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A Model Estimation for Irregular and Sparse Design

The proposed method easily accommodates more realistic situations where the covariates

or the responses are observed on a sparse sampling design. Here we discuss the modifi-

cations required by the proposed estimation procedure to accommodate such sparseness.

This approach was used in the simulation study as well as in the analysis of the dietary

calcium absorption data.

Suppose for i = 1, . . . , n we observe the functional covariates X1,i(t1ij) for j =

1, . . . ,m1i and X2,i(t2ij) for j = 1, . . . ,m2i. Also, for i = 1, . . . , n we observe the func-

tional response Yi(tik) for k = 1, . . . ,mY,i. Our goal is to estimate the unknown model

components, µY (·), F1(·, ·) and F2(·, ·), of additive nonlinear functional concurrent model

(ANFCM), Yi(t) = µY (t) + F1{X1,i(t), t} + F2{X2,i(t), t} + εi(t). Using basis expan-

sions, an equivalent form of the model can be found as Yi(t) = BT
µ (t)Θµ + ZT

1,i(t)Θ1 +

ZT
2,i(t)Θ2+εi(t); here, Bµ(t) and Zq,i(t) (q = 1, 2) are defined using pre-specified B-spline

basis functions, as detailed in Section 2.2 of the main article.

When the responses and the covariates have different observation points, we first

smooth the covariates Xq,i(·) to obtain the estimated smooth curve X̂q,i(·) of Xq,i(·), and

we evaluate the smooth curve X̂q,i(·) at the points tik - the points at which the response

is observed. Then we approximate the penalized sum of squares by

∑n
i=1

[∑mY,i

k=1 {Yi(tik)−Bµ(tik)
TΘµ − ZT

1,i(tik)Θ1 − ZT
2,i(tik)Θ2}2/mY,i

]
+

ΘT
µPµΘµ + ΘT

1 P1Θ1 + ΘT
2 P2Θ2,

where Pµ, P1 and P2 are the penalty matrices defined in Section 2.2 of the main article

using X̂q,i(·) in place of Xq,i(·) (q = 1, 2). To estimate the unknown parameters Θµ, Θ1

and Θ2, we minimize the above penalized criterion. For a simple illustration, let Yi =

[Yi(ti1), . . . , Yi(timY,i
)]T and Ei = [εi(ti1), . . . , εi(timY,i

)]T be the mY,i-dimensional vector

of response and random errors for subject i. Define Bµ as mY,i ×Kµ-dimensional matrix

with the j-th row given by BT
µ (tik) and Zq,i as mY,i×KxqKtq-dimensional matrix with the

j-th row given by ZT
q,i(tik). We further denote Zi = [Bµ|Z1,i|Z2,i], ΘT = [ΘT

µ ,Θ
T
1 ,Θ

T
2 ]T
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and P = diag(Pµ,P1,P2). Then, the solution of Θ is found as

Θ̂ = H{
∑n

i=1Z
T
i Yi}

with H = {
∑n

i=1ZTi Zi + P}−1. Furthermore, the variance of Θ̂ can be derived, following

the same procedure described in Section 2.3 of the main article:

var(Θ̂) = H{
∑n

i=1Z
T
i GiZi}HT ,

where Gi = cov(Ei) = [G(tij, tik)]1≤j,k≤mY,i
with dimension mY,i ×mY,i for each i.

B Preprocessing of the Functional Covariates

One challenge of our estimation approach is that some B-spline basis functions might

not have observed data on its support. This problem is more likely to arise when the

covariate X(·) is observed on sparse and irregular gird of points, and realizations of the

function, X(tj), are not dense over R. To bypass this limitation, we propose to apply

a point-wise centering and scaling transformation of the covariates; it is worthwhile to

note that this problem is addressed by [2] with a different approach.

We define point-wise center/scaling transformation of X(t) by

X∗(t) = {X(t)− µX(t)}/σX(t),

where µX(t) and σX(t) denote the mean and the standard deviation of X(t), respectively.

One can interpret the transformed covariate X∗(t) as the amount of standard deviations

X(t) is away from the mean at time t. In practice, we estimate the mean and the standard

deviation by the sample mean µ̂X(t) and the sample standard deviation σ̂X(t) of the co-

variate. Thus for a fixed point tj we will obtain realizations of the transformed covariates

{X∗
i (tj)}ni=1 based on the sample mean µ̂X(tj) and the sample standard deviation σ̂X(tj)

at the same point. The prediction procedure described in Section 2.4 of the main article

proceeds as before with the understanding that one now uses the transformed version of
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the new covariates, X∗
new(t)

X∗
new(t) = {Xnew(t)− µX(t)}/σX(t),

where we estimate the mean µX(t) and the standard deviation σX(t) using the sample

mean and the sample standard deviation obtained from the training data. Our empir-

ical study has shown that the above transformation technique effectively controls the

numerical stability issues while still preserving predictive accuracy.

C Evaluation Criteria

In Section 5.2.1 of the main article, we studied prediction performance of the proposed

method using 1000 Monte Carlo simulations. Estimation and prediction accuracy were

assessed using in-sample and out-of-sample root mean squared prediction error (RMSPE).

The performance of variance estimation was measured through integrated coverage prob-

ability (ICP) and integrated width (IW) of the point-wise prediction intervals. We now

describe how we define the above measures.

We define the in-sample RMSPE by

RMSPEin =
1

1000 · n
∑1000

r=1

[∑n
i=1

1

mi

∑mi

k=1

{
Y

(r)
i (tik)− Ŷ (r)

i (tik)
}2] 1

2
,

where Y
(r)
i (tik) and its estimate Ŷ

(r)
i (tik) are from the r-th Monte Carlo simulation. The

out-of-sample RMSPE, denoted by RMSPEout, is defined similarly.

We construct (1− α)100% point-wise prediction intervals to observe coverage proba-

bilities at the nominal level. The ICP at the (1− α) level is given by

ICP(1− α) =
1

1000 · n
∑1000

r=1

∑n
i=1

∫ 1

0
I{Y (r)

new,i(t) ∈ C
(r)
1−α,i(t)}dt,

where C
(r)
1−α,i(t) is the point-wise prediction interval from the r-th Monte Carlo simulation

and I(·) is the indicator function. The prediction interval C
(r)
1−α,i(t) is as previously defined

in Section 2.4 of the main article.
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The IW of the (1− α) level prediction intervals is defined by

IW(1− α) =
1

1000 · n
∑1000

r=1

∑n
i=1

∫ 1

0
2MOE

(r)
1−α,i(t)dt,

where MOE
(r)
1−α,i(t) = Φ−1(1−α/2)×[v̂ar{Y (r)

new,i(t)−Ŷ
(r)
new,i(t)}]−

1
2 , and Φ(·) is the standard

Gaussian cumulative distribution function.

The prediction bands may fluctuate dramatically at some points, and such cases may

not be captured by the IW. Therefore, we examine the range of the estimated standard

errors (SE). For (1− α)100% prediction intervals, we define the minimum SE by

min(SE) =
1

1000 · n
∑1000

r=1

∑n
i=1 min

t
{2MOE

(r)
1−α,i(t)}.

The maximum SE, denoted by max(SE), is defined similarly. Then we define R(SE)=[
min(SE),max(SE)

]
, which gives the range of SE at the (1− α) level.

D Additional Simulation Results

In this section, we report results from additional simulation studies. Section D.1 reports

simulation results corresponding to another level of sparseness. Section D.2 compares

the prediction results using other competitive approaches for covariance estimation. Sec-

tion D.3 presents additional results for larger measurement error variance in functional

covariates as well as a smaller sample size (n = 40) in addition to n = 100 and 300. Sec-

tion D.4 investigates the effect of different choices of number of basis functions. Section

D.5 investigates the model performance with up to five functional covariates through a

numerical study. Section D.6 presents power curves for a densely sampled scenario.

D.1 Further Investigation of Prediction Error

D.1.1 Additional Simulations for Irregular and Sparse Design

We provide additional simulation results corresponding to another level of sparseness.

Specifically, we consider a scenario with a lower level of sparseness compared to that

of the sparse design considered in Section 5.1 of the main article; the new setting uses

mi
iid∼ Unif(29, 41) points for the functional response and covariates, and thereby this
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sampling design is called moderately sparse design. As before, the setting used in the

main article is called sparse design. We compared the predictive accuracy of our method

for both scenarios (moderately sparse and sparse designs) using the evaluation criteria

defined in Section C, and results are presented in Table 1. The moderately sparse setting

improved both in-sample and out-of-sample prediction accuracy, compared to the results

corresponding to the sparse design.

D.1.2 Additional Simulations for Complicated Error Structure

Next, we further discuss prediction accuracy investigated in Section 5.2.1 of the main arti-

cle. In Table 2 of the main article, the value of RMSPEin corresponding to non-stationary

error covariance (E3
i ) slightly increases with the larger sample size. For further investi-

gation, one needs to compare the values of RMSPEin with the true standard deviation

of the error process. The true standard deviation (averaged over t) of the error process

used in the simulation study can be computed as:

- sd(E1
i ) =

√
0.8 ≈ 0.89.

- sd(E2
i ) =

√
0.8 + 0.8 ≈ 1.26.

- sd(E3
i ) =

√
2 + 0.752 + 0.8 ≈ 1.83.

Table 2 shows the RMSPEin with the estimated standard errors in the parentheses for

different sampling scenarios and for the error process corresponding to Ei = E3
i . As

expected, the performance of the proposed estimation is slightly affected by the different

sampling designs (e.g., dense/sparse design) and the model complexity. With the smaller

number of observations per curve (e.g., sparse design) and/or with the increased model

complexity (e.g., Scenario C), the values of RMSPEin are more different from the true

standard deviation of the error process, compared to the results corresponding to the

different simulation settings. Nevertheless, the results indicate that the target values

(true standard deviation of the error process) are within two standard deviations of the

estimated values, and therefore the results are still valid for the different model complexity

as well as for the dense/sparse sampling designs.
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Table 2: Summary of RMSPEin and the estimated standard errors (in parentheses) ob-
tained by fitting the ANFCM based on 1000 simulations. The simulation settings corre-
spond to the case where Ei = E3

i .
dense design moderately sparse design sparse design

Scenario n m = 81 mi
iid∼ Unif(29, 41) mi

iid∼ Unif(20, 31)
A 100 1.80 (0.08) 1.81 (0.08) 1.81 (0.08)

300 1.83 (0.05) 1.83 (0.05) 1.84 (0.05)

B 100 1.84 (0.08) 1.90 (0.09) 1.94 (0.09)
300 1.87 (0.05) 1.92 (0.05) 1.96 (0.05)

C 100 1.80 (0.08) 1.86 (0.08) 1.91 (0.09)
300 1.85 (0.05) 1.90 (0.05) 1.94 (0.05)

D.2 Further Investigation of Different Covariance Estimation

Methods

In the literature, there are various approaches to estimate the covariance of the residual

process: using local polynomial smoothing and using global smoothing via B-spline basis

functions. So far the latter approach is implemented in R, whereas the former one is

implemented in Matlab. The proposed method in Section 2.3 of the main article is

implemented by fpca.sc function in refund R package, which uses the tensor product

bi-variate P-splines. In this section, we further consider two alternative approaches:

(i) [5] which is implemented using the Matlab toolbox PACE and (ii) [4] implemented

in R using fpca.face function of the refund package [1]. We carried out additional

simulation studies to compare the performance of variance estimation for two cases -

when the functional covariates are observed densely or sparsely and with measurement

error. In the interest of space, we only considered the situations where we have a single

functional covariate (see Scenario A and B defined in Section 5.1 of the main article).

Table 3 shows the results for the n = 100 and Ei = E3
i obtained by fitting the ANFCM.

Evidently, the results are quite robust to the methods.

D.3 Additional Simulations for Larger Measurement Error in

Functional Covariates and Small Sample Size

In Table 2 of the main article, the covariates are generated with measurement error with

variance 0.62. Now, we consider two different error variances: τ 2 = 1 and 2. We also
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Table 3: Summary of ICP, IW, and R(SE) for sample size 100 and Ei = E3
i based on

1000 simulations. Results are obtained by fitting the ANFCM.
Scenario B (true relationship is nonlinear)

1− α = 0.95 1− α = 0.90 1− α = 0.85
Method ICP IW R(SE) ICP IW ICP IW

m = 81 (dense design)
fpca.sc 0.946 7.34 [5.53, 9.84] 0.895 6.16 0.844 5.39

fpca.face 0.940 7.22 [5.49, 9.82] 0.886 6.06 0.835 5.30
PACE 0.943 7.29 [5.43, 9.73] 0.889 6.12 0.839 5.35

mi
iid∼ Unif(29, 41) (moderately sparse design)

fpca.sc 0.948 7.55 [5.69, 10.67] 0.899 6.34 0.849 5.55
fpca.face 0.943 7.37 [5.64, 10.24] 0.890 6.18 0.841 5.41

PACE 0.948 7.62 [5.65, 11.12] 0.897 6.40 0.849 5.60

mi
iid∼ Unif(20, 31) (sparse design)

fpca.sc 0.949 7.69 [5.82, 11.09] 0.900 6.46 0.852 5.65
fpca.face 0.939 7.38 [5.59, 11.38] 0.885 6.19 0.834 5.42

PACE 0.950 7.85 [5.84, 11.78] 0.902 6.59 0.855 5.77

Scenario A (true relationship is linear)
1− α = 0.95 1− α = 0.90 1− α = 0.85

Method ICP IW R(SE) ICP IW ICP IW
m = 81 (dense design)

fpca.sc 0.943 7.16 [5.41, 9.10] 0.891 6.01 0.839 5.26
fpca.face 0.936 7.06 [5.37, 9.37] 0.880 5.92 0.828 5.18

PACE 0.939 7.13 [5.31, 9.08] 0.884 5.98 0.833 5.24

mi
iid∼ Unif(29, 41) (moderately sparse design)

fpca.sc 0.943 7.14 [5.37, 9.36] 0.891 5.99 0.840 5.24
fpca.face 0.935 7.03 [5.37, 9.24] 0.879 5.90 0.828 5.16

PACE 0.941 7.21 [5.31, 9.76] 0.887 6.05 0.837 5.29

mi
iid∼ Unif(20, 31) (sparse design)

fpca.sc 0.943 7.14 [5.38, 9.56] 0.891 6.00 0.840 5.25
fpca.face 0.925 6.87 [4.94, 10.19] 0.866 5.76 0.812 5.04

PACE 0.943 7.27 [5.35, 10.20] 0.890 6.10 0.840 5.34
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investigate a smaller sample size n = 40 in addition to 100 and 300.

We start by investigating the case with a single functional covariate. The results are

presented in Table 4 for error variance τ 2 = 1 and in Table 5 for τ 2 = 2. It is evident

that for larger measurement error in covariates, the prediction errors become larger as

expected. However, the overall conclusions drawn in the main article remain same.

Next, simulation results from two functional covariates are summarized below. The

covariates are generated based on the two scenarios:(i) W1i = X1i(t) + WN(0, 1) and

W2i = X2i(t) + WN(0, 1) (see Table 6) and (ii) W1i = X1i(t) + WN(0, 2) and W2i =

X2i(t) + WN(0, 2) (see Table 7). Again, similar conclusions can be drawn from these

results as in the main article.

D.4 Choice of Number of Basis Functions

We conducted additional simulation study to investigate the effect of different choices of

number of basis functions. The simulation settings are same as those in the main article,

with differing number of basis functions. The results are displayed in Table 8.

D.5 Further Investigation for More than Two Covariates

We conducted a numerical study to investigate the finite sample performance of the pro-

posed method based on 200 Monte-Carlo repeats with 1 ∼ 5 covariates. In this study,

the true covariates are given by Xq(t) = aq0 +aq1
√

2 sin(πt) +aq2
√

2 cos(πt), where aq0 ∼

N(0, {2−0.5(q−1)}2), aq1 ∼ N(0, {0.85×2−0.5(q−1)}2) and aq2 ∼ N(0, {0.70×2−0.5(q−1)}2) for

q = 1, . . . , 5. Throughout the study, it is assumed that the covariates Xq,i(t) are not ob-

served directly. Instead we observe Wq,i = X1,i(t) + WN(0, 0.62). The response Yi(·) (i =

1 . . . , 100) is generated based on models given by Yi(t) =
∑Q

q=1 Fq{Xq,i(t), t}+ ε(t) with

Fq{Xq,i(t), t} = qx2t2/5 − xt and [εi(t1), . . . , εi(tm)]T ∼ ξi1
√

2 cos(πt) + ξi2
√

2 sin(πt) +

N(0, 0.92Im), where ξi1
iid∼ N(0, 2), ξi2

iid∼ N(0, 0.752) and Q is the number of covariates

incorporated. We set Q = 1, 2, . . . , 5 in this simulation study. For the training set, we

considered the dense design with m = 81 equally spaced points in [0, 1] for all i. The test

sets contain n = 100 subjects and are obtained using the set of 81 equally spaced points

in [0, 1] as well. Results from simulation studies are presented in Table 9. The average

computation time increases with the number of covariates. We also see increasing trend
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Table 6: Summary of RMSPEin, RMSPEout, and ICP based on 1000 simulated data sets.
The covariates are generated based on W1i = X1i(t) + WN(0, 1) and W2i = X2i(t) +
WN(0, 1). The models are fitted by the estimation procedure of ANFCM.

n Ei RMSPEin RMSPEout ICP at ICP at ICP at
1− α = 0.95 1− α = 0.90 1− α = 0.85

Scenario B (model with single functional covariate), m = 81
E1

i 1.07 1.35 0.957 0.916 0.874
40 E2

i 1.39 1.55 0.953 0.909 0.863
E3

i 1.82 2.48 0.935 0.881 0.829

E1
i 1.09 1.09 0.968 0.932 0.893

100 E2
i 1.41 1.40 0.962 0.921 0.877

E3
i 1.90 2.04 0.952 0.903 0.855

E1
i 1.11 0.95 0.973 0.940 0.904

300 E2
i 1.43 1.31 0.966 0.927 0.884

E3
i 1.94 1.89 0.958 0.913 0.866

Scenario B (model with single functional covariate), mi
iid∼ Unif(20, 31)

E1
i 1.41 1.94 0.955 0.924 0.891

40 E2
i 1.67 2.07 0.953 0.915 0.876

E3
i 2.06 2.68 0.937 0.889 0.842

E1
i 1.43 1.43 0.974 0.949 0.920

100 E2
i 1.68 1.66 0.968 0.936 0.900

E3
i 2.11 2.21 0.958 0.916 0.873

E1
i 1.44 1.10 0.984 0.963 0.937

300 E2
i 1.69 1.41 0.977 0.948 0.914

E3
i 2.14 1.97 0.968 0.931 0.890

Scenario C (model with two functional covariates), m = 81
E1

i 1.03 1.52 0.923 0.871 0.821
40 E2

i 1.36 1.70 0.931 0.878 0.827
E3

i 1.74 2.80 0.910 0.848 0.791

E1
i 1.06 1.30 0.937 0.888 0.840

100 E2
i 1.39 1.55 0.941 0.891 0.841

E3
i 1.86 2.20 0.935 0.880 0.828

E1
i 1.09 1.16 0.944 0.897 0.851

300 E2
i 1.41 1.46 0.946 0.898 0.849

E3
i 1.91 2.02 0.944 0.893 0.843

Scenario C (model with two functional covariates), mi
iid∼ Unif(20, 31)

E1
i 1.32 1.98 0.932 0.890 0.848

40 E2
i 1.60 2.07 0.936 0.890 0.844

E3
i 1.94 2.75 0.914 0.857 0.804

E1
i 1.37 1.56 0.955 0.918 0.880

100 E2
i 1.63 1.76 0.953 0.912 0.869

E3
i 2.05 2.31 0.944 0.895 0.847

E1
i 1.40 1.29 0.967 0.935 0.900

300 E2
i 1.66 1.56 0.963 0.925 0.885

E3
i 2.11 2.08 0.957 0.913 0.868
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Table 7: Summary of RMSPEin, RMSPEout, and ICP based on 1000 simulated data sets.
The covariates are generated based on W1i = X1i(t) + WN(0, 2) and W2i = X2i(t) +
WN(0, 2). The models are fitted by the estimation procedure of ANFCM.

n Ei RMSPEin RMSPEout ICP at ICP at ICP at
1− α = 0.95 1− α = 0.90 1− α = 0.85

Scenario B (model with single functional covariate), m = 81
E1

i 1.21 1.73 0.960 0.925 0.888
40 E2

i 1.50 1.84 0.956 0.916 0.874
E3

i 1.91 2.70 0.940 0.888 0.838

E1
i 1.24 1.27 0.974 0.945 0.911

100 E2
i 1.53 1.53 0.967 0.931 0.892

E3
i 1.99 2.15 0.957 0.913 0.866

E1
i 1.27 1.02 0.980 0.955 0.924

300 E2
i 1.55 1.35 0.973 0.939 0.902

E3
i 2.04 1.92 0.964 0.923 0.880

Scenario B (model with single functional covariate), mi
iid∼ Unif(20, 31)

E1
i 1.65 2.50 0.959 0.932 0.904

40 E2
i 1.88 2.55 0.956 0.924 0.889

E3
i 2.24 3.08 0.942 0.899 0.855

E1
i 1.70 1.69 0.978 0.959 0.936

100 E2
i 1.92 1.88 0.974 0.947 0.916

E3
i 2.31 2.40 0.964 0.928 0.889

E1
i 1.73 1.25 0.989 0.974 0.955

300 E2
i 1.95 1.53 0.983 0.960 0.934

E3
i 2.35 2.06 0.975 0.944 0.909

Scenario C (model with two functional covariates), m = 81
E1

i 1.14 2.00 0.914 0.863 0.814
40 E2

i 1.45 2.09 0.923 0.871 0.821
E3

i 1.81 3.04 0.906 0.844 0.789

E1
i 1.20 1.63 0.932 0.885 0.839

100 E2
i 1.49 1.79 0.937 0.888 0.840

E3
i 1.94 2.37 0.933 0.879 0.827

E1
i 1.24 1.37 0.942 0.897 0.853

300 E2
i 1.53 1.63 0.944 0.897 0.850

E3
i 2.01 2.14 0.943 0.893 0.844

Scenario C (model with two functional covariates), mi
iid∼ Unif(20, 31)

E1
i 1.53 2.53 0.929 0.889 0.849

40 E2
i 1.78 2.57 0.933 0.889 0.845

E3
i 2.08 3.15 0.913 0.858 0.807

E1
i 1.62 1.98 0.955 0.921 0.887

100 E2
i 1.85 2.13 0.953 0.915 0.876

E3
i 2.23 2.60 0.946 0.900 0.854

E1
i 1.69 1.58 0.968 0.940 0.909

300 E2
i 1.91 1.80 0.965 0.932 0.895

E3
i 2.31 2.27 0.960 0.920 0.878
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Table 8: Summary of RMSPEin, RMSPEout, and ICP based on 1000 simulated data sets.
The models are fitted by the estimation procedure of ANFCM. Results correspond to
n = 100 and covariance structure Ei = E3

i .
(Kx,Kt) RMSPEin RMSPEout ICP at ICP at ICP at

1− α = 0.95 1− α = 0.90 1− α = 0.85
Scenario B (model with single functional covariate), m = 81

(7, 7) 1.84 1.98 0.946 0.895 0.844
(9, 9) 1.83 2.00 0.945 0.893 0.842
(11, 11) 1.82 2.00 0.943 0.891 0.840

Scenario B (model with single functional covariate), mi
iid∼ Unif(20, 31)

(7, 7) 1.94 2.06 0.949 0.900 0.852
(9, 9) 1.93 2.06 0.947 0.899 0.850
(11, 11) 1.92 2.06 0.946 0.896 0.847

Scenario C (model with two functional covariates), m = 81
(7, 7) 1.80 1.96 0.937 0.882 0.831
(9, 9) 1.78 2.13 0.934 0.879 0.825
(11, 11) 1.77 2.15 0.932 0.875 0.821

Scenario C (model with two functional covariates), mi
iid∼ Unif(20, 31)

(7, 7) 1.91 2.01 0.942 0.891 0.840
(9, 9) 1.89 2.11 0.938 0.886 0.834
(11, 11) 1.87 2.11 0.935 0.881 0.829

Table 9: Summary of RMSPEin, RMSPEout, ICP, and average computation time (in
seconds) based on 200 simulated data sets. The average computation times (in seconds)
are obtained using bam function in mgcv R package.
#covariates (Q) RMSPEin RMSPEout ICP at ICP at ICP at computation

1− α = 0.95 1− α = 0.90 1− α = 0.85 time (seconds)
1 1.80 1.91 0.943 0.890 0.838 1.56
2 1.76 1.96 0.938 0.883 0.831 2.34
3 1.74 2.02 0.934 0.879 0.825 3.85
4 1.70 2.16 0.928 0.869 0.814 6.28
5 1.68 2.80 0.920 0.859 0.802 10.40

in the RMSPEout as the number of covariates increases; this is indicative of the fact that

one would require larger sample sizes as the number of covariate increases.

D.6 Power Performance of the Tests

In Section 5.2.2 of the main article, we discussed power performance of the proposed

tests for sparsely sampled data. When the sampling design is dense, power properties

are very similar to power properties corresponding to the sparse design, and we show the

results in Figure 1.
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Figure 1: Power (×100) of the tests at significance level α = 5%. The top (bottom) panel
displays the results from scenario A (scenario B) for the setting where sampling design
is dense. The error process in the left, middle and right panels is assumed to be E1

i , E2
i

and E3
i , respectively.
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Figure 2: Top plots are longitudinal measurements of the hip angle (left) and the knee
angle (right) is obtained from 39 children while they go through a single gait cycle. Bot-
tom plots are longitudinal measurements of calcium intake (left) and calcium absorption
(right) obtained from 188 patients.

E Further Investigation of Real Data Examples

E.1 Additional Figures

We present plots of gait data and dietary calcium absorption data illustrated in Section 6

of the main article. The top plots displayed in Figure 2 are individual trajectories of the

hip angle and the knee angle along the gait cycles in [0, 1] interval. The bottom plots in

Figure 2 are observed individual trajectories of the calcium intake and absorption along

the patient’s age at the visit.

17



E.2 Further Investigation of Gait Data Example

The curves in gait data are quite different from the ones used in the simulation studies,

and furthermore the sample size is smaller. In this section, we confirm the results of

the gait data analysis by investigating the performance of proposed method using a

generating model that mimic the feature of the gait data. The purpose of the numerical

study is to assess predictive accuracy based on the simulated data sets and to ensure

that our method is reliable also for smaller sample sizes; in the gait data example, the

sample size is 39.

The new simulation study generates the covariates Xi(t) from a process with the mean

and covariance functions that equal their estimated counterparts from the data. For this

purpose, we first apply the FPCA to the observed hip angles using the entire 39 subjects,

and obtain a smoothed version of n curves by computing X̂sim
i (tj) = µ̂X(t)+

∑K
j=1 ξikφ̂k(t),

where ξik (k = 1, . . . , K) are normally distributed with zero-mean and variance λ̂k (i =

1, . . . , n). The estimates µ̂X(t), φ̂k(t), and λ̂k are obtained from the observed data, and

the finite truncation K is chosen by setting the percent variance to 99%. It is assumed

that hip angles are observed with some noise, and we generate noisy covariate trajectories

from W sim
ij = X̂sim

i (tij) + δij. The noise δij are normally distributed with zero-mean, and

the noise variance is estimated from the original data. For the training data, we consider

n =30, 100, and 300 subjects. For the test data, we consider 9 subjects. For evaluation

points t, we use the same time points used in the data analysis.

The response Yi(·) is generated using two choices for true function F (·, ·): a linear

version F L,gait(x, t) and a nonlinear version FNL,gait(x, t). We define the linear version

by F L,gait(x, t) = β0(t) + β1(t)x, where β0(t) = β̂∗
0(t) − β̂∗

1(t)µ̂X(t)/σ̂X(t) and β1(t) =

β̂∗
1(t)/σ̂X(t). Here, β̂∗

0(t) and β̂∗
1(t) are the intercept and the slope estimated from the

gait data. Such formulation allows F L,gait(x, t) to mimic the fitted curve of the gait

data. We define the nonlinear version by FNL,gait(x, t) = exp(xt/12) − x. To generate

the random errors εi(t), we first obtain residuals from the fitted linear model of the gait

data, and employ the FPCA methods to estimate the variance of the random errors.

Figure 3 displays the simulated covariates X̂sim
i (t) (i = 1, . . . , 100) evaluated at the

points tj (leftmost panel) as well as the response curves Yi(t) obtained from the models

F L,gait(x, t) (middle panel) and FNL,gait(x, t) (right panel). In the plot, when the true
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Figure 3: Displayed plots are curves for sample size 100 simulated based on the gait data.
The smoothed version of covariate functions X̂sim

i are presented in the left. The middle
and the rightmost panel present response curves Yi(t) generated based on F L,gait(x, t)
and FNL,gait(x, t), respectively. The last two subjects are highlighted in different colors.

function is F L,gait(x, t), patterns in the response curves are very similar to the ones from

the original gait data.

Finally, we assess the prediction performance of the proposed method using 1000

samples, and compare its performance with the linear FCM. We fit the ANFCM using

Kx = Kt = 11 cubic B-splines for x and t. When the true function is F L,gait(x, t) (the top

three panels in Table 10), the overall predictive performance of the ANFCM and the linear

FCM is relatively similar. These results indicate that the underlying relationship between

the covariate and the response is linear, as investigated in the main article. When the

true function is FNL,gait(x, t) (the bottom three panels in Table 10), the ANFCM better

captures the complex nonlinear relationships than the linear FCM in all scenarios. Other

measures also confirm that when the underlying relationship is complex, the ANFCM

outperforms the linear FCM.

E.3 Further Investigation of Calcium Data Example

For the calcium data example, we further investigated choices of different number of

basis functions as well as different dependence structures in the model. Specifically,

we considered Kx = Kt = 7, 9, and 11 for the number of basis functions. For the

form of the relationships, we considered two types: (i)E[Absorbi(t)|Intakei(t), BMIi] =

F{Intakei(t), t} + γ(t)BMIi where F and γ are unknown smooth functions; and (ii)
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Table 11: Results from calcium absorption data example. Displayed are the summaries
of RMSPEin, RMSPEout, ICP, IW, and R(SE).

E[Absorbi(t)|Intakei(t), BMIi] = F{Intakei(t), t}+ γ(t)BMIi (F , γ: unknown)
1− α = 0.95 1− α = 0.90 1− α = 0.85

(Kx,Kt) RMSPEin RMSPEout ICP IW R(SE) ICP IW R(SE) ICP IW R(SE)

(7, 7) 0.079 0.112 0.950 0.35 [0.32, 0.56] 0.935 0.30 [0.27, 0.47] 0.919 0.26 [0.23, 0.41]
(9, 9) 0.079 0.111 0.951 0.35 [0.32, 0.56] 0.935 0.30 [0.26, 0.47] 0.921 0.26 [0.23, 0.41]
(11, 11) 0.079 0.111 0.951 0.35 [0.32, 0.56] 0.934 0.29 [0.26, 0.47] 0.920 0.26 [0.23, 0.41]

E[Absorbi(t)|Intakei(t), BMIi] = F1{Intakei(t), t}+ F2(BMIi, t) (F1, F2: unknown)
1− α = 0.95 1− α = 0.90 1− α = 0.85

(Kx,Kt) RMSPEin RMSPEout ICP IW R(SE) ICP IW R(SE) ICP IW R(SE)

(7, 7) 0.078 0.111 0.955 0.36 [0.31, 0.60] 0.940 0.30 [0.26, 0.50] 0.924 0.26 [0.23, 0.44]
(9, 9) 0.078 0.102 0.945 0.35 [0.30, 0.60] 0.933 0.30 [0.25, 0.50] 0.918 0.26 [0.22, 0.44]
(11, 11) 0.078 0.097 0.949 0.35 [0.30, 0.58] 0.931 0.29 [0.25, 0.49] 0.917 0.26 [0.22, 0.43]

E[Absorbi(t)|Intakei(t), BMIi] = F1{Intakei(t), t} + F2(BMIi, t) where F1 and F2 are

unknown smooth functions. Therefore, the former case assumed that the effect of BMIi

is linear, while the latter case assumed the effect is nonlinear. The results are included

in Table 11.

F Implementation Details

We implemented our proposed estimation and testing methodology using the R software.

The model components of the ANFCM, Yi(t) = µY (t) + F1{X1,i(t), t}+ F2{X2,i(t), t}+

εi(t), can be estimated using the gam or the bam functions of mgcv package [3]. The

smoothing parameter choice is automatic in both the functions; we use REML criteria

to select the smoothing parameters. For the sparsely sampled design, we employ the R

package refund to carry out FPCA. In the following, we illustrate how the R software

codes can be used to implement our procedures.

We first pool all observed data. Let trep be the N -dimensional vector of evaluation

points pooled from all subjects. Let y.vec be the N -dimensional vectors of response and

transformed covariate, and let and x1.vec and x2.vec be the transformed covariates of

dimension N , respectively, where the evaluation points of the functional correspond to

the vector trep. The transformed covariate indicates that the point-wise center/scaling
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transformation is applied. Then a simple command

fit <-gam(y.vec ~ s(trep, bs=‘‘ps’’, k=Kmu) + te(x1.vec, trep, bs=‘‘ps’’,

k=c(Kx1, Kt1)) + te(x2.vec, trep, bs=‘‘ps’’, k=c(Kx2, Kt2)), method=‘‘REML’’)

performs our estimation procedure. The function s() estimates the marginal smooth

mean of response, µY (t), and the number of basis functions for this term is indicated by

Kmu. The function te() specifies the tensor product of basis functions. The bs argument

selects the type of penalized splines. In our case, we set bs=‘‘ps’’ to incorporate B-

splines with the second order difference penalties. The k argument specifies the number

of basis functions; for example, when estimating the term F2{X1,i(t), t}, the number

of basis functions is Kx1 for x1.vec and Kt1 for trep. Smoothing for the penalized

splines is indicated by method=‘‘REML’’. The gam() function will automatically offer

the parameter estimates Θ̂ as well as the estimated response y.vecEst at the points

trep. For the large data sets, one can use bam() in place of gam().

To estimate G(·, ·) at specific time points, one may use fpca.sc function of refund

package in R. The model residuals are computed from res.vec=y.vec-y.vecEst; FPCA

is then applied to the residuals using the function fpca.sc of R package refund as

fpc <- fpca.sc(matrix(res.vec, nrow=n, ncol=m, byrow=TRUE), pve, var=TRUE).

Note that the residuals must be transformed into a matrix format in fpca.sc. The pve

argument specifies the percent of variance explained by the first few eigencomponents

such as pve=0.9 or pve=0.95. We set var=TRUE to estimate the variance of measurement

errors σ2. This procedure offers the estimate of eigencomponents {φk(·), λk} and the

estimate of σ2, which will be used to reconstruct G = cov(Ei). For the case where the

data are observed on a sparse grid of points, the n×m-dimensional matrix of the residuals

contains NAs as components, considered as missing values. Nevertheless, the fpca.sc()

function can still estimate the underlying smooth curves and the eigencomponents.
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