)}
+nt2[U{B., 1o (t; )} — U{Be, ma(4)}]

= p /2 Y T7Ti i_7 -7
g/@ {z Z(t) Z(t)}
my (6)dM; (t, By, M)
= n_1/2 . T7Ti i — Hz - ~z
S [ w2 et - )
M (£)dM; (¢, By, ms) + 0p(1)

e | = a0 a0l m 000 )

n71/2 ” Tﬂif i — Mz — [z
n ;/< 1) (Zi — 1a(t) — fin(0)]
m. (DdMi(t, B ms) + 0p(1)

-y /0 (2 — pa(t) — fin(t)] ma (D) AM (1, B )

- ’I’L_1/2 ) ' — Y — Qs i — Mz — [ig
Z;/O (1= 0:)(1 = &/p) [Zi — pa(t) — i (1)]
M (8)dM;(t, B, mi) + 0p(1).

Let F; be the o-field generated by {Ti>6i7 Z;}, and

= (15 / (2 — pa(t) — finlt)] m ()M (1, B ).

It is easy to see that E(1—¢;/p|Fi) = 0, E{n:;(1-§;/p)|Fi} =
E{nE(1 - &/p|F;)} = 0. Following the arguments in [15]
and [19], we have var{n;(1 — &/p)} = (1 —p)/p - {E[n?] -
E[n;]®?} = 5. Also, conditional on F;, {n;(1 — & /p),i =
1,...,n} and the first term of n'/2U(B,) are uncorrelated,
and hence n'/2U (B.) is asymptotically normal with mean
zero and variance-covariance matrix ¥ = ¥ + 5. Thus, the

Taylor expansion of U(8) at B. gives

nl/Q(B - /6*)
= AT PU(BL) + 0,(1)

= —A /2 ;/OT i [Zi — iz (t) — fiz(t))]

M (£)dM; (¢, By, ms) + 0p(1).
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(iif) Let G = [y [Zi — pa(t) — fia(t)] ma(8)dM; (¢, Bi, m).
Write
n'/2 {1 (t) — m.(t)}
= 021 (t; B) — 1o (t; B.)} + n'/ o (t; Br) — ma(t)}
T
_ (87?1?)(;; B) ‘B_ﬁ) n2(3 - B.)
+ 02 {1ng(t; B.) — ma(t)} + op(1).
Now, we establish the formula of 1 (t; B.) — m.(t). By

inserting {8, m.(t)} and {B.,mo(t; B«)} into (5), respec-
tively, we have

n

> 7i[ma (OANi() = Yi(t){ exp(~B.Z:)dt

(16) + dm.(t Zﬂ'zm* t)dM; (t; By, M),
Zm o(t; By )dN; (t)

(17) t){ exp(—BLZ:)dt + ding (t; B.) }] = 0.

Subtracting (16) from (17),
> mil{mo(t: B.) = m.(®)}ANi(®)

_ iwim*(t)dMi(t; By, my),

i=1

which is equivalent to
>y mid Ny (t)
om0
- d{’ﬁlo(t; /8*) - m*(t)}
_ Z?:l T My (t)dMZ (t; ,3*7 m*)
2?21 Wi}/i(t) .

Then
(t: Bx) — ma(t)
1 T Sp(u) 1 &
- 5w/ cw ﬁ;”l £)dM;(t; By, msy).
Hence
/2 {rig (t) — m..(t)}
_ " Sp(u)
_ ~1,-1/2
o ZW = / e
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71/2me*

(a7 A 023

i=1

YdM,; (u; By, my) + 0p(1)

s

dM ’LL ﬁ*;m*)+0p( )

S
C(u)

71/2me*
n

n_1/22m

i=1

-1 S(“)
[m*u)uz(tm G- ot
. ()M, ﬂ*,m»} T op(1)

n—1/2 Z‘Pi(t) _
=1

+ Op(l)a

n

n=1/? Z(l -

i=1

6:) (1 —&i/p)wi(t)

where

pi(t)

(t)ATG

o

S(t) and C(t) are the uniform limit of S, (¢) and Cy(t) re-
spectively. Because {y;(t),i = 1,...,n)} are independent
mean zero random variables for each ¢, by [26], n'/?{1ng(t) —
m.(t)}(0 < t < 7) converges weakly to a mean zero Gaus-
sian process, whose covariance function at (s,t) is

m*(

w)dM;(u; By M),

Bl (s)1 ()] + LB = 8)in (5)1 1)

1

_ %E[(l — 8)1(s)]E[(1 = 8)p1(1)].

This ends the proof.
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