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A Model Estimation for Irregular and Sparse Design

The proposed method easily accommodates more realistic situations where the covariates
or the responses are observed on a sparse sampling design. Here we discuss the modifi-
cations required by the proposed estimation procedure to accommodate such sparseness.
This approach was used in the simulation study as well as in the analysis of the dietary

calcium absorption data.

Suppose for i = 1,...,n we observe the functional covariates Xj;(t1;;) for j =
1,...,my; and Xo;(tg;;) for j = 1,...,my;. Also, for i = 1,...,n we observe the func-
tional response Y;(t;) for k = 1,...,my,;. Our goal is to estimate the unknown model

components, py(+), Fi(-,-) and Fy(+,-), of additive nonlinear functional concurrent model
(ANFCM), Y;(t) = puy(t) + Fi{X1:(t),t} + Fo{X2,(t),t} + €(t). Using basis expan-
sions, an equivalent form of the model can be found as Yi(t) = B/ (t)©, + Z{,()©; +
Z3,(t)®;+€;(t); here, B, (t) and Zg;(t) (¢ = 1,2) are defined using pre-specified B-spline
basis functions, as detailed in Section 2.2 of the main article.

When the responses and the covariates have different observation points, we first
smooth the covariates X, ;(-) to obtain the estimated smooth curve X,;(-) of X,,(-), and
we evaluate the smooth curve )?qz() at the points t;. - the points at which the response

is observed. Then we approximate the penalized sum of squares by

S I i Yiti) — Bulti)" ©, — Z7 ,(ti)O1 — Z3 (tix) O2}? /my, |+

O/P,0, + O{P0; + O]P,0;,

where P, P; and Py are the penalty matrices defined in Section 2.2 of the main article
using )A(ql() in place of X,;(-) (¢ = 1,2). To estimate the unknown parameters O, ©;
and ©,, we minimize the above penalized criterion. For a simple illustration, let Y; =
Yitin), -, Yi(timy,)]" and BE; = [€;(ti1), - .., €(timy,)]" be the my,-dimensional vector
of response and random errors for subject 7. Define B, as my; x K,-dimensional matrix
with the j-th row given by BZ(tik) and Z,; as my,; X K,,K;,-dimensional matrix with the

j-th row given by Z[.(t;). We further denote Z; = [B,|Z1,|Z,,], ©" = [©], ©f, ©7]"



and P = diag(P,, P, P2). Then, the solution of © is found as
@ = H{Z?:lZ?Yi}

with H = {>""" | Z17Z; + P}~'. Furthermore, the variance of © can be derived, following

the same procedure described in Section 2.3 of the main article:
var(©) = H{>" ,ZTG,Z,}HT,

where G; = cov(E;) = [G(t, tir)]1<jk<my, With dimension my,; X my; for each i.

B Preprocessing of the Functional Covariates

One challenge of our estimation approach is that some B-spline basis functions might
not have observed data on its support. This problem is more likely to arise when the
covariate X (-) is observed on sparse and irregular gird of points, and realizations of the
function, X (¢;), are not dense over R. To bypass this limitation, we propose to apply
a point-wise centering and scaling transformation of the covariates; it is worthwhile to
note that this problem is addressed by [2] with a different approach.

We define point-wise center/scaling transformation of X (¢) by

XH(t) = {X(t) = px(t)}/ox (),

where px (t) and ox (t) denote the mean and the standard deviation of X (t), respectively.
One can interpret the transformed covariate X*(¢) as the amount of standard deviations
X (t) is away from the mean at time ¢. In practice, we estimate the mean and the standard
deviation by the sample mean [ix(¢) and the sample standard deviation 7x(t) of the co-
variate. Thus for a fixed point ¢; we will obtain realizations of the transformed covariates
{X}(t;)}=, based on the sample mean Jix(¢;) and the sample standard deviation ox(t;)
at the same point. The prediction procedure described in Section 2.4 of the main article

proceeds as before with the understanding that one now uses the transformed version of



the new covariates, X, (t)

Xiew(t) = {Xnew(t) — px(t)}/ox(t),

where we estimate the mean px(t) and the standard deviation ox(t) using the sample
mean and the sample standard deviation obtained from the training data. Our empir-
ical study has shown that the above transformation technique effectively controls the

numerical stability issues while still preserving predictive accuracy.

C Evaluation Criteria

In Section 5.2.1 of the main article, we studied prediction performance of the proposed
method using 1000 Monte Carlo simulations. Estimation and prediction accuracy were
assessed using in-sample and out-of-sample root mean squared prediction error (RMSPE).
The performance of variance estimation was measured through integrated coverage prob-
ability (ICP) and integrated width (IW) of the point-wise prediction intervals. We now
describe how we define the above measures.

We define the in-sample RMSPE by

N|=

i 1 1000 n 1 m; (r) (1) 2
RMSPE" = - 51%0 |57 =5 () = ¥ (1)}
1000 . an_l Zz_l m; Zk—l{ ) ( k) 7 ( k)}
where Yi(r)( 1) and its estimate Y( )(t;) are from the r-th Monte Carlo simulation. The
out-of-sample RMSPE, denoted by RMSPE®™, is defined similarly.
We construct (1 — «)100% point-wise prediction intervals to observe coverage proba-
bilities at the nominal level. The ICP at the (1 — «) level is given by

ICP(]' - O[) 21000 Zz 1 fo I{ new1 6 C’1 az( )}dt,

1000 - n

where C’l "a.i(t) is the point-wise prediction interval from the r-th Monte Carlo simulation
and /() is the indicator function. The prediction interval Cl «i(t) is as previously defined

in Section 2.4 of the main article.



The IW of the (1 — «) level prediction intervals is defined by

TW(1—a) = SIS [2MOEY (1)t

1000 - n

where MOE1 C”( ) = &1 (1—a/2) x [var{Y,' e l(t)_}/}n(gv)v,i(t)}]_%7 and ®(-) is the standard
Gaussian cumulative distribution function.

The prediction bands may fluctuate dramatically at some points, and such cases may
not be captured by the IW. Therefore, we examine the range of the estimated standard

errors (SE). For (1 — «)100% prediction intervals, we define the minimum SE by

min(SE) = o375 3L, min{2MOE]”,, (1)},

The maximum SE, denoted by max(SE), is defined similarly. Then we define R(SE)=
[ min(SE), max(SE)], which gives the range of SE at the (1 — «) level.

D Additional Simulation Results

In this section, we report results from additional simulation studies. Section D.1 reports
simulation results corresponding to another level of sparseness. Section D.2 compares
the prediction results using other competitive approaches for covariance estimation. Sec-
tion D.3 presents additional results for larger measurement error variance in functional
covariates as well as a smaller sample size (n = 40) in addition to n = 100 and 300. Sec-
tion D.4 investigates the effect of different choices of number of basis functions. Section
D.5 investigates the model performance with up to five functional covariates through a

numerical study. Section D.6 presents power curves for a densely sampled scenario.

D.1 Further Investigation of Prediction Error
D.1.1 Additional Simulations for Irregular and Sparse Design

We provide additional simulation results corresponding to another level of sparseness.
Specifically, we consider a scenario with a lower level of sparseness compared to that
of the sparse design considered in Section 5.1 of the main article; the new setting uses

m; % Uni 1 £(29,41) points for the functional response and covariates, and thereby this
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sampling design is called moderately sparse design. As before, the setting used in the
main article is called sparse design. We compared the predictive accuracy of our method
for both scenarios (moderately sparse and sparse designs) using the evaluation criteria
defined in Section C, and results are presented in Table 1. The moderately sparse setting
improved both in-sample and out-of-sample prediction accuracy, compared to the results

corresponding to the sparse design.

D.1.2 Additional Simulations for Complicated Error Structure

Next, we further discuss prediction accuracy investigated in Section 5.2.1 of the main arti-
cle. In Table 2 of the main article, the value of RMSPE™ corresponding to non-stationary
error covariance (E?) slightly increases with the larger sample size. For further investi-
gation, one needs to compare the values of RMSPE™ with the true standard deviation
of the error process. The true standard deviation (averaged over t) of the error process

used in the simulation study can be computed as:

- Sd(E}) = V0.8 ~ 0.89.
- sd(E?) = V0.8 + 0.8 ~ 1.26.
- sd(E?) = 21 0.75% 1 0.8 ~ 1.83,

Table 2 shows the RMSPE™ with the estimated standard errors in the parentheses for
different sampling scenarios and for the error process corresponding to E; = E}. As
expected, the performance of the proposed estimation is slightly affected by the different
sampling designs (e.g., dense/sparse design) and the model complexity. With the smaller
number of observations per curve (e.g., sparse design) and/or with the increased model
complexity (e.g., Scenario C), the values of RMSPE™ are more different from the true
standard deviation of the error process, compared to the results corresponding to the
different simulation settings. Nevertheless, the results indicate that the target values
(true standard deviation of the error process) are within two standard deviations of the
estimated values, and therefore the results are still valid for the different model complexity

as well as for the dense/sparse sampling designs.
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Table 2: Summary of RMSPE™ and the estimated standard errors (in parentheses) ob-
tained by fitting the ANFCM based on 1000 simulations. The simulation settings corre-
spond to the case where E; = E3.

dense design moderately sparse design sparse design
Scenario  n m = 81 m; 0 Unif(29,41) m; * Unif(20,31)
A 100 1.80 (0.08) 1.81 (0.08) 1.81 (0.08)
300 1.83 (0.05) 1.83 (0.05) 1.84 (0.05)
B 100 1.84 (0.08) 1.90 (0.09) 1.94 (0.09)
300 1.87 (0.05) 1.92 (0.05) 1.96 (0.05)
C 100 1.80 (0.08) 1.86 (0.08) 1.91 (0.09)
300 1.85 (0.05) 1.90 (0.05) 1.94 (0.05)

D.2 Further Investigation of Different Covariance Estimation

Methods

In the literature, there are various approaches to estimate the covariance of the residual
process: using local polynomial smoothing and using global smoothing via B-spline basis
functions. So far the latter approach is implemented in R, whereas the former one is
implemented in Matlab. The proposed method in Section 2.3 of the main article is
implemented by fpca.sc function in refund R package, which uses the tensor product
bi-variate P-splines. In this section, we further consider two alternative approaches:
(i) [5] which is implemented using the Matlab toolbox PACE and (ii) [4] implemented
in R using fpca.face function of the refund package [1]. We carried out additional
simulation studies to compare the performance of variance estimation for two cases -
when the functional covariates are observed densely or sparsely and with measurement
error. In the interest of space, we only considered the situations where we have a single
functional covariate (see Scenario A and B defined in Section 5.1 of the main article).
Table 3 shows the results for the n = 100 and E; = E? obtained by fitting the ANFCM.
Evidently, the results are quite robust to the methods.

D.3 Additional Simulations for Larger Measurement Error in

Functional Covariates and Small Sample Size

In Table 2 of the main article, the covariates are generated with measurement error with

variance 0.62. Now, we consider two different error variances: 72 = 1 and 2. We also



Table 3: Summary of ICP, IW, and R(SE) for sample size 100 and E; = E? based on
1000 simulations. Results are obtained by fitting the ANFCM.

Scenario B (true relationship is nonlinear)
1—a=0.95 1—a=090 1—a=0.85
Method ICP IW R(SE) ICp  IW ICP IW
m = 81 (dense design)
fpca.sc 0.946 7.34 [5.53, 9.84] 0.895 6.16 0.844 5.39
fpca.face 0.940 7.22 [5.49, 9.82) 0.886 6.06 0.835 5.30
PACE 0.943 7.29 [5.43,9.73] 0.889 6.12 0.839 5.35

my e Unif(29,41) (moderately sparse design)
fpca.sc 0.948 7.55 [5.69, 10.67] 0.899 6.34 0.849 5.55
fpca.face 0.943 7.37 [5.64, 10.24] 0.890 6.18 0.841 5.41
PACE 0.948 7.62 [5.65, 11.12] 0.897 6.40 0.849 5.60
m; & Unif(20,31) (sparse design)
fpca.sc 0.949 7.69 [5.82, 11.09] 0.900 6.46 0.852 5.65
fpca.face 0.939 7.38 [5.59, 11.38] 0.885 6.19 0.834 5.42
PACE 0.950 7.85 [5.84, 11.78] 0.902 6.59 0.855 5.77

Scenario A (true relationship is linear)
1—a=0.95 1—a=0.90 1—a=0.85
Method ICp IW R(SE) ICP  IW ICP  IW
m = 81 (dense design)
fpca.sc 0.943 7.16 [5.41, 9.10] 0.891 6.01 0.839 5.26
fpca.face 0.936 7.06 [5.37,9.37] 0.880 5.92 0.828 5.18
PACE 0.939 7.13 [5.31, 9.08] 0.884 5.98 0.833 5.24
m; Unif(29,41) (moderately sparse design)
fpca.sc 0.943 7.14 [5.37, 9.36] 0.891 5.99 0.840 5.24
fpca.face 0.935 7.03 [5.37, 9.24] 0.879 5.90 0.828 5.16
PACE 0.941 7.21 [5.31, 9.76] 0.887 6.05 0.837 5.29
m; Unif(20,31) (sparse design)
fpca.sc 0.943 7.14 [5.38, 9.56) 0.891 6.00 0.840 5.25
fpca.face  0.925 6.87 [4.94, 10.19] 0.866 5.76 0.812 5.04
PACE 0.943 7.27 [5.35, 10.20] 0.890 6.10 0.840 5.34




investigate a smaller sample size n = 40 in addition to 100 and 300.

We start by investigating the case with a single functional covariate. The results are
presented in Table 4 for error variance 72 = 1 and in Table 5 for 72 = 2. It is evident
that for larger measurement error in covariates, the prediction errors become larger as
expected. However, the overall conclusions drawn in the main article remain same.

Next, simulation results from two functional covariates are summarized below. The
covariates are generated based on the two scenarios:(i) Wy, = Xy;(¢) + WN(0,1) and
Wy = Xoi(t) + WN(0,1) (see Table 6) and (ii) Wy; = Xy;(t) + WN(0,2) and Wy, =
Xoi(t) + WN(0,2) (see Table 7). Again, similar conclusions can be drawn from these

results as in the main article.

D.4 Choice of Number of Basis Functions

We conducted additional simulation study to investigate the effect of different choices of
number of basis functions. The simulation settings are same as those in the main article,

with differing number of basis functions. The results are displayed in Table 8.

D.5 Further Investigation for More than Two Covariates

We conducted a numerical study to investigate the finite sample performance of the pro-
posed method based on 200 Monte-Carlo repeats with 1 ~ 5 covariates. In this study,
the true covariates are given by X, (£) = ay + ag V2 sin(mt) + agev/2 cos(mt), where a,o ~
N(0,{279%@=D12) g1 ~ N(0,{0.85x279%D}2) and ay ~ N(0,{0.70x 270-2(4=1}2) for
qg=1,...,5. Throughout the study, it is assumed that the covariates X, ;(¢) are not ob-
served directly. Instead we observe W, ; = X ;(t) + WN(0, 0.6%). The response Y;(-) (i =
1...,100) is generated based on models given by Y;(t) = Z?Zl F{X,i(t),t} + €(t) with
F{X,i(t),t} = qu?*t?/5 — ot and [e;(t1), ..., €(tm)]T ~ Env/2cos(nt) 4 Ev/2sin(nt) +
N(0,0.9%I,,), where &; u N(0,2), &q u N(0,0.75%) and @ is the number of covariates
incorporated. We set () = 1,2,...,5 in this simulation study. For the training set, we
considered the dense design with m = 81 equally spaced points in [0, 1] for all . The test
sets contain n = 100 subjects and are obtained using the set of 81 equally spaced points

in [0,1] as well. Results from simulation studies are presented in Table 9. The average

computation time increases with the number of covariates. We also see increasing trend
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Table 6: Summary of RMSPE™, RMSPE®", and ICP based on 1000 simulated data sets.
The covariates are generated based on Wy; = Xy;(t) + WN(0,1) and Wy, = Xoi(t) +
WN(0,1). The models are fitted by the estimation procedure of ANFCM.
n E; RMSPE™ RMSPE°u ICP at ICP at ICP at
1-aa=0951-a=090 1—-a=0.85
Scenario B (model with single functional covariate), m = 81

E] 1.07 1.35 0.957 0.916 0.874

40 E? 1.39 1.55 0.953 0.909 0.863

E} 1.82 2.48 0.935 0.881 0.829

E! 1.09 1.09 0.968 0.932 0.893

100 E? 1.41 1.40 0.962 0.921 0.877

E? 1.90 2.04 0.952 0.903 0.855

E} 1.11 0.95 0.973 0.940 0.904

300 E2 1.43 1.31 0.966 0.927 0.884

E} 1.94 1.89 0.958 0.913 0.866
Scenario B (model with single functional covariate), m; “d Unif(20,31)

E; 1.41 1.94 0.955 0.924 0.891

40 E2 1.67 2.07 0.953 0.915 0.876

E? 2.06 2.68 0.937 0.889 0.842

E! 1.43 1.43 0.974 0.949 0.920

100 E? 1.68 1.66 0.968 0.936 0.900

E} 2.11 2.21 0.958 0.916 0.873

E! 1.44 1.10 0.984 0.963 0.937

300 E? 1.69 1.41 0.977 0.948 0.914

E} 2.14 1.97 0.968 0.931 0.890

Scenario C (model with two functional covariates), m = 81

E] 1.03 1.52 0.923 0.871 0.821

40 E? 1.36 1.70 0.931 0.878 0.827

E} 1.74 2.80 0.910 0.848 0.791

E; 1.06 1.30 0.937 0.888 0.840

100 E2 1.39 1.55 0.941 0.891 0.841

E} 1.86 2.20 0.935 0.880 0.828

E! 1.09 1.16 0.944 0.897 0.851

300 E? 1.41 1.46 0.946 0.898 0.849

E} 1.91 2.02 0.944 0.893 0.843
Scenario C (model with two functional covariates), m; “d Unif(20,31)

E} 1.32 1.98 0.932 0.890 0.848

40 E2 1.60 2.07 0.936 0.890 0.844

E3} 1.94 2.75 0.914 0.857 0.804

E} 1.37 1.56 0.955 0.918 0.880

100 E? 1.63 1.76 0.953 0.912 0.869

E? 2.05 2.31 0.944 0.895 0.847

E; 1.40 1.29 0.967 0.935 0.900

300 E2 1.66 1.56 0.963 0.925 0.885

E} 2.11 2.08 0.957 0.913 0.868
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Table 7: Summary of RMSPE™, RMSPE®", and ICP based on 1000 simulated data sets.
The covariates are generated based on Wy; = Xy;(t) + WN(0,2) and Wa;, = Xoi(t) +

WN(0,2). The models are fitted by the estimation procedure of ANFCM.
n E; RMSPE® RMSPE°ut ICP at ICP at ICP at
1-a=09 1-a=090 1-a=0.85
Scenario B (model with single functional covariate), m = 81

E; 1.21 1.73 0.960 0.925 0.888

40 E? 1.50 1.84 0.956 0.916 0.874

E} 1.91 2.70 0.940 0.888 0.838

E! 1.24 1.27 0.974 0.945 0.911

100 E? 1.53 1.53 0.967 0.931 0.892

E} 1.99 2.15 0.957 0.913 0.866

E} 1.27 1.02 0.980 0.955 0.924

300 E2 1.55 1.35 0.973 0.939 0.902

E3} 2.04 1.92 0.964 0.923 0.880
Scenario B (model with single functional covariate), m; “d Unif(20,31)

E; 1.65 2.50 0.959 0.932 0.904

40 E7 1.88 2.55 0.956 0.924 0.889

E3 2.24 3.08 0.942 0.899 0.855

E} 1.70 1.69 0.978 0.959 0.936

100 E? 1.92 1.88 0.974 0.947 0.916

E} 2.31 2.40 0.964 0.928 0.889

E! 1.73 1.25 0.989 0.974 0.955

300 E? 1.95 1.53 0.983 0.960 0.934

E} 2.35 2.06 0.975 0.944 0.909

Scenario C (model with two functional covariates), m = 81

E; 1.14 2.00 0.914 0.863 0.814

40 E? 1.45 2.09 0.923 0.871 0.821

E} 1.81 3.04 0.906 0.844 0.789

E} 1.20 1.63 0.932 0.885 0.839

100 E2 1.49 1.79 0.937 0.888 0.840

E3} 1.94 2.37 0.933 0.879 0.827

E! 1.24 1.37 0.942 0.897 0.853

300 E? 1.53 1.63 0.944 0.897 0.850

E} 2.01 2.14 0.943 0.893 0.844
Scenario C (model with two functional covariates), m; “d Unif(20,31)

E} 1.53 2.53 0.929 0.889 0.849

40 E2 1.78 2.57 0.933 0.889 0.845

E} 2.08 3.15 0.913 0.858 0.807

E; 1.62 1.98 0.955 0.921 0.887

100 E? 1.85 2.13 0.953 0.915 0.876

E3 2.23 2.60 0.946 0.900 0.854

E} 1.69 1.58 0.968 0.940 0.909

300 E2 1.91 1.80 0.965 0.932 0.895

E} 2.31 2.27 0.960 0.920 0.878
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Table 8 Summary of RMSPE™, RMSPE°", and ICP based on 1000 simulated data sets.
The models are fitted by the estimation procedure of ANFCM. Results correspond to

n = 100 and covariance structure E; = E?.
(K;,K:) RMSPE™ RMSPE°" ICP at ICP at ICP at
1-a=09 1-a=090 1-a=0.85
Scenario B (model with single functional covariate), m = 81

(7,7) 1.84 1.98 0.946 0.895 0.844
(9,9) 1.83 2.00 0.945 0.893 0.842
(11,11) 1.82 2.00 0.943 0.891 0.840
Scenario B (model with single functional covariate), m; “d Unif(20,31)
(7,7) 1.94 2.06 0.949 0.900 0.852
(9,9) 1.93 2.06 0.947 0.899 0.850
(11,11) 1.92 2.06 0.946 0.896 0.847
Scenario C (model with two functional covariates), m = 81
(7,7) 1.80 1.96 0.937 0.882 0.831
(9,9) 1.78 2.13 0.934 0.879 0.825
(11,11) 1.77 2.15 0.932 0.875 0.821
Scenario C (model with two functional covariates), m; “ Unif(20,31)
(7,7) 1.91 2.01 0.942 0.891 0.840
(9,9) 1.89 2.11 0.938 0.886 0.834
(11,11) 1.87 2.11 0.935 0.881 0.829

Table 9: Summary of RMSPE™, RMSPE°", ICP, and average computation time (in
seconds) based on 200 simulated data sets. The average computation times (in seconds)
are obtained using bam function in mgcv R package.

#covariates (Q) RMSPE™ RMSPEC" ICP at ICP at ICP at computation
1-a=0951-a=090 1 —a=0.85 time (seconds)

1 1.80 1.91 0.943 0.890 0.838 1.56

2 1.76 1.96 0.938 0.883 0.831 2.34

3 1.74 2.02 0.934 0.879 0.825 3.85

4 1.70 2.16 0.928 0.869 0.814 6.28

) 1.68 2.80 0.920 0.859 0.802 10.40

in the RMSPE°" as the number of covariates increases; this is indicative of the fact that

one would require larger sample sizes as the number of covariate increases.

D.6 Power Performance of the Tests

In Section 5.2.2 of the main article, we discussed power performance of the proposed
tests for sparsely sampled data. When the sampling design is dense, power properties
are very similar to power properties corresponding to the sparse design, and we show the

results in Figure 1.
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E‘1 : Independent error structure Ei2 : AR(1) error structure
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E? : Non-stationary error structure
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Figure 1: Power (x100) of the tests at significance level & = 5%. The top (bottom) panel
displays the results from scenario A (scenario B) for the setting where sampling design
is dense. The error process in the left, middle and right panels is assumed to be E}, E?

and E?, respectively.
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Figure 2: Top plots are longitudinal measurements of the hip angle (left) and the knee
angle (right) is obtained from 39 children while they go through a single gait cycle. Bot-
tom plots are longitudinal measurements of calcium intake (left) and calcium absorption
(right) obtained from 188 patients.

E Further Investigation of Real Data Examples

E.1 Additional Figures

We present plots of gait data and dietary calcium absorption data illustrated in Section 6
of the main article. The top plots displayed in Figure 2 are individual trajectories of the
hip angle and the knee angle along the gait cycles in [0, 1] interval. The bottom plots in
Figure 2 are observed individual trajectories of the calcium intake and absorption along

the patient’s age at the visit.
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E.2 Further Investigation of Gait Data Example

The curves in gait data are quite different from the ones used in the simulation studies,
and furthermore the sample size is smaller. In this section, we confirm the results of
the gait data analysis by investigating the performance of proposed method using a
generating model that mimic the feature of the gait data. The purpose of the numerical
study is to assess predictive accuracy based on the simulated data sets and to ensure
that our method is reliable also for smaller sample sizes; in the gait data example, the
sample size is 39.

The new simulation study generates the covariates X;(¢) from a process with the mean
and covariance functions that equal their estimated counterparts from the data. For this
purpose, we first apply the FPCA to the observed hip angles using the entire 39 subjects,
and obtain a smoothed version of n curves by computing )A(fim(tj) = ﬁX(t)—l—Ef:l fikgk(t),
where &, (k= 1,..., K) are normally distributed with zero-mean and variance Xk (1=
1,...,n). The estimates Jix(t), ¢x(t), and A are obtained from the observed data, and
the finite truncation K is chosen by setting the percent variance to 99%. It is assumed
that hip angles are observed with some noise, and we generate noisy covariate trajectories
from W™ = Xfim<tij) + 0;;. The noise d;; are normally distributed with zero-mean, and
the noise variance is estimated from the original data. For the training data, we consider
n =30, 100, and 300 subjects. For the test data, we consider 9 subjects. For evaluation
points ¢, we use the same time points used in the data analysis.

The response Y;(-) is generated using two choices for true function F(-,-): a linear
version F™8(z ¢) and a nonlinear version FNU&it(x t). We define the linear version
by FLe(z,t) = Bo(t) + Bi(t)z, where fo(t) = F(t) — Bi(D)fix () /Gx(t) and B (t) =
Br(t)/5x(t). Here, 35‘ (t) and B;(t) are the intercept and the slope estimated from the
gait data. Such formulation allows F8(z ¢) to mimic the fitted curve of the gait
data. We define the nonlinear version by FNW84t(z ¢) = exp(xt/12) — z. To generate
the random errors ¢;(t), we first obtain residuals from the fitted linear model of the gait
data, and employ the FPCA methods to estimate the variance of the random errors.
Figure 3 displays the simulated covariates )A(fim(t) (1 = 1,...,100) evaluated at the
points ¢; (leftmost panel) as well as the response curves Y;(¢) obtained from the models

FLgait(x ¢) (middle panel) and FNM#%t(g ¢) (right panel). In the plot, when the true
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Figure 3: Displayed plots are curves for sample size 100 simulated based on the gait data.
The smoothed version of covariate functions X$™ are presented in the left. The middle
and the rightmost panel present response curves Y;(t) generated based on FM&4t(z )
and FNsalt (1 ) respectively. The last two subjects are highlighted in different colors.

function is F#%t(x t), patterns in the response curves are very similar to the ones from
the original gait data.

Finally, we assess the prediction performance of the proposed method using 1000
samples, and compare its performance with the linear FCM. We fit the ANFCM using
K, = K; = 11 cubic B-splines for z and . When the true function is F*#%(z ¢) (the top
three panels in Table 10), the overall predictive performance of the ANFCM and the linear
FCM is relatively similar. These results indicate that the underlying relationship between
the covariate and the response is linear, as investigated in the main article. When the
true function is FN-84(z ¢) (the bottom three panels in Table 10), the ANFCM better
captures the complex nonlinear relationships than the linear FCM in all scenarios. Other
measures also confirm that when the underlying relationship is complex, the ANFCM

outperforms the linear FCM.

E.3 Further Investigation of Calcium Data Example

For the calcium data example, we further investigated choices of different number of
basis functions as well as different dependence structures in the model. Specifically,
we considered K, = K; = 7, 9, and 11 for the number of basis functions. For the
form of the relationships, we considered two types: (1)E[Absorb;(t)|Intake;(t), BMI;] =
F{Intake;(t),t} + v(t)BMI; where F and ~ are unknown smooth functions; and (ii)
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Table 11: Results from calcium absorption data example. Displayed are the summaries
of RMSPE™, RMSPE°" ICP, IW, and R(SE).
E[Absorb;(t)|Intake;(t), BMI;] = F{Intake;(t),t} +v(t)BMI; (F, v: unknown)

_ 1—a=009 1—a=0.90 1—a=085

(K,,K;) RMSPE®™ RMSPE°** ICP IW R(SE) ICP IW R(SE) ICP IW R(SE)
(7,7) 0.079 0.112  0.950 0.35 [0.32, 0.56] 0.935 0.30 [0.27, 0.47] 0.919 0.26 [0.23, 0.41]
(9,9) 0.079 0.111  0.951 0.35 [0.32, 0.56] 0.935 0.30 [0.26, 0.47] 0.921 0.26 [0.23, 0.41]

(11,11)  0.079 0.111  0.951 0.35 [0.32, 0.56] 0.934 0.29 [0.26, 0.47] 0.920 0.26 [0.23, 0.41]

E[Absorb;(t)|Intake;(t), BMI;] = Fi{Intake;(t),t} + Fo(BMI;,t) (F1, F>: unknown)

_ 1—a=0.95 1—a=0.90 1-—a=0.85
(K., K;) RMSPE™ RMSPE°"* ICP IW R(SE) ICP IW R(SE) ICP IW  R(SE)
(7,7) 0.078 0.111 0.955 0.36 [0.31, 0.60] 0.940 0.30 [0.26, 0.50] 0.924 0.26 [0.23, 0.44]
(9,9) 0.078 0.102 0.945 0.35 [0.30, 0.60] 0.933 0.30 [0.25, 0.50] 0.918 0.26 [0.22, 0.44]

(11,11) 0.078 0.097 0.949 0.35 [0.30, 0.58] 0.931 0.29 [0.25, 0.49] 0.917 0.26 [0.22, 0.43]

E[Absorb;(t)|Intake;(t), BMI;| = Fi{Intake;(t),t} + Fo(BM]I;,t) where F; and F, are
unknown smooth functions. Therefore, the former case assumed that the effect of BMI;

is linear, while the latter case assumed the effect is nonlinear. The results are included

in Table 11.

F Implementation Details

We implemented our proposed estimation and testing methodology using the R software.
The model components of the ANFCM, Y;(t) = uy (t) + Fi{X1,(t),t} + Fo{ Xo,(t), t} +
€;(t), can be estimated using the gam or the bam functions of mgcv package [3]. The
smoothing parameter choice is automatic in both the functions; we use REML criteria
to select the smoothing parameters. For the sparsely sampled design, we employ the R
package refund to carry out FPCA. In the following, we illustrate how the R software
codes can be used to implement our procedures.

We first pool all observed data. Let trep be the N-dimensional vector of evaluation
points pooled from all subjects. Let y.vec be the N-dimensional vectors of response and
transformed covariate, and let and x1.vec and x2.vec be the transformed covariates of
dimension N, respectively, where the evaluation points of the functional correspond to

the vector trep. The transformed covariate indicates that the point-wise center /scaling
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transformation is applied. Then a simple command

fit <-gam(y.vec ~ s(trep, bs=‘‘ps’’, k=Kmu) + te(xl.vec, trep, bs=‘‘ps’’,

k=c(Kx1l, Kt1)) + te(x2.vec, trep, bs=‘‘ps’’, k=c(Kx2, Kt2)), method=‘‘REML’’)

performs our estimation procedure. The function s() estimates the marginal smooth
mean of response, py (t), and the number of basis functions for this term is indicated by
Kmu. The function te () specifies the tensor product of basis functions. The bs argument
selects the type of penalized splines. In our case, we set bs=°‘ps’’ to incorporate B-
splines with the second order difference penalties. The k argument specifies the number
of basis functions; for example, when estimating the term F»{X;,(¢),t}, the number
of basis functions is Kx1 for x1.vec and Ktl1 for trep. Smoothing for the penalized
splines is indicated by method=‘ ‘REML’’. The gam() function will automatically offer
the parameter estimates O as well as the estimated response y.vecEst at the points
trep. For the large data sets, one can use bam() in place of gam().

To estimate G(-,-) at specific time points, one may use fpca.sc function of refund
package in R. The model residuals are computed from res.vec=y.vec-y.vecEst; FPCA

is then applied to the residuals using the function fpca.sc of R package refund as
fpc <- fpca.sc(matrix(res.vec, nrow=n, ncol=m, byrow=TRUE), pve, var=TRUE).

Note that the residuals must be transformed into a matrix format in fpca.sc. The pve
argument specifies the percent of variance explained by the first few eigencomponents
such as pve=0.9 or pve=0.95. We set var=TRUE to estimate the variance of measurement
errors o2. This procedure offers the estimate of eigencomponents {¢x(-), Az} and the
estimate of o2, which will be used to reconstruct G = cov(E;). For the case where the
data are observed on a sparse grid of points, the n x m-dimensional matrix of the residuals

contains NAs as components, considered as missing values. Nevertheless, the fpca.sc()

function can still estimate the underlying smooth curves and the eigencomponents.
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