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Semiparametric estimation of differences in
treatment-specific recurrent event means with a
terminal event

Xiaowei Sun and Liuquan Sun
∗

Recurrent event data often arise from biomedical studies
and a terminal event may preclude further occurrence of re-
current events. In comparing treatments, the marginal mean
is frequently of interest, and treatment-specific differences in
the mean number of events are often not constant over time.
In this article, we propose a semiparametric method to com-
pare treatment-specific recurrent event means by combining
an additive hazards model for the terminal event and an ad-
ditive rates model for the conditional recurrent event rate.
The treatment effect is measured by the difference between
treatment-specific recurrent event means. Estimation pro-
cedures are developed for the measure and the asymptotic
properties of the proposed estimators are established. The
finite sample performance of the proposed estimators is ex-
amined through simulation studies, and an application to
a bladder cancer study demonstrates the usefulness of our
method.
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1. INTRODUCTION

In many clinical and observational studies, recurrent
event data are frequently encountered when each subject
may experience a particular event repeatedly over time. Ex-
amples include tumor recurrences in cancer patients (Byar,
1980), recurrent seizures in epileptic patients (Albert, 1991),
transient ischemic attacks in patients with cerebrovascular
disease (Hobson et al., 1993) and repeated opportunistic in-
fections in HIV-infected subjects (Li and Lagakos, 1997).
Various methods have been proposed for the analysis of re-
current events, including the intensity and rate approaches
(Anderson and Gill, 1982; Pepe and Cai, 1993; Lawless and
Nadeau, 1995; Lin et al., 2000). A comprehensive review of
the existing statistical methods for recurrent events data can
be found in Cook and Lawless (2007).
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In many applications, however, there may exist a termi-
nal event such as death, which precludes further recurrent
events and is likely to be strongly correlated with recurrent
events of interest. For example, patients may experience re-
current hospitalizations that are terminated by death. Var-
ious methods have been proposed for the analysis of recur-
rent events with a terminal event, and the existing methods
generally fall into three approaches: marginal mean mod-
els, conditional rate models and intensity models. Marginal
mean models focus on the marginal mean number of events,
and the mean averages over surviving and deceased sub-
jects (Ghosh and Lin, 2000, 2002). Conditional rate models
consider the conditional recurrent event rate given survival,
and a variation of this approach uses a frailty to account for
the dependence between the recurrent and terminal events
(Cook and Lawless, 1997; Schaubel and Cai, 2005; Ye et
al., 2007; Kalbfleisch et al., 2013). The marginal and con-
ditional methods explicitly acknowledge that the terminal
event precludes further recurrences. Intensity models focus
on the intensity functions of the recurrent events, and use
frailties to account for the dependence between the recurrent
and terminal events. In this case, the recurrent events are es-
sentially taken as a latent process unobservable after the ter-
minal event (Huang and Wang, 2004; Zeng and Lin, 2009).

This study is motivated by a bladder cancer study con-
ducted by the Veterans Administration Cooperative Uro-
logical Research Group (Byar, 1980). All patients had su-
perficial bladder tumors when they entered the trial, and
were randomly assigned to placebo and thiotepa treatment
groups. Note that the thiotepa treatment has a significant
effect in reducing the recurrence of bladder tumor, and the
treatment effect seems to change with time (Zhao et al.,
2011; Dong and Sun, 2015). Therefore, our objective is to
compare treatment-specific differences in tumor recurrence
rates between placebo and thiotepa treatment groups, ad-
justing for baseline covariates.

In comparing treatments, the marginal mean is usually of
direct interest, and investigators are often interested in dif-
ferences between treatment-specific means. For example, a
hospital administrator may want to compare the mean num-
ber of hospitalizations among kidney transplant recipients
by donor type (Schaubel and Zhang, 2010). Ghosh and Lin
(2000) proposed nonparametric tests for the difference be-
tween treatment-specific recurrent event means in the pres-
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ence of a terminal event. However, treatment-specific differ-
ences in mean number of events are often not constant over
time, particularly when the treatment-specific survival func-
tions differ. In such cases, Schaubel and Zhang (2010) devel-
oped two semiparametric methods for estimating the differ-
ence or ratio of treatment-specific marginal mean numbers
of events, and the inverse probability of treatment weight-
ing was used to balance the treatment-specific adjustment
covariate distributions. Pan and Schaubel (2009) proposed
a semiparametric method for comparing treatment-specific
recurrent event means, which combined a proportional haz-
ards model for the terminal event and an additive rates
model for the conditional recurrent event rate given survival.
To our knowledge, there is no existing work that simultane-
ously uses the additive models for the hazard of the terminal
event and the conditional recurrent event rate.

In this article, we propose a semiparametric method to
compare treatment-specific recurrent event means. Without
forcing the treatment effect to be a constant difference, the
method combines an additive hazards model for the ter-
minal event and an additive rates model for the conditional
recurrent event rate. Under the proposed method, the treat-
ment effect is measured by the difference between treatment-
specific recurrent event means, which is estimated as a pro-
cess over time. Estimation procedures are developed for the
measure and the asymptotic properties of the proposed es-
timators are established.

The remainder of the article is organized as follows. In
Section 2, we describe the proposed model, and present the
estimating procedure. The asymptotic properties of the pro-
posed estimators are established in Section 3. Section 4 re-
ports some results from simulation studies conducted for
evaluating the proposed method. An application to a blad-
der tumor study is provided in Section 5, and some conclud-
ing remarks are given in Section 6.

2. MODELS AND INFERENCE
PROCEDURES

For subject i (i = 1, ..., n), let ÑR
i (t) denote the number

of recurrent events over the time interval (0, t], andDi be the
terminal event time (e.g., death), where the terminal event
stops further recurrent events in that ÑR

i (t) is constant after
Di. Let Ci be the censoring time or follow-up time. Write
Ti = Ci ∧Di and Yi(t) = I(Ti ≥ t), where a∧ b = min(a, b),
and I(·) is the indicator function. Due to censoring, ÑR

i (t)
is not fully observed, and the observed number of recurrent
events is denoted by NR

i (t) = ÑR
i (t ∧ Ti). Also, let ND

i (t)
denote the observed number of the terminal event, where
ND

i (t) = I(Di ≤ t∧Ti). Let Zi and Xi denote the vectors of
covariates associated with the recurrent and terminal events,
respectively, which can overlap and will often be identical.
Set Zi = (Zi1, Z

′
i2)

′ andXi = (Xi1, X
′
i2)

′, where Zi1 andXi1

are (1/0) indicators for the treatment/placebo, and Zi2 and
Xi2 are adjustment covariates. For notational convenience,

write Z
(1)
i = (1, Z ′

i2)
′ and X

(1)
i = (1, X ′

i2)
′ for a treated

subject, and Z
(0)
i = (0, Z ′

i2)
′ and X

(0)
i = (0, X ′

i2)
′ for a

placebo subject. In addition, let θ0 = (θ01, θ
′
02)

′ and β0 =
(β01, β

′
02)

′ denote the regression parameters for Zi and Xi.
Our objective is to compare the treatment and placebo with
respect to marginal mean of the number of recurrent events
in the presence of a terminal event.

Let dR(t|Zi) = E{dÑR
i (t)|Di ≥ t, Zi} be the conditional

recurrent event rate given survival. We consider the follow-
ing marginal additive rates model for dR(t|Zi):

(1) dR(t|Zi) = dR0(t) + θ′0Zidt,

where dR0(t) is an unspecified baseline rate function and θ0
is a vector of regression parameters. By following the esti-
mation procedure of Schaubel et al. (2006), the regression

parameter θ0 can be estimated by θ̂ = Â−1ÛR with

Â = n−1
n∑

i=1

∫ τ

0

Yi(t){Zi − Z̄(t)}⊗2dt,

ÛR = n−1
n∑

i=1

∫ τ

0

{Zi − Z̄(t)}dNR
i (t),

and

Z̄(t) =

∑n
i=1 Yi(t)Zi∑n
i=1 Yi(t)

,

where τ is a prespecified constant such that P (Ti ≥ τ) > 0,
and a⊗2 = aa′ for a vector a. The corresponding estimator
of the baseline rate function dR0(t) is then estimated by

dR̂0(t) ≡ dR̂0(t; θ̂), where

R̂0(t; θ) =

∫ t

0

∑n
i=1 Yi(s){dNR

i (s)− θ′Zids}∑n
i=1 Yi(s)

.

Let dΛ(t|Xi) be the hazard function for the terminal
event time Di given Xi. We specify the following additive
hazards model for the terminal event:

(2) dΛ(t|Xi) = dΛ0(t) + β′
0Xidt,

where dΛ0(t) is an unspecified baseline hazard function and
β0 is a vector of regression parameters. Using the approach
of Lin and Ying (1994), the regression parameter β0 can be

estimated by β̂ = B̂−1ÛD with

B̂ = n−1
n∑

i=1

∫ τ

0

Yi(t){Xi − X̄(t)}⊗2dt,

ÛD = n−1
n∑

i=1

∫ τ

0

{Xi − X̄(t)}dND
i (t),

and

X̄(t) =

∑n
i=1 Yi(t)Xi∑n
i=1 Yi(t)

.

Then the cumulative baseline hazard function Λ0(t) =∫ t

0
dΛ0(s) is estimated by Λ̂0(t) ≡ Λ̂0(t;β), where
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Λ̂0(t;β) =

∫ t

0

∑n
i=1{dND

i (u)− Yi(u)β
′Xidu}∑n

i=1 Yi(u)
.

Next, we consider a treatment effect measure, which is
the difference in treatment-specific marginal recurrent event
means. For 0 ≤ t ≤ τ , define

μ1(t) = E{ÑR
i (t)|Zi1 = 1},

and

μ0(t) = E{ÑR
i (t)|Zi1 = 0}.

The proposed treatment effect measure is given by

(3) φ(t) = μ1(t)− μ0(t).

It follows from the iterated expectations theorem that

μ1(t) = E
[
E{ÑR

i (t)|Zi1 = 1, Zi2, Xi2}
]
,

where the outer marginal expectation is taken with re-
spect to the marginal distribution of adjustment covariates
(Z ′

i2, X
′
i2)

′, and the inner one is the expectation of ÑR
i (t)

conditional on Zi1 = 1 and (Zi2, Xi2). Note that Zi1 ≡ Xi1,

Z
(1)
i = (1, Z ′

i2)
′ and X

(1)
i = (1, X ′

i2)
′. Then

E
[
E{ÑR

i (t)|Zi1 = 1, Zi2, Xi2}
]
= E

[
E{ÑR

i (t)|Z(1)
i , X

(1)
i }

]
.

Thus,

μ1(t) = E
[
E{ÑR

i (t)|Z(1)
i , X

(1)
i }

]

= E
[ ∫ t

0

E{dÑR
i (u)|Z(1)

i , X
(1)
i }

]

= E
[ ∫ t

0

E{I(Di ≥ u)dÑR
i (u)|Z(1)

i , X
(1)
i }

]

= E
[ ∫ t

0

P (Di ≥ u|X(1)
i )E{dÑR

i (u)|Di ≥ u, Z
(1)
i }

]

= E
[ ∫ t

0

S(u|X(1)
i )dR(u|Z(1)

i )
]
,

where S(t|Xi) = Pr(Di ≥ t|Xi). In a similar manner,

μ0(t) = E
[
E{ÑR

i (t)|Zi1 = 0, Zi2, Xi2}
]

= E[E{ÑR
i (t)|Z(0)

i , X
(0)
i }]

= E
[ ∫ t

0

S(u|X(0)
i )dR(u|Z(0)

i )
]
.

Let θ̂ = (θ̂1, θ̂
′
2)

′. In view of (1) and (2), by substituting in
the survival and conditional rate function estimators, we can
obtain the proposed treatment-specific mean estimators:

μ̂1(t) = n−1
n∑

i=1

∫ t

0

Ŝ(u|X(1)
i ){dR̂0(u) + (θ̂1 + Z ′

i2θ̂2)du},

and

μ̂0(t) = n−1
n∑

i=1

∫ t

0

Ŝ(u|X(0)
i ){dR̂0(u) + Z ′

i2θ̂2du},

where Ŝ(t|Xi) = exp{−Λ̂0(t)−β̂′Xit} is the estimator of the
survival function S(t|Xi). Then for 0 ≤ t ≤ τ , the treatment
effect on the recurrent event mean can be estimated by

(4) φ̂(t) = μ̂1(t)− μ̂0(t).

It should be noted that apart from φ̂(t), the hazard dif-

ference for the terminal event (β̂1) and the rate difference

for recurrent events among survivors (θ̂1) also provide useful
additional information on treatment effects. Thus, the three
estimators φ̂(t), β̂1 and θ̂1 describe treatment effects from
different perspectives.

3. ASYMPTOTIC ANALYSIS

In order to study the asymptotic properties of the pro-
posed estimators, we need the following regularity condi-
tions:

(C1) {ÑR
i (·), Di, Ci, Zi, Xi} are independent and identically

distributed.
(C2) P{Yi(τ) = 1} > 0, Λ0(τ) < ∞, R0(τ) < ∞, and

E{NR
i (τ)} < ∞.

(C3) Xi2 and Zi2 are bounded almost surely.
(C4) A and B are nonsingular, where

A = E
[ ∫ τ

0

Yi(t){Zi − z̄(t)}⊗2dt
]
,

B = E
[ ∫ τ

0

Yi(t){Xi − x̄(t)}⊗2dt
]
,

and z̄(t) and x̄(t) are the limits of Z̄(t) and X̄(t), re-
spectively.

Define

dMD
i (t) = dND

i (t)− Yi(t){dΛ0(t) + β′
0Xidt},

dMR
i (t) = dNR

i (t)− Yi(t){dR0(t) + θ′0Zidt},

UD
i =

∫ τ

0

{Xi − x̄(t)}dMD
i (t),

UR
i =

∫ τ

0

{Zi − z̄(t)}dMR
i (t).

and let π(t) be the limit of n−1
∑n

i=1 Yi(t). The asymptotic
properties of the estimators are established in the following
theorems with the proof given in the Appendix.

Theorem 1. Under the regularity conditions (C1)-(C4),

φ̂(t) converges almost surely to φ(t) uniformly in t ∈ [0, τ ].

Theorem 2. Under the regularity conditions (C1)-(C4),

n1/2{φ̂(t) − φ(t)} converges weakly on [0, τ ] to a zero-
mean Gaussian process with covariance function E[{Φi1(t)−
Φi0(t)}{Φi1(s)− Φi0(s)}] at (t, s), where for k = 0, 1,
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Φik(t) = ξik1(t) + ξik2(t) + ξik3(t) + ξik4(t) + ξik5(t),

ξik1(t) = −E

[ ∫ t

0

S(u|X(k)
i )

∫ u

0

{X(k)
i − x̄(r)}′dr

×dR(u|Z(k)
i )

]
B−1UD

i ,

ξik2(t) = E

[ ∫ t

0

S(u|X(k)
i ){Z(k)

i − z̄(u)}′du
]
A−1UR

i ,

ξik3(t) =

∫ t

0

E[S(u|X(k)
i )]π(u)−1dMR

i (u),

ξik4(t) = −
∫ t

0

{μk(t)− μk(u)}π(u)−1dMD
i (u),

ξik5(t) =

∫ t

0

S(u|X(k)
i )dR(u|Z(k)

i )− μk(t).

The covariance function can be consistently estimated by
the usual plug-in method: replacing all limiting quantities
with their empirical counterparts in Φik(t), and then aver-
aging across i = 1, ..., n.

4. SIMULATION STUDIES

We conducted simulation studies to examine the finite
sample properties of the estimators. In the study, the termi-
nal event time Di was generated from the following additive
hazards model:

dΛ(t|Xi) = dΛ0(t) + β0Xidt,

where Xi follows a Bernoulli distribution with success prob-
ability 0.5, and Λ0(t) = 0.18t. To examine the treatment
effect on survival, we set β0 = 0 or 0.5. The recurrent event
times were generated from a Poisson process with the fol-
lowing rate function:

dR(t|Zi, Qi) = dR0(t) +Qidt+ θ0Zidt,

where the frailty Qi follows a gamma distribution with mean
0.25 and variance σ2 = 0.25 or 0.5. The baseline rate dR0(t)
is set to 0.125 or 0.25. The covariate Zi is taken the same
as Xi, both representing the treatment or exposure of inter-
est. The regression parameter θ0 is set to 1.5. The censor-
ing time Ci was generated from a uniform distribution on
(0, 10). Under the preceding settings, the censoring rate is
about 31.6% to 45.3%, and the average number of observed
events per subject ranged from 3.2 to 4.8 for different model
parameters. The results presented below are based on 1000
replications with sample sizes n = 100 and 200.

Tables 1 and 2 present the simulation results on estima-
tion of φ(t) with n = 100 and 200 respectively. To examine
the performance of the proposed estimators at early, middle
and late follow-up times, we take time points t = 3, 5 and
7, respectively. In the tables, Bias is the sample mean of
the estimate minus the true value, SE is the sampling stan-
dard error of the estimate, SEE is the sample mean of the

Table 1. Simulation results for the estimation of φ(t) with
n = 100

β0 σ2 dR0(t) t φ(t) Bias SE SEE CP

0 0.25 0.125 3 3.4771 0.0311 0.4352 0.4420 0.955
5 4.9452 0.0192 0.6239 0.6325 0.952
7 5.9695 -0.0450 0.8581 0.8476 0.946

0.25 3 3.4771 -0.0172 0.4673 0.4723 0.964
5 4.9452 0.0251 0.6447 0.6512 0.948
7 5.9695 0.0118 0.8637 0.8492 0.954

0.5 0.125 3 3.4771 0.0253 0.5205 0.5331 0.948
5 4.9452 -0.0151 0.6914 0.7102 0.959
7 5.9695 -0.0883 0.9198 0.9514 0.952

0.25 3 3.4771 0.0463 0.5826 0.5629 0.945
5 4.9452 0.0361 0.7286 0.7530 0.952
7 5.9695 -0.0154 0.9585 0.9507 0.950

0.5 0.25 0.125 3 1.5295 -0.0107 0.3961 0.4136 0.955
5 1.4290 0.0512 0.6022 0.5952 0.952
7 1.2413 -0.0373 0.8247 0.8270 0.948

0.25 3 1.3997 0.0278 0.4240 0.4215 0.961
5 1.1946 0.0167 0.6174 0.6252 0.954
7 0.9261 0.0367 0.8328 0.8508 0.960

0.5 0.125 3 1.5295 -0.0464 0.4945 0.4796 0.938
5 1.4290 -0.0120 0.6638 0.6719 0.954
7 1.2413 0.0494 0.9023 0.9528 0.956

0.25 3 1.3997 0.0245 0.5552 0.5540 0.952
5 1.1946 0.0304 0.7040 0.7262 0.956
7 0.9261 0.0530 0.9381 0.9534 0.954

Table 2. Simulation results for the estimation of φ(t) with
n = 200

β0 σ2 dR0(t) t φ(t) Bias SE SEE CP

0 0.25 0.125 3 3.4771 -0.0133 0.3304 0.3205 0.942
5 4.9452 0.0629 0.5259 0.5125 0.951
7 5.9695 -0.0432 0.7436 0.7543 0.952

0.25 3 3.4771 0.0293 0.3605 0.3344 0.944
5 4.9452 -0.0260 0.5345 0.5174 0.951
7 5.9695 0.0225 0.7651 0.7558 0.957

0.5 0.125 3 3.4771 -0.0390 0.4139 0.4624 0.968
5 4.9452 -0.0416 0.6061 0.6101 0.946
7 5.9695 0.0694 0.8205 0.8326 0.942

0.25 3 3.4771 0.0517 0.4785 0.4955 0.955
5 4.9452 0.0106 0.6331 0.6185 0.962
7 5.9695 -0.0385 0.8466 0.8541 0.953

0.5 0.25 0.125 3 1.5295 -0.0518 0.3116 0.3050 0.942
5 1.4290 0.0213 0.5059 0.5242 0.958
7 1.2413 -0.0225 0.7313 0.7539 0.955

0.25 3 1.3997 0.0180 0.3164 0.2979 0.952
5 1.1946 -0.0118 0.5128 0.5306 0.962
7 0.9261 0.0259 0.7426 0.7417 0.946

0.5 0.125 3 1.5295 0.0231 0.3948 0.3766 0.949
5 1.4290 -0.0305 0.5786 0.5903 0.943
7 1.2413 -0.0578 0.8155 0.8528 0.955

0.25 3 1.3997 -0.0522 0.4593 0.4636 0.951
5 1.1946 -0.0273 0.6064 0.6125 0.957
7 0.9261 0.0217 0.8268 0.8664 0.963
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standard error estimate, and CP is the 95% empirical cover-
age probability based on the normal approximation. It can
be seen from Tables 1 and 2 that the proposed estimators
are nearly unbiased, there is a good agreement between the
estimated and the empirical standard errors, and the 95%
empirical coverage probabilities are reasonable.

5. AN APPLICATION

To demonstrate the usefulness of our method, we applied
the proposed method to the bladder cancer data arising from
cancer clinical trial conducted by the Veterans Administra-
tion Cooperative Urological Research Group (Byar, 1980).
These data were analyzed by Ghosh and Lin (2000, 2002),
Zhao et al. (2011) and Dong and Sun (2015), among oth-
ers. In this study, the patients were randomly assigned to
placebo and thiotepa treatment groups, and many patients
had multiple recurrences of the bladder tumors. There were
85 bladder cancer patients with 47 in the placebo group and
38 in the thiotepa treatment group. For each patient, two co-
variates were measured: the number of initial tumors before
entering the study and the size of the largest initial tumor.
About 25.9% of patients died during the follow-up, and the
total follow-up is 53 months. Note that the size of the largest
initial tumor had been shown to have no effect on the re-
currence rate (Ghosh and Lin, 2002). Here we focus on the
effects of thiotepa treatment and number of initial tumors on
the tumor recurrence process with a terminal event (death),
and compare treatment-specific recurrent event means.

For the analysis, we defined ÑR
i (t) as the cumulative

number of observed tumors at time t, and Di as the death
time (in month) of patient i (i = 1, ..., 85). Let Xi1 be the
treatment indicator (1, if the patient was in the thiotepa
group; 0, if the patient was from the placebo group), andXi2

be the adjustment covariate which was defined as the loga-
rithm of the number of the initial tumors plus 1. Set Xi =
(Xi1, Xi2)

′ in model (2), and Zi = (Zi1, Zi2)
′ = (Xi1, Xi2)

′

in model (1). The estimates of the regression parameters
β0 = (β01, β02)

′ and θ0 = (θ01, θ02)
′ are given in Table 3.

These results show that both the thiotepa treatment and the
number of initial tumors have significant effects on the tu-
mor recurrence process. Specifically, the thiotepa treatment
significantly reduced the bladder tumor occurrence rate, and
the patients with a higher number of initial tumors tended
to have a higher tumor occurrence rate. In addition, both
the thiotepa treatment and the number of initial tumors had
significant effects on the hazard of death.

Since the treatment effect may vary over time (Zhao et
al., 2011; Dong and Sun, 2015), we used φ(t) to compare
treatment-specific differences between placebo and thiotepa
treatment groups. Taking time points t = 2, 3 and 4 years,
respectively, the estimates of φ(t) are summarized in Ta-
ble 4. It can be seen that the estimated treatment-specific
differences in mean number of events are often not constant
over time, and the differences (absolute values) increase with

Table 3. Analysis of the bladder cancer data: the estimation
of β0 and θ0

β01 β02 θ01 θ02
Est -0.0994 0.0396 -0.2117 0.0595
SE 0.0036 0.0002 0.0224 0.0005
p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001

Note: Est is the estimate of the parameter, and SE is the
standard error estimate.

Table 4. Analysis of the bladder cancer data: the estimation
of φ(t)

t φ̂(t) SE p-value

2 year -0.4921 0.1739 0.0046
3 year -0.5618 0.2050 0.0061
4 year -0.6184 0.2461 0.0121

time. At each time point, the difference between treatment-
specific recurrent event means is highly significant. In sum-
mary, receiving a thiotepa treatment significantly reduces
the recurrence of bladder tumor. These results are consistent
with Zhao et al. (2011) and Dong and Sun (2015). However,
we can obtain the estimated treatment-specific differences
at any time t, which is a new insight for the analysis of the
bladder cancer data.

6. DISCUSSION

In this article, we proposed a semiparametric method
to compare treatment-specific recurrent event means in the
presence of a terminal event. The proposed method involved
modeling the terminal event hazard and the conditional re-
current event rate, and a measure of the combined effects
was proposed. Estimation procedures were developed for the
measure and the asymptotic properties of proposed measure
were established. The simulation results suggested that the
proposed estimators perform well. An application to a blad-
der cancer study was provided to illustrate our method.

Since the proposed measure φ(t) incorporates treatment-
specific differences in survival, it is not clear if an estimated
treatment effect is the result of treatment-specific differences
in the conditional event rate given survival or treatment-
specific differences in survival. Thus, for a complete inter-
pretation of φ(t), it should be carefully considered all three

estimators φ̂(t), θ̂1 and β̂1. Here, we have used the addi-
tive hazards model for the terminal event. Other competing
models, such as the additive-multiplicative hazards model,
the accelerated failure time model and the linear transfor-
mation model, may be used as well.

The proposed method can be extended to other recur-
rent event models such as proportional rates/means models
for recurrent events. For this case, we could consider the
following marginal proportional rates model for dR(t|Zi):

dR(t|Zi) = exp{γ′
0Zi}dR∗

0(t),
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where dR∗
0(t) is an unspecified baseline rate function and γ0

is a vector of regression parameters. Then by following the
estimation procedure of Lin et al. (2000), we can obtain the
estimators γ̂ and R̂∗

0(t) of γ0 and R∗
0(t), respectively. In a

similar manner, the treatment effect on the recurrent event
mean can be estimated by

φ̂∗(t) = μ̂∗
1(t)− μ̂∗

0(t),

where

μ̂∗
1(t) = n−1

n∑
i=1

∫ t

0

Ŝ(u|X(1)
i ) exp{γ̂1 + Z ′

i2γ̂2}dR̂∗
0(u),

and

μ̂∗
0(t) = n−1

n∑
i=1

∫ t

0

Ŝ(u|X(0)
i ) exp{Z ′

i2γ̂2}dR̂∗
0(u).

The asymptotic properties of φ̂∗(t) can be proven in the
same manner.

We assumed that the adjustment covariates are time-
independent. The proposed estimation procedure can be
extended in a straightforward manner to deal with time-
dependent covariates. Furthermore, in some applications,
the effects of adjustment covariates may vary over time.
However, the proposed estimation procedure cannot be ex-
tended in a straightforward manner to deal with the case of
time-varying coefficients. This is a challenging problem and
requires further research efforts. In addition, the treatment-
effect can be described through the ratio of treatment-
specific means (Schaubel and Zhang, 2010), and the mean
ratio might also be worthy of investigation.
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APPENDIX

Proof of Theorem 1. Define

μ̂1(t;β, θ) =

n−1
n∑

i=1

∫ t

0

Ŝ(u|X(1)
i ;β){dR̂0(u; θ) + (θ1 + θ′2Zi2)du},

and

μ̂0(t;β, θ) = n−1
n∑

i=1

∫ t

0

Ŝ(u|X(0)
i ;β){dR̂0(u; θ) + θ′2Zi2du},

where θ = (θ1, θ
′
2)

′ and Ŝ(t|Xi;β) = exp{−Λ̂0(t;β)−β′Xit}.
Note that

φ̂(t) = μ̂1(t; β̂, θ̂)− μ̂0(t; β̂, θ̂).

Thus, to prove the consistency of φ̂(t), it suffices to prove

the consistency of μ̂1(t; β̂, θ̂) and μ̂0(t; β̂, θ̂). For this pur-
pose, it follows from Theorems 1 and 2 of Schaubel et al.
(2006) that θ̂ → θ0 almost surely, and R̂0(t) → R0(t) almost
surely uniformly in t ∈ [0, τ ]. Also by Lin and Ying (1994),

we have that β̂ → β0 almost surely, and Λ̂0(t) → Λ0(t)
almost surely uniformly in t ∈ [0, τ ]. Since S(t|Xi) =
exp{−Λ0(t)− β0

′Xit}, it follows from the continuous map-
ping theorem that almost surely uniformly in t ∈ [0, τ ],

Ŝ(t|Xi; β̂) → S(t|Xi) and μ̂1(t; β̂, θ̂) → μ̃1(t;β0, θ0), where

μ̃1(t;β0, θ0) =

n−1
n∑

i=1

∫ t

0

S(u|X(1)
i ){dR0(u) + (θ01 + θ′02Zi2)du}.

Applying the uniform strong law of large numbers (Pol-
lard, 1990), we obtain that almost surely uniformly in

t ∈ [0, τ ], μ̃1(t;β0, θ0) → E
[ ∫ t

0
S(u|X(1)

i ){dR0(u) + (θ01 +

θ′02Zi2)du}
]
≡ μ1(t). Hence μ̂1(t; β̂, θ̂) → μ1(t) almost surely

uniformly in t ∈ [0, τ ]. Similar arguments can be applied to

μ̂0(t; β̂, θ̂).

Proof of Theorem 2. First write

φ̂(t)− φ(t) = {μ̂1(t; β̂, θ̂)− μ1(t)} − {μ̂0(t; β̂, θ̂)− μ0(t)}.

Here, we show the weak convergence of n1/2{μ̂1(t; β̂, θ̂) −
μ1(t)}. A similar proof can be used for n1/2{μ̂0(t; β̂, θ̂) −
μ0(t)}. Note that

n1/2{μ̂1(t; β̂, θ̂)− μ1(t)}(A1)

= n1/2{μ̂1(t; β̂, θ̂)− μ̂1(t;β0, θ̂)}
+n1/2{μ̂1(t;β0, θ̂)− μ̂1(t;β0, θ0)}
+n1/2{μ̂1(t;β0, θ0)− μ̃1(t;β0, θ0)}
+n1/2{μ̃1(t;β0, θ0)− μ1(t)}.

For the first term on the right-hand side of (A1), using the
Taylor expansion and the uniform strong law of large num-
bers, we get that uniformly in t ∈ [0, τ ],

n1/2{μ̂1(t; β̂, θ̂)− μ̂1(t;β0, θ̂)}(A2)

= n−1
n∑

i=1

∫ t

0

∂Ŝ(u|X(1)
i ;β)

∂β′

∣∣∣
β=β∗

n1/2(β̂ − β0)

×{dR̂0(u) + θ̂′Z
(1)
i du}

= −n−1
n∑

i=1

∫ t

0

Ŝ(u|X(1)
i ;β∗)

∫ u

0

{X(1)
i − X̄(r)}′dr

×{dR̂0(u) + θ̂′Z
(1)
i du}n1/2(β̂ − β0)
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= −E

[ ∫ t

0

S(u|X(1)
i )

∫ u

0

{X(1)
i − X̄(r)}′drdR(u|Z(1)

i )

]

×n1/2(β̂ − β0) + op(1),

where β∗ lies between β̂ and β0. It can be shown that (Lin
and Ying, 1994)

(A3) n1/2(β̂ − β0) = B−1n−1/2
n∑

i=1

UD
i + op(1).

Thus, it follows from (A2) and (A3) that uniformly in t ∈
[0, τ ],

n1/2{μ̂1(t; β̂, θ̂)− μ̂1(t;β0, θ̂)}(A4)

= n−1/2
n∑

i=1

ξi11(t) + op(1),

where

ξi11(t) = −E

[ ∫ t

0

S(u|X(1)
i )

×
∫ u

0

{X(1)
i − x̄(r)}′drdR(u|Z(1)

i )

]
B−1UD

i .

For the second term on the right-hand side of (A1), in a
similar manner, we obtain that uniformly in t ∈ [0, τ ],

n1/2{μ̂1(t;β0, θ̂)− μ̂1(t;β0, θ0)}(A5)

= n−1
n∑

i=1

∫ t

0

Ŝ(u|X(1)
i ;β0)

{
∂dR̂0(u; θ)

∂θ′

∣∣∣
θ=θ∗

+Z
(1)′

i du

}
n1/2(θ̂ − θ0)

= n−1
n∑

i=1

∫ t

0

Ŝ(u|X(1)
i ;β0){Z(1)

i − Z̄(u)}′du

×n1/2(θ̂ − θ0)

= E

[ ∫ t

0

S(u|X(1)
i ){Z(1)

i − z̄(u)}′du
]

×n1/2(θ̂ − θ0) + op(1),

where θ∗ lies between θ̂ and θ0. It follows from Schaubel et
al. (2006) that

(A6) n1/2(θ̂ − θ0) = A−1n−1/2
n∑

i=1

UR
i + op(1).

Then by (A5) and (A6), we have that uniformly in t ∈ [0, τ ],

n1/2{μ̂1(t;β0, θ̂)− μ̂1(t;β0, θ0)}(A7)

= n−1/2
n∑

i=1

ξi12(t) + op(1),

where

ξi12(t) = E

[ ∫ t

0

S(u|X(1)
i ){Z(1)

i − z̄(u)}′du
]
A−1UR

i .

For the third term on the right-hand side of (A1), note that

n1/2{μ̂1(t;β0, θ0)− μ̃1(t;β0, θ0)} =(A8)

n−1/2
n∑

i=1

∫ t

0

Ŝ(u|X(1)
i ;β0){dR̂0(u; θ0)− dR0(u)}

+n−1/2
n∑

i=1

∫ t

0

{Ŝ(u|X(1)
i ;β0)− S(u|X(1)

i )}

×{dR0(u) + θ′0Z
(1)
i du}.

By the continuous mapping theorem and the uniform strong
law of large numbers, we obtain that almost surely uniformly
in t ∈ [0, τ ],

n−1
n∑

i=1

Ŝ(t|X(1)
i ;β0) −→ E

[
S(t|X(1)

i )
]
.

Thus, uniformly in t ∈ [0, τ ],

n−1/2
n∑

i=1

∫ t

0

Ŝ(u|X(1)
i ;β0){dR̂0(u; θ0)− dR0(u)}(A9)

=

∫ t

0

E[S(u|X(1)
i )]n1/2{dR̂0(u; θ0)− dR0(u)}+ op(1).

In addition, it can be checked that

n1/2{dR̂0(t; θ0)− dR0(t)}(A10)

= {n−1
n∑

i=1

Yi(t)}−1n−1/2
n∑

i=1

dMR
i (t).

Plugging (A10) into (A9), we get that uniformly in t ∈ [0, τ ],

n−1/2
n∑

i=1

∫ t

0

Ŝ(u;β0|X(1)
i ){dR̂0(u; θ0)− dR0(u)}(A11)

= n−1/2
n∑

i=1

ξi13(t) + op(1),

where

ξi13(t) =

∫ t

0

E[S(u|X(1)
i )]π(u)−1dMR

i (u).

Likewise, uniformly in t ∈ [0, τ ],

n−1/2
n∑

i=1

∫ t

0

{Ŝ(u;β0|X(1)
i )− S(u|X(1)

i )}(A12)

×{dR0(u) + θ′0Z
(1)
i du}
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= −n−1/2
n∑

i=1

∫ t

0

S(u|X(1)
i ){Λ̂0(u;β0)− Λ0(u)}

×{dR0(u) + θ′0Z
(1)
i du}+ op(1)

= −
∫ t

0

E[S(u|X(1)
i )dR(u|Z(1)

i )]n1/2{Λ̂0(u;β0)

−Λ0(u)}+ op(1).

It can be shown that

n1/2{Λ̂0(t;β0)− Λ0(t)}(A13)

= n−1/2
n∑

i=1

∫ t

0

{n−1
n∑

i=1

Yi(u)}−1dMD
i (u).

In view of (A12) and (A13), by switching the order of inte-
gration, we have that uniformly in t ∈ [0, τ ],

n−1/2
n∑

i=1

∫ t

0

{Ŝ(u;β0|X(1)
i )− S(u|X(1)

i )}(A14)

×{dR0(u) + θ′0Z
(1)
i du}

= n−1/2
n∑

i=1

ξi14(t) + op(1),

where

ξi14(t) = −
∫ t

0

{μ1(t)− μ1(u)}π(u)−1dMD
i (u).

It follows from (A8), (A11) and (A14) that uniformly in
t ∈ [0, τ ],

n1/2{μ̂1(t;β0, θ0)− μ̃1(t;β0, θ0)}(A15)

= n−1/2
n∑

i=1

[
ξi13(t) + ξi14(t)

]
+ op(1).

It is easy to see that

(A16) n1/2{μ̃1(t;β0, θ0)− μ1(t)} = n−1/2
n∑

i=1

ξi15(t),

where

ξi15(t) =

∫ t

0

S(u|X(1)
i )dR(u|Z(1)

i )− μ1(t).

Let

Φi1(t) = ξi11(t) + ξi12(t) + ξi13(t) + ξi14(t) + ξi15(t).

Then it follows from (A1), (A4), (A7), (A15) and (A16) that
uniformly in t ∈ [0, τ ],

(A17) n1/2{μ̂1(t; β̂, θ̂)− μ1(t)} = n−1/2
n∑

i=1

Φi1(t) + op(1),

which is asymptotically a sum of independent and iden-
tically distributed variables for each t. Since Φi1(t) (i =
1, ..., n) can be written as sums or products of monotone
functions of t and are thus tight (van der Vaart and Well-

ner, 1996). Similarly, we obtain that n1/2{μ̂0(t; β̂, θ̂)−μ0(t)}
can be written asymptotically as a sum of independent
and identically distributed variables for each t. After tak-
ing the difference between n1/2{μ̂1(t; β̂, θ̂) − μ1(t)} and

n1/2{μ̂0(t; β̂, θ̂) − μ0(t)}, we get that φ̂(t) − φ(t) is asymp-
totically a sum of independent and identically distributed
terms and is tight. Thus, by the functional central limit
theorem (Pollard, 1990), n1/2{φ̂(t)−φ(t)} converges weakly
to a zero-mean Gaussian process. The covariance func-
tion for n1/2{φ̂(t) − φ(t)} at (t, s) is given by E[{Φi1(t) −
Φi0(t)}{Φi1(s) − Φi0(s)}], which can be consistently esti-
mated by replacing all limiting quantities with their empir-
ical counterparts, and then averaging over the sample.
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